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ESTIMATION OF MEAN IN DOMAIN WHEN DISTRIBU-

TION OF VARIABLE IS SKEWED

Abstract. The problem of estimation the expected value in the case when a random variable 

has skewed probability distribution was considered e.g. by Carroll and Ruppert (1988), Chandra 

and Chambers (2006), Chen and Chen (1996), Karlberg (2000). Their results are based on trans-

formation of skewed data. In the paper another approach is presented. The proposed estimators are 

constructed on the rather well known following property. Kendall and Stuart (1967) showed that 

the covariance between sample variance and sample mean is proportional to the third central mo-

ment of a variable. This property is applied to construction of several estimators of mean in a 

domain. The estimators are useful in the case when the variable under study has asymmetrical 

distribution because under some additional assumption they are more accurate than the sample 

mean. The results of the paper can be applied in survey sampling of economic populations.

Key words: small area sampling, skewnees coefficient, regression estimator, mean domain, 

relative efficiency.

I. RELATIONSHIP BETWEEN SAMPLE MEAN AND SAMPLE 

VARIANCE

Let s = [Y\,Y2, Y „ ] be the simple sample from the distribution of a random 

variable Y. We assume that this random variable has at least six central moments 

which are denoted by vr(ľ)= vr =E(Y-E(Y))r, r -  1, 2,... The mean value of Y 

will be denoted by ц  = E(Y).

Let us consider the relationship between the sample mean Ys and the sample

variance denoted by V2s = ——  У (Yt - ľ ', ) 2 where Ys = —У  Yr Moreover, let us
n - 1 n/es iGS

suppose that a distribution function of the variable Y  is right skewed (positive 

asymmetric). Hence, the dominant of the distribution of the random variable Y is 

on the left from its expected value. So, we can expect, that the observation of 

sample spread around dominant are more frequent and they give rather smaller 

sample variance and sample mean than those in the sample spread about expected
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value. So, in this case the positive relationship between the sample mean and the 

sample variance should be expected. In the case o f left skewed distribution the 

expected value is on the left o f the dominant. So, the small sample variance is 

related to rather large sample mean. The covariance between the sample mean

Stuart (1967). Hence, we can consider the following linear relationship:

It is well known (see, e.g. Cramér (1945) or Kendall and Stuard (1958))

is the coefficient o f skewnees (asymmetiy) o f a random variable distribution. In 

the case o f symmetric distribution the normalized coefficient o f skewnees к =  0 

in the case of right (left) asymmetric distribution k 'l  О (к <> О) Moreover, let us 

note that the coefficient к can be evaluated as the correlation coefficient o f the 

random variables Y and ( Y - E { Y ) ) 2, see Wywiał (1981, 1983).

Example 1. Let us consider the sample drawn from the exponential distribu-

tion with the density function fly)=Aexy(-Ay) for у  > 0 and f ly )  = 0 for у  <0.

The moments o f this distributions are: Е(У) = Я~' ,  v2 =Ä~2, v3 = 2/T 3,

and the sample variance is: Со у (У5, ^ . ) = - у3+ 0 (« “2), see e.g. Kendall and
n

X*ccVXs+ß (D

The criterion e (y s -  aV2 s + ß \  = min leads to the following parameters 

a: and ß.

(2)

that e (v 2s)=  v2 + 0 (n  '), D 2{y2s) = — (v4 - v l ) + 0 ( n  2), So, the equations (2)
n

can be rewritten in the following way:

(3)

where

V,
K = ------- ----------- 1<JT<1 (4)



v4 =9Ä~4, So, the given by the expression (4) coefficient к takes the 

value к  = -4= « 0.7071.
Л

Example 2. Let us consider the sample drawn from the Pareto distribution 

with the density function f ( y )  = ß a ßy~p~' for y > a  and f iy )  = 0 у  < a . The 

shape parameter is denoted by ß and the parameter of location and scale is de-

a ß
noted by a . The moments o f this distributions are: E (Y ) = - for ß >  1,

a 1 ß  2 a iß ( ß + \ )  „ д - ,
V2 = 7------ттг----- r  for ß >  2, v3 = 7------41/ гг-----\ for ß > 3 and

{ ß - \ ) 2{ ß - 2 )  И 3 ( ß  - \ f  ( ß  - 2 ) { ß  -Ъ)

v -  ,^a  ß [ ß  + ß — **ß A) for ß >  4 . The given by the expression (4) 
( ß - \ y ( ß - 2 f ( ß - 3 l ß - 4 )

( ß - 2 \ ß - 4 )
------ г г  i — ----------- v So, the coef-

(/?—3) (5/? +13/? — 48/?—12 j

ficient к do not depend on the location and scale parameter denoted by a . If

ß = 5 ,  к *  0.5563. When /0 -ю о , к  = A  *0.8944.
л/5

II. ESTIMATION OF MEAN IN THE CASE OF KNOWN VARIANCE

As it is well known the sample mean ľ, = —V  Yi is unbiased estimator of
n ies

the expected value // = E(Y) and its variance is: £>2(7v)= v 2 = — . Below we
n

consider estimators involving the above properties of relationship between sam-

ple mean and sample variance.

The sample moments defines the following expression:

^ , = Л В М У >  = 2’ 3’-  (5)

Under the assumption that the variance v2 is know the following estimator 

based on the egression relationship, given by the expression (1), can be pro-

posed:

YH = Ys + as(v2-V2x) (6)



where;

a°= 7 ~ lť  (7)ľ 4,.s y 2,s

It is the regression type estimator which is well known in survey sampling, 

see e.g. Cochran (1963).

On the basis o f well known approximation method of deriving the variance 

o f moment functions (see e.g. Cramér (1945) or Kendall and Stuart (1958)) we 

have the following.

tf(t)« D 2(ľ> r ^ t f ( F 2J - ^ C o 4 , F 2J= ^ -r -!ÍT r
(v4 - v 2/  v4 - v 2 n (v4 - v 2>

Result 1. If и->со, then ~ n Í^i, D2 (ľj v |  where

(8)

If k * 0  then Z)2(Ę )-Z )2( ^ J > 0 .

The Result 1 was derived on the basis o f the well known theorems about as-

ymptotic probability distribution of a moment function (see e.g. Cramér (1945) 

or Rao (1965)).

Hence, in the case of asymmetric distribution and sufficiently large sample 

size the statistic is asymptotically unbiased estimator o f the mean p and it is

not less precise than the sample mean The estimator ľj s is better than Ys

because the former is the function o f auxiliary information which results from 

relationship between the sample mean and the sample variance.

The well known interpretation o f the regression type estimator lead to con-

clusion that if the sample variance V2,s is not equal to the population variance v2 

then the estimator add the correction as(v2-V 2r<) to the sample mean Ys.

Example 3. Similarly like in the example 1 we consider the sample drawn 

from exponential distribution. It is well known that in this case the best estimator 

o f the parameter E(Y) is the sample mean Ys. The results of the example 1 and 

expressions (8) and (4) lead to the conclusion that for large sample size

Hence, in this case the estimator YXs is two times



more precise than the sample mean Ys because the probability distribution of 

Yx s depend on the variance v2 which is the auxiliaiy information.

Example 4. In the case o f the Pareto probability distribution considered 

in the Example 2 we have that D 2{yx J= 0.208Z )2(Ę )  So, when the large sam-

ple is drawn from Pareto population the estimator is more accurate than the 

sample mean Ys.

The estimator ľj_v is not useful in practice because usually the variance v2 is

not known. But its modified version proposed in the next chapter can be valu-

able in practical statistical research.

1П. ESTIMATION OF MEAN VALUE IN DOMAIN

Let a population U consists of D such non-empty and disjoint domains £/*, 

k=l , . . . , D .  We will consider the following model. Random variables Y, i= 1,..., N, 

have finite moments o f at least sixth order. Let E(Y, )  = if ie  U/,. We assume 

that the variance o f the all variables are the same, so D2(Y,) = v2, 1= The 

central moments of the variables are denoted by vrJl=E(Y,-/Ji<)2 for all ieUk, 
k=  1,..., D and r = 3, 4,...

Let s/, be simple sample drawn from /г-th domain. The sample s of size n 

consists of all subsamples s*, к = 1,..., D. The size of Sk is denoted by и*, so
D

n = J n k. We assume that и* > 1 for к = 1,..., D. The variance v2 can be esti-

ы

mated by following statistics.

Under the stated assumptions all of them are unbiased estimators o f the vari-

ance v2.

Let us suppose that the distribution function o f a variable in a Л-the domain 

is skewed. In order to estimate its expected value we consider the following 

regression type estimator:



(11)

where the statistic ^  is given by the expression (10) and

Vu
a = ------ ( 12)

'  ^4,d - ^ d

Similarly like the Result 1 we can derive the following.

Result 2. If oo for к = 1 D  then ^ ~ Л;)) where

where

(H )

Z )-l _  1 ^  _  n - n d
4h ,d - \ -  ,) 4 - \ ~  D  i ^  /7* “7ГТ ̂ u ~ h = \,k * c i  u ~ [

k=\,k*d Пк

is the harmonic mean of the subsample sizes selected from domains.
The next estimator is as follows

(15)

where the statistic V2f is defined in the expression (10).

Result 3. If n—>oo for Ä=1,...,D then Ý2 x/ ~ rĄjUj, D 2 (k, ^ J  where



where

_ D —1 _ 1 n
n H , D ~  о  , й П 0 - - ^ 2 _ , Пк -  D -

Ы Пк

is the harmonic mean of the subsample sizes selected from domains.

IV. SIMULATION ANALYSIS

The variances of the defined estimators of the mean value in a domain are 

derived approximately and they are valid only in the case o f large sample. In 

order to study their accuracy in the case of small or moderate sample, a simula-

tion analysis is developed.

We assume that in a d-th domain random variables have the two-parameter 

exponential density function /Хд^)=Лехр{Му<г%)} and E(YLi)=\!X+yj=/Ąi, 
D2{Yd)=vj=\l?i. In the i/-th domain the variable has appropriately shifted expo-

nential distribution. The variances o f those distributions are the same. This and 

the properties of the considered estimators lead to the conclusion that it is suffi-

ciently to consider only the one-parameter exponential distribution (without the 

shift parameter) in order to study the accuracy o f the estimation of the mean in 

a particular domain. Similarly we are going to consider the introduced earlier the 

Pareto probability distribution.

The appropriate samples sk were generated 10000 times according to exponen-

tial probability distribution function. Such samples are denoted by Sdj,. Next the 

values of the considered estimators Yt , i =1, 2, were calculated. The variance

/ \ / \  ̂oooo /  ̂ л / a v
D2(î  ęJ  was assessed by means of )= 0.0001 |  У -•£$,*,,)

/i=i ’ d h

Yi Sd )=  0.0001 'Y ý ,  v . The accuracy o f the estimators are compared

h - 1

with the ordinary extension estimator by means o f the coefficient 

deff(Ýi S/ )= 10002(ľ; v )/£>2(Ęrf) where D 2(VSi )=  v2 / n d. Moreover, the relative

bias is calculated on the basis of the expression rb{r, )=  \00[e (y iS/ )/ £ (F )-1  )



Table I. Values of the coefficient deJ\Y\s) and rb(Yls ). 

The sample drawn from the exponential distribution

X 0.01 0.05 0.10 1.00 10.00 20.00 100.00

n def rb def rb def rb def rb def Rb def rb def rb
20 79 9 7 8 78 8 77 8 79 8 77 8 77 9
30 68 6 70 6 69 6 70 6 68 6 70 6 67 6
50 62 4 61 4 63 4 62 4 63 4 64 4 64 4
100 57 2 57 2 56 2 57 2 54 2 57 2 58 2

300 54 1 53 1 54 1 53 1 53 1 53 1 52 1
500 52 0 51 0 53 0 51 0 51 0 52 0 50 0

In general, the analysis of Table 1 leads to two following conclusion. The 

accuracy of the estimator Yx x increases rather slowly with an increasing sample 

size, although for sample size 50 its mean square error is about 63 % of the vari-

ance o f the simple sample mean Ys. Let us remind (see the Example 2) that

dej{Ý\ v)>50%. The relative bias is rather large for small sample sizes but it de-

creases when the sample size increases. The relative bias is not large than 10%. 

The next conclusion is that under the fixed sample size the mean square error of 

the estimator Yi s do not change significantly with changing value of a parameter

X. So, in the next simulation studies we consider only the exponential distribu-
tion for the fixed parameter X.

Table 2 leads to the similar conclusions like above ones, but in this case the 

accuracy of the estimator increases when the parameter 0 of the Pareto distribu-
tion increases. The relative bias of the estimator is not larger than 1%.

Table 2. Values of the coefficient def{)\ v). 

The sample drawn from the Pareto distribution

n 6=5 0=10 0=15 0=20 0=30 0=50 0=100
20 237 125 106 95 89 84 81
30 188 104 87 82 78 75 72
50 149 84 77 72 68 64 64
100 109 71 65 62 58 58 58
300 81 59 56 56 54 53 52
500 75 57 54 53 53 52 51



Table 3. Values of the coefficient def aná rb (relative bias) for the estimator for equal-size

samples drawn from domains. The exponential distribution with Л -  1

nl 15 20 30 50 100 200

D def rb def rb def rb def rb def rb def Rb

3 203 1 172 1 150 7 125 5 106 4 94 2

5 136 9 117 10 104 8 94 7 83 4 73 3

10 103 12 89 13 82 13 75 8 66 6 63 3

20 87 15 78 15 73 14 68 10 61 6 58 4

30 84 15 74 16 71 15 65 11 60 6 56 4

In the case when the sample (drawn from domains) sizes are the same the 

Table 3 leads to conclusion that the estimator Y2 is at least 20 % accurate as

Y  for number of domains at least equal 20 and size of the sample equal or

grater 20 or for D>10 and n,>50. The relative bias increases when number of 
domains increases but it decreases if sample size increases. In the case of rater 

large sample size and number of domains the bias can be neglected. Hence, it 

seems that the proposed estimator is quite good for not too large size o f the sam-

ples and number of domains.

Table 4. Values of the coefficient def for the estimator Ý2,sd for equal-size samples drawn from

domains. The Pareto distribution

n,: 30 50 100 200

D\e 20 50 100 20 50 100 20 50 100 20 50 100

5 143 117 110 116 101 96 93 86 82 79 75 74

10 103 88 86 90 78 78 75 69 69 67 65 65

20 87 78 73 73 71 68 68 63 62 63 59 58

30 84 74 74 76 68 66 67 66 63 58 58 58

The relative bias o f the estimator Y2 was not greater than 1% in the case

of the Pareto distribution for the considered parameters in the Table 4. Similarly 

like in the case of the Table 2 the accuracy of the estimator increases when the 

value o f the parameter в  increases. Moreover the Tables 3 and 4 lead to conclu-

sions that for the same sizes of domains and samples the accuracy of the estima-
tion based on the sample drawn from exponential distribution is better than in 

the casee of Pareto distribution for 20^#<100.



Table 5. Values of the coefficient def and rb (relative bias) for the estimator ľ2 for samples 

drawn from domain. The case of the exponential distribution with X=1

nj=n i

S!IIí

D+ 1V2 nd=nD
«*=50* «*=100/; «*=50* «*=100* «*=50* «*= 100k

D def rb def rb def rb def rb def rb def rb
3 90 3.9 77 1.7 125 1.8 106 1.0 151 1.2 133 1.0

5 73 3.6 66 2.1 84 1.2 82 0.7 97 0.6 93 0.3

11 65 3.6 60 2.1 62 0.7 61 0.4 71 0.3 69 0.1

Table 6. Values of the coefficient def for the estimator K2 Srf for samples drawn from domain.

The case of the Pareto distribution

s:IIsc «</=«P+1V2 «</=«/>
«*=50* «*= 100* «*=50* «*=100* «*=50* «*= 100*

D\6 20 100 20 100 20 100 20 100 20 100 20 100

3 109 94 90 78 139 128 121 109 186 155 154 138

5 86 77 74 66 97 90 87 81 115 102 103 95
11 76 70 65 60 70 66 66 65 75 71 73 70

An analysis of the Table 5 leads to main conclusion that the accuracy o f the 

estimator 72 v / is highest when the sample size nd o f the domain Ud is the small-

est one among the domains sample sizes. The bias o f the estimator is small be-

cause its relative level is less than 4%. Moreover, the mean square error de-

creases when the number o f domains or the sample sizes of all domains increase.

In the case o f the Pareto distribution Table 6 leads to the similar conces-

sions like those evaluated during analysis of the Table 5. Let us not that in this
A

case the relative bias o f the estimator Y2>1 was not greater than 1% for the con-

sidered parameters.

V. CONCLUSIONS

The proposed estimator Y2 Sd o f mean value o f the skewed random variable

is more accurate than the sample mean but rather not useful in practice. But 

sometimes in special cases the value of the population variance can be assessed 

on the basis o f census survey. For instance in the case of some economical vari-

ables we can expect that such assessed value of the variance can be almost the 

same in some period after the census survey.



The properties o f the proposed estimator Ý2^  under some additional as-

sumptions stated on value of variance o f a variable under study let improve pre-

cision o f estimation o f mean value in a domain. The proposed estimator deal 

with situation when distribution o f the variable in the domain is skewed. The 

simulation analysis leads to the conclusion that the estimator can be useful in the 

case o f rather not too large sizes o f the samples and quite large number of do-

mains. We can expect that the estimator 72,ir has the similar properties as esti-
A

mator Y, , .

The accuracy studies should be continued in the next papers. Some other 

theoretical distributions should be taken into account as well as e.g. a problem of 

stability of the variance in domains.
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Janusz L. Wywiał

ESTYMACJA ŚREDNIEJ ZMIENNEJ O ROZKŁADZIE ASYMETRYCZNYM

W DOMENIE

Rozważana jest nadpopulacja w której wyróżniono domeny badań. Celem wnio-

skowania jest estymacja wartości średniej w wyróżnionej domenie. Zakłada się, 

że rozkład prawdopodobieństwa zmiennych w domenach może być nawet silnie asyme-

tryczny, jednocześnie przyjmując, że wszystkie zmienne tworzące model nadpopulacji 

mają tę samą wariancję. Pozwala to na konstrukcję specyficznego estymatora typu regre- 

syjnego średniej w wyróżnionej domenie. Korzysta się przy tym ze znanego faktu, że 

kowariancja średniej z próby i wariancji z próby jest proporcjonalna do trzeciego mo-
mentu centralnego zmiennej. Okazuje się, że proponowany estymator może dawać do-

kładniejsze oceny średniej w domenie, gdy właśnie rozkład zmiennej jest asymetryczny. 

Wykazano to na podstawie odpowiednio zaprojektowanych i przeprowadzonych badań 

symulacyjnych.


