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MODEL SELECTION CRITERIA FOR REDUCED RANK
MULTIVARIATE TIME SERIES WITH APPLICATION
IN IDENTIFICATION OF PERIODIC COMPONENTS

Abstract. The main focus of this paper is to present an application of different
model selection criteria used for multivariate reduced rank time series. We consider one
of the most commonly used reduced-rank models, Regularized Reduced Rank Vector
Autoregression (RRRVAR(p,7,1)). In our study, the most popular model selection
criteria are included. The criteria are divided into two groups: simultaneous selection and
two-step selection criteria, accordingly.

We applied RRRVAR model in the task of an identification of periodic components
in high-dimensional, short and often highly-correlated multivariate time series.
Additionally, we proposed a universal and well-parameterized simulation framework
which allows to mimic almost any scenario that may occur in real experimental settings.
Moreover, efficiency of all methods is compared using well-known time-course
Spellman (1998) microarray data, used to find cell-cycle regulated yeast genes.

Key words: multivariate time series, periodicity, microarray experiment, spectral
analysis, regularization, reduced rank model, model selection criteria.

L. INTRODUCTION

Recent progress in high-throughput technologies in molecular biology
resulted in a vast amount of experimental data on the one hand, and brought
many analytical challenges, on the other. In particular, time-course microarray
assays have been found useful in answering a broad spectrum of biological
problems (see e.g. Andersson (2006)). One of the scientific problems solved
with the aid of time-course microarray experiments is to find genes which are
cell-cycle regulated (Spellman (1998)). From a statistical perspective, this is
equivalent to finding periodically expressed genes, i.e. periodic components of
multivariate microarray times series.

In this paper, we address the problem of identification of periodic
components in high dimensional, short and often highly-correlated multivariate
time series. As mentioned above, this problem is strongly motivated by time-
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course microarray experiments in molecular biology, however it does occur in
other areas, e.g. economic or financial multivariate time series, where periodicity
of components has to be taken into account. The task is often exacerbated by the
so-called large p, small n problem (p<<n), large number of components and only
short time horizon. In typical microarray assay, we observed several thousands
of components and at most few tens of measurements (i.e. time points). Under
these circumstances, one cannot expect traditional statistical models or tests
(used to identify periodic components) to perform well (see i.e. Wichert (2004)).
In this case, it is necessary to develop new, more efficient methods.

In this paper we will assume that time series Y(?)can be represented as fol-

low: for each i=1,2,...,M each variable Y(z)of a multivariate time series of
length 7' is defined as:

Y, :ai,0+ai,]f;'(t+ri)+zi(t)9 (1)

where f; is a periodic function, a,, (where a;, € R) is a mean of the i-th
component, a;; (where a;; >0) is an amplitude of a periodic component, 7, is
a phase shift (7, €[0,7]) and Z,(?) is a white noise with variance o2. We note,

that Z.(?) may be correlated.

With such assumptions our goal is to proceed a binary classification, that
means assign for each component value 0 — nonperiodic component or 1, which
means periodic component. We can obtain it by determining appropriate scoring
for each component and then using scoring classification methodology. In next
paragraph, we described different techniques to determine scoring of periodicity.

I1. DIFFERENT APPROACHES IN FINDINING
PERIODIC COMPONENTS

Methods developed recently we can classify into three groups. This
classification takes into the account the way of consideration of correlation of
error matrix and using additional prior knowledge:

1. Univariate methods (not using prior knowledge) - analyses every
component separately (independently from others). We assume that the data
suits model (1) with additional constraint cor(Z;(t),Z (1)) =0 for i j .

e classical spectral analysis (Wichert(2004))
e Bayesian approach (Andersson(2006))
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2. Multivariate methods (not using prior knowledge) - we have taken into
the account correlation between components

e combined test for regulation and periodicity (Lichtenberg(2005))
RRRVAR model (Zagdanski(2008))
Methods using prior knowledge (both univariate and multivariate).
B-spline (Lichtenberg(2005))
correlation test (Spellman(1998))

In next section, we describe in details new methods based on fitting
RRRVAR model.

e o W e

III. FITTING RRRVAR MODEL

Regularized Reduced Rank Vector Autoregressive model (RRRVAR) is

based on very famous and well known VAR model. Multidimensional time
series Y, is called Vector Autoregression of order p (VAR(p)), if:

t

Y=Y  +P)Y , +. 4D +Z, 2)

where: Y, =(Y,.Y,....Y,, ), @

1

stand for K x K coefficient matrices and

Z, = (2, Zy ... Z, )" is anoise vector.

One of the simplest method of reducing VAR model complexity is
a reduction of rank of each coefficient matrix @, to r instead of K, which is
particularly important when we analyze time series with many components.
After reducing rank and imposing normalization condition (Velu, 1986) we have
to estimate only r/K(p+1)—r] coefficients. Such simplified model is called
Reduced Rank Vector Autoregression (RRVAR) of order p and rank r. and is
defined as (Velu, 1986): Y, =A4BX,+Z, (for t=1,2,...T), where:

X, =YY, ,,...Y,_,)is a vector Kpx1, A denotes matrix of size Kxr,
BI(BI,BZ...,BP) is matrix rxKp, B, matrices rxK. Note that the

matrices @, = AB;, defined in (2) (for i=1,2,...,p) have rank r <minK,7).
Next, we will focus on a fundamental task of choice parameters of the model.
We consider two main categories of methods using to select parameters p and r.
First type of methods in two steps selects parameters of model RRVAR. In
the first step, we assume that our time series comes from VAR model and using
classical method we determine autoregressive order (i.e. AIC, SC, HQ, FPE, CV
and others). In this case, when we have already known the parameter p, we
choose the rank of coefficient matrices » by statistical tests: Bartlett test or
Bartlett-Lawley test. Starting with the null hypothesis of »=1, a sequence of
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tests is performed. If the null hypothesis is rejected, » is augmented by one and
the test is repeated (Camba-Mendez(2003)).

For the second type of methods, using criteria we choose simultaneously
both the autoregressive order and the rank of matrix. To this type of techniques
belong criteria based on the likelihood function (Lutkepohl(2005)) and the
prediction error (Lutkepohl(2005)).

Now, let us consider the problem of estimation coefficient matrix in

RRVAR model. The population of coefficient matrices 4 and B of rank r are
given: ﬁ(p,r) =W and l§(p,r) = VTﬁ”ziYXﬁ‘,XX_I, where: V = (I}l,..ﬁr)
and I}l is the eigenvector corresponding to the i -th largest eigenvalue of matrix
w=0"3 5 7% QY2 Matrix X, =CovwX, X,) has the diagonal
submatrix I'=170)=E(X,X,)". In our problem (i.e. short time series with
many components) the estimator of matrix 2, is usually not of a full rank (so
not invertible). Zagdanski and Kustra (2008) propose use of penalized version,

i.e. just replace I" by I =1+ AI, where A is a penalty coefficient. In this way,
we obtain RRRVAR model. The parameter 4 is not the most important, so we
propose a selection of a such minimal parameter, which allows to invert matrix
2y numerically. In this way, the problem of fitting the best model is reduced
to the fitting appropriate RRVAR(p,r) model. Considered model is strictly
associated with canonical analysis of time series. This connection caused, that

RRVAR model is so useful. When the rank of matrix C = 4B is equal to 7,

then the K —r of the smallest eigenvalues is equal to zero and for
1/2

corresponding eigenvectors we have w (9)=1Y, =0 (/,=2,,°V,;). On the
other hand, the » of the first canonical series assigns the main patterns in the
analyzed multidimensional time series. The analysis of the canonical series
allowed us also to identify and determine periodic trends. By using canonical
weights we could affirm which components are seasonal. This leads us to the
following procedure generating scoring of periodicity: test, which canonical time
series are periodic (get r series), then choose canonical weights of these series
(obtain matrix T xr) and compute maximum of the absolute value of weights
for each row, receiving ,,scoring of periodicity”.

IV. CASY STUDY - YEAST CELL DIVISION

The methods described in the previous sections, we have applied in the
problem of identification of periodic components. We have used a benchmarking
time series for cell-cycle division of the yeast (Lichtenberg(2005)). By taking
into the consideration a computational complexity, we have chosen randomly
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subset of 1500 genes, including 104 genes, which were classified as a periodic in
the previous experiments (Spellman(1998)).

During simulations we obtained, that the most efficient criterion is the
method based on a cross-validation. Next, we have chosen the optimal parameter
A=4. Finally we have got the RRRVAR(2,6) model. In Picture (1) we present
6 canonical time series. Statistical test (Fisher G-test) proves, that the series with
numbers 2 and 3 are significantly periodic. Moreover, the analysis of the
canonical series has yielded additional knowledge about a frequency, which
equals to 2 and a lack of the other trends. This is an extra a-prior information,
which can be used while applying different methods, described in the second
section of this paper.

Canonical series
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Picture 1: The first 6 canonical series Picture 2: Comparison of ROC curves
for Spellman dataset for selected methods

Basing on the periodic canonical profiles, we have got the scoring of
periodicity, which efficiency was examined by Receiver Operating Curves
(ROC). Picture (2) shows a comparison between RRRVAR method and 3 different
techniques proposed in the literature. We can say that, RRRVAR is a method, which
does not use any of a-prior knowledge and is comparable to other methods.
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V. DISCUSION

RRRVAR can be used as a promising method in finding significant patterns
in short time series highly correlated with many components. RRRVAR can be
also used as a tool in time series clustering. There are many further topics to be
developed, i.e. research into choosing optimal parameter lambda or modified
simultaneous selection criteria of parameters lambda, p and r. We can see
a necessity of developing procedure, which would combine RRRVAR methods
with other methods and finally would get a “combined scoring of periodicity”.
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KRYTERIA WYBORU MODELU O ZREDUKOWANYM RZEDZIE
W WIELOWYMIAROWYCH SZEREGACH CZASOWYCH Z ZASTOSOWANIEM
W METODACH IDENTYFIKACJI SKEADOWYCH OKRESOWYCH

W pracy jest przedstawione zastosowanie kryteriow wyboru modelu dla wektorowego mode-
Iu autoregresji o zredukowanym rzgdzie (Reduced Rank Vector Autoregression (RRVAR(p,r)).
W analizie uwzgledniono najbardziej popularne kryteria wyboru modelu, podzielone na dwie grupy:
kryteria réwnoczesnego wyboru oraz tzw. kryteria dwukrokowe.

Model RRVAR zostal uzyty w zagadnieniu identyfikacji sktadowych okresowych dla wielo-
wymiarowych szeregdw czasowych, zawierajacych duza liczbe, zazwyczaj istotnie skorelowanych
sktadowych, obserwowanych w krétkim horyzoncie czasowym. Przedstawione zostang rezultaty
poréwnujace efektywnosé metody opartej na dopasowaniu wektorowego modelu autoregres;ji
o zredukowanym rzedzie z tradycyjnymi jednowymiarowymi metodami. Wykorzystano bazg rze-
czywistych danych mikromacierzowych Spellman’a (1998), stuzaca do identyfikacji genow droz-
dzy, zwiazanych z cyklem podziatu komorki.



