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Abstract

The Net Present Value (NPV) rule is a base of modern finance theory. The classical definition of 

NPV is based on unrealistic assumptions: it treats the discount rate as a deterministic and 

constant function. The above fact may lead to some situations when the classical NPV  may mark 

the wrong direction of investing. Moreover, the deterministic formula makes the measurement o f 

risk impossible -  we can not estimate the probability o f obtaining any values о (N PV. In this paper 

we consider a stochastic, general definition o f Net Present Value. We propose the method o f 

measurement o f risk in case o f using the stochastic definition. The risk is identified with 

probability, that stochastic process NPV(t), starting from a negative and real point ß(0) (initial 

investment), will not leave the interval ( - 00,0 )  before end of the project (7). Presented 

considerations lead to Pontriagin’s differential equation and its solution is the mentioned 

probability.
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1. Introduction

Investment decisions should be based on the economic calculation, which 

requires qualification of methods of measurement the profitability. This is one of 

the major subjects studied in both theory of finance and financial mathematics. 

Most academics and professionals agree that the Net Present Value (NPV) rule is 

the most reliable criterion in ranking investment projects ( W y p y c h a ,  1999; 

G a j d  к a, W a l  i ń s  ка, 1998). Although this method has some faults (see 

O e h m k e ,  2000; M a g n i ,  2002; B i a ł e k ,  2005a) it is still very popular and 

recommended by banks and UNIDO. NPV  rule discounts all cash flows 

connected with realization of our project. For the investment project specified by
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cash flows: {.P0) PUP2..., PT}, where real Pt -  denotes the outflow or inflow of

the money connected with /-th year of realization (/ e  {1,2..... T}), we define

Net Present Value as:

T -  is the (possibly infinite) life of the project, 

r -  is a considered discount rate.

Our project is acceptable only if NPV > 0. But this method takes into 

account no change o f a discount rate during the time interval [0, 7’]. Besides 

NPV  treats each cash flow as if it appears at the end of the year. The right, the 

most general definition o f measure of the efficiency should treat both discount 

rate and cash flow as random variables depending on time.

In the contemporary economy we have general, stochastic definitions of Net 

Present Value. Omitting all technical assumptions (see B i a ł e k ,  2005b), in the 

case of continuous time we can define Net Present Value using the Ito integral as 

below:

where presented stochastic processes mean:

B(t) -  all cash flows (connected with realization o f our investment project) 

which appeared till moment t,
7i(0)- the initial investment,

a(t) -  the process o f accumulation of money,

IV(() -  the standard Brownian motion,

a(t), ß ( t)  -  are progressively measurable processes on [0, 7’], 

and the stochastic process B(t) is modeled as follows (the so called outfiow- 
inflowprocess, see К о о (1998):

__The formula (2) means that the new definition is a random variable -

NPV  : í l - >  R, on some probability space (Q ,F ,P ). The NPV  takes into 

account changing values of discount rate and treats each cash flow as a random 

variable. It allows to calculate the probability of events like “the project is 

profitable” or “the project is unprofitable”. And finally, we can measure the risk

(1)

where:

NPV(T) = B( 0)+ ľ' ^ - d t  + ľ
g a(t) о a(0

(2)

dB{t) = a (t)d t + ß ( t)d W (t) (3)



of the project. Let us notice that under some technical assumptions the NPV  

definition can be presented as a solution of the below stochastic differential 

equation:

clNPV (t) = A (t)d t + B (t)dW  (/) (4)

where

NPV(0) = B(0), А(() = Щ ,  B(t) = £ ^  (5)
a(t) a(t)

2. The pontriagin’s equation

Let us consider the process described by the following stochastic differential 

equation:

dx{t) = a(t,x(t))dt + b(t,x(t))dW (t) (6)

where

ci(t,x(t)) -  coefficient of drift, b(t,x(t)) -  coefficient of diffusion

and c/(y), b(y) satisfy some technical assumptions -  see J a k u b o w s k i  etal. 
(2003). We are going to find an equation describing the probability that 

a stochastic processx{t), starting from some real point x(0), will not leave the 

set D before time t.

Let us denote: x(0) = дг0 and let us assume that x0 e  int D. Let us denote by 

PdV,*o) -  tlie probability, that a stochastic processx(t), starting from a real 

point x0, will leave the set D  before time t. Hence, the probability o f staying 

inside D  during the time interval [0, i] equals: QD(t,x0) = 1 -  P0 (t,x0).
But the same probability can be calculated as J p ( t ,s ,x 0)ds, where 

p ( t , s, x0) is a density of probability of finding the process x(t) in point s after 

time t but under the condition, that the process has not left the set D so far. 

Hence we get:

joJD(í,í,x0)ar5 + / >0 (/,x0) = l (7 )

The probability PD(t + r ,x 0) is a sum of two, separable events as follows:

PD(t + r ,x 0) = PD(T,x0)+  jo p ( t,s ,x 0)PD(t,s)ds  (8)



Р„и + г , х , ) - Р ^ ) =1 ^ )

T T

dPl}(t,xo) 1 f ,  s , w  . 1 d2Pn (t,xn) 1 f ,  ч2 ,
- - Я- - - - - - 1 ^  "  *0 J* * ° )í/s  +  Ö - - - a 2 L (*  "  *0 )  W .  *, *0)<k +cíXq r  *  2  öCq r  *>

3! ох« r  Jo

where Д e (0,1), x' e  int D.

We hale also (see R o l s k i ,  S c h  m i d i  i, S c h m i d t ,  T e u g e l s l  999):

l i mM ^ ) = o V x° e D  ( 10)
r-*o+ T

lim* ~  "  x0) " P ( W 0)ds = K n(x0) (11)
r-> 0 t  D

where:

K ] (xo) = ä(0,xo) 

K 2(x0)  = b 2(0,x0)

K  „(xo) = 0, dla n > 3 

Under the limit r  —> 0+ we get

dPD(t,x0) _  .dP0 (t,x0) 1 -2 8 2Pß (t,x{))
- a ( v ,x 0) -  + —о (,и,л-0; -----— -̂----

ot oxn 2 ôxt

Similarly, in the case of QD(t,x0), we get

= ^ o ^ š M ^ + L ^ x o )  ? - Щ Хо) (13)
\

dt u'  ftt0 2 ~ ч' "  и/ ä t02

The formula (12) and (13) is known in the literature as a first Pontriagin’s 

differential equation. To solve it we must consider additionally some frontier 

conditions. Let us consider the equation described in (12). Let us notice that



PD(0,x0) = 0 if x0 6intZ), (14)

\,
so the process x(t), starting from x0, has no chance to leave the set D during 

the infinitely short time. Additionally, we have

PD(/,i)  = l Vs e FrD (15)

where FrD means the frontier ofset D.

3. The definition o f risk

Let us consider the equation (4) as a special case of (6). The right 

Pontriagin’s differential equation is as follows:

S M ^ o l  = (16)
dt dxn 2 ox:

We assume that a(0) = 1 and it implicates

A ( 0 ) = ^  = a(0), B(0) = Ш  = р(0) (17)
fl(0) «(0)

We consider D = ( - °o, 0) because in the case of process NPV(t) we want 

to know the chance o f leaving it. Let us notice that FrD = {0} and it implicates 

the following frontier conditions: P0 (t,Q) = \ and PD(0, x0) = 0 for 

x0 e ( - 00,0). To solve an equation:

dPD.(h. XA  = g (Q) pJírÁf, *0 ) + 1  ß 2 (Q-) d PD i‘> *0 ) (18)

dt dx0 2 dx(

we use the Laplace transform (see Sneddon (1972)) with regard on variable t, 
defined as follows

QO

L s P d Í 1 >x u )  =  p d ( s *x o )  =  J e x p H O / M ^ o V '  

о



Using the transform for both sides of equation (18) we get:

sPD(s,x0) -  P0 (0,x0) = « ( 0 ) - ^ - - -  + (2°)
ciXq 2 (ixq

The frontier condition P0 (0,;t0) = 0 leads to

« (0 ) ....’ u'  + - Р Ч 0 ) - - ........-sP 0 (s ,x0) = 0 (21)
ал'„ 2 с/х,

dPß (s,x0) , 1 „ 2 ,K cllpp(s >xo)

4

The characteristic elements of equation (21) equal:

^ > > ( 0 ) + y 0 ) + q ( 0 ) < 0

^ - M 0 ) + X ) 0>" a ( 0 ) > °  ™

And the common solution of (21) is

Ą )(•?>*o) = M  ехр(<г)|х0) + Л''exp(<y2x0) (24)

Let us notice that lim exp(iy,x0) = 00 and it implicates M  -  0. From (24)
. -> -oo

we get

PD(s,XQ) = NeXp(CO2X0) (25)

Let us notice that on the one hand we have

LsPD(t,0)=-.Lsl = -  (26)
í

and on the other hand we have

LsPD(t, 0) -  P(s, 0) -  yVexp(O) = N  (27)

From (26) and (27) we get

N  = — (28)
í



and from (25) we get finally

Pd (■y,*o) = ~exp(6J2x0) = -^exp(—“  *o) =
_ 1 ....., ^ а гт ) * ъ р ' т - а ( 4 )

ß\0)

-  „ r ( - “ (0) , , i 

p( / 12(0) , e P< f l \ 0) *0> (29)

'ľo return to the variable t and PD(t,x0) we must use the inverse Laplace 
transform

*o)— A Pt>(s>xo) (30)

After some technical operations (see for example Sobczyk (1996), Sneddon 
(1972)) we get

Д _ е х Р( - ^ М . - £ ) А  p , )

íУ г(0 )i

And the risk can be defined as follows

R(t, x0) = Qd (t,x0) =

1_2exp(  í exp<~ $ W  " T )A  <32)
*0

/»2(0)<

Let us notice that in the case of negligible drift (a  ~ 0) we obtain from (32)

R (t,x0) * l - 2 - j Ĺ =  J  exp( - ~ ) d z  = 1 -2(1  — Ф(. ~ — )) =
Л -  2 \ ß 2m
Ĺ x» 

U 2 (0)1



Certainly, the bigger the initial investment the higher the risk. 

Asymptotically we have

lim R (t,x0) = \ (34)
jr„->-co

4. Examples

Let us consider the investment project whose function o f cash flows B(t) is 

described by arithmetic Brownian motion:

dB(t) = iidt + SdW(t), where // e R ,ô  e  R+,B(0) = л:0 (35)

We are going to consider three cases depending on parameters in (35).

Example 1. We assume that the initial investment equals x0 = -2  monetary 

units (for example 10 000 PLN). Let us consider the process described in (35) 

for / . 1  — 3 and £ = 0.5. We assume that the time horizontal equals T = 2 time 

units (for example years). The following graph presents the example of 

realization B (t):

B (t)



After calculations, the risk -  defined in (32) -  equals: R (2 ,-2 ) = 0.00246. 

We can see that the chance that the process A rP F ^w ill not leave the interval 

(-со, 0) before time T = 2 is negligible. The risk is very small and the presented 

graph can verify it.

Example 2. We assume that the initial investment equals „v0 = -6  monetary 

units. We consider the process described in (35) for // = 3 and ö  = 0.5 (see 

Example 1). As in the previous case we assume that the time horizontal equals 

T = 2 time units. The following graph presents the example of realization B(t) :

в (t)

Graph 2. The realization o f process B{t) for /л = Ъ and S =  0.5 and /?(()) = -6

After calculations, the risk -  defined in (32) -  equals: R{2, -  6) = 0.483024. 

We can see that the chance that the process NPV(t) will not leave the interval 

( - 0°, 0) before time T = 2 is not negligible in this case. The risk is appreciable 

and the presented graph can verify it.

Example 3. We assume that the initial investment equals д-0 = -8  monetary 

units. We consider the process described in (35) for // = 3 and ô  = 0.5 (as in the 

previous cases). We assume that the time horizontal equals T = 2 time units. The 

following graph presents the example of realization B{t) :

After calculations, the risk -  defined in (32) -  equals: R{2, -  8) = 0.99998. 

We can see that the chance that the process NPV(t)v/\\\ not leave the interval 

(-°o, 0) before time T = 2 is huge. The risk equals almost 1 (maximum value) 

and the presented graph can verify it.



B (t)

Graph 3. The realization o f process B(t) for // = 3 and S  = 0.5 and B(0) = -8

5. Conclusions

The formula (32) can be used for measuring the risk in case o f stochastic 

definition of Net Present Value. The class (3) of processes is large: it includes 

Gaussian processes B (t)-N (/.i{ t) ,S (t))  -  used in practice (see B i a l e k ,  

2005b). All the presented calculations confirm the proper construction 

ol'R(t, x0). However, the presented method should be only used as a supplement 

to well known statistic methods (Var[NPV(T)], etc. -  see D o m a ń s k i ,  

P r u s k a  (2000).
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Jacek Białek

M etoda pom iaru ryzyka w przypadku stochastycznej 

definicji aktualnej wartości netto

Metoda Aktualnej Wartości Netto (NPV) jest filarem nowoczesnej teorii finansów. 

Klasyczna definicja NPV opiera się na nierealistycznych założeniach: zakłada chociażby stały 

w czasie i deterministyczny charakter stopy dyskontowej. Prowadzi to do sytuacji, w których jej 

stosowanie wyznacza błędne kierunki inwestowania. Ponadto jej deterministyczna formuła nie 

pozwala mierzyć ryzyka lub też inaczej -  szansy uzyskania konkretnej wartości NPV.

W niniejszej pracy rozważać będziemy stochastyczną, ogólną definicję Aktualnej Wartości 

Netto. Zaproponowana będzie pewna metoda pomiaru ryzyka w przypadku stosowania tej 

definicji. Ryzyko utożsamione zostanie z prawdopodobieństwem, że stochastyczny proces 

NPV(0, startując z pewnego ujemnego, rzeczywistego punktu 11(0) (nakład inicjujący projekt) 

do końca czasu trwania projektu (Г), nie wydostanie się z przedziału (-°o,0). Rozważania nad 

tym prawdopodobieństwem doprowadzą do równania różniczkowego Pontriagina, którego 

rozwiązaniem będzie wspomniane prawdopodobieństwo.


