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TESTING FOR TAIL INDEPENDENCE IN EXTREME
VALUE MODELS - APPLICATION ON POLISH STOCK
EXCHANGE

Abstract. An estimate of the degree of association between assets is required in
many financial activities. Especially dependencies of extreme events are attracting an
increasing attention in modern risk management. After estimation of the tail dependence
coefficient we compare and investigate the Neyman—Pearsons’ and Kolmogorov—
Smirnovs’ tests for independence. We provide a discussion on how the concept of
extreme value dependence can be made into useful portfolio management tools.
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INTRODUCTION

Estimating dependence between risky asset returns is the cornerstone of
portfolio theory and many other finance applications. Common dependence
measures such as Pearson’s correlation coefficient are not always suited for
a proper understanding of dependencies in financial markets, Embrechts et al.
(2002). In particular, dependencies between extreme events such as extreme
negative stock returns or large portfolio losses cause the need for alternative
dependence measures to support asset-allocation strategies. Several empirical
surveys such as An’e, Kharoubi (2003) and Malevergne, Sornette (2004)
exhibited that the concept of fail dependence is a useful tool to describe the
dependence between extremal data. Tail dependence is described via the tail-
dependence coefficient introduced by Sibuya (1960). Extreme value theory is the
natural choice for inferences on extreme values. In this paper, we are concerned
with testing for pairwise independence of maxima from empirical data, which
seem to be absolutely mandatory for tail dependence estimation. The aim of the
paper is presentation of test for tail independence, which is indispensable when
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working with tail dependence, since all estimators of the tail dependence
coefficient are strongly misleading when the data does not stem from a tail
dependent setting.

I. TAIL DEPENDENCE CONCEPT

The tail dependence coefficient is roughly speaking the probability that
arandom variable exceeds a certain threshold given that another random variable
has already exceeded that threshold. The following approach, Sibuya (1960) and Joe
(1997) among others, represents the most common definition of tail dependence. Let
(X,Y) be arandom pair with joint cumulative distribution function ' and marginals

F, and F,. The quantity 4, = lirP P(X > F;'(v)|Y > F;'(v)) is the upper tail-
vol-

dependence coefficient (upper TDC), provided the limit exists. We say that

(X,Y) is upper tail dependent if 4, >0 and upper tail independent if 4, <0.

Similarly, we define the lower tail-dependence coefficient 4, .

The TDC can also be defined via the notion of copula, introduced by Sklar
(1959). A copula C is a cumulative distribution function whose margins are
uniformly distributed on [0, 1]. The joint distribution function £ of any random
pair (X,Y) can be represented as F(x)= C(Fy(x),F,(y)) (refer to Joe (1997)

for more information on copulas). The coefficient of upper tail dependence can

. : . 1=-2 ,
be written in terms of copula: 4, = hr{l T—C(Vv) Analogously, we have
v—>1- -V
A, = lim vy
v—o+ v

I1. BIVARIATE EXTREME DISTRIBUTIONS

The classical extreme bivariate theory is concerned with the limit behaviour

of (M,(X),M,(Y))=(max X;,,maxY;) as n—> . Because of the definition,
i=l,..n i=l,..n

the marginals of (M,(X),M, (Y)) belong to the generalized extreme value

(GEV) distribution family. The general form of a generalized extreme value

GEV distribution is GEV, , .(x)=exp(-{l+ f%]’l/ °) with pueR,

o >0, &R (Coles 2001). To simplify the presentation, Coles (2001) assumes
without loss of generality that F\, =F, =F, where F(-) is the unit Frechet

distribution. The following theorem (de Haan and Resnick, 1977) characterizes
the limit joint distribution of (M, (X),M,(Y)):
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If PWM,(X)<nx,M,(Y)<ny)————>G(x,y) where G is a non-

degenerate  distribution  function, then  G(-,) takes the form
1

G(x,y)=exp(-V(x,y))with V(x,y)=2 J.max(a)/x, (1-w)/y)dH(w) and H is
0

a distribution on [0,1] with mean 1/2.

1. ESTIMATION OF THE TDC

There are two possibilities to use Extreme Value Theory for the estimation
of the TDC. The first one is to develop estimators based on the assumptions of
the Generalized Pareto Distribution. Therefore, one assumes convergence (over
some threshold) to a bivariate Generalized Pareto Distribution. This model is
called Peaks over threshold. The other possibility is to assume that the
assumptions of the GEV are fulfilled. This conception in a financial application
rarely be the case. Both methods come to the same estimation problem: the
dependence function is to be estimated. The difference is the treatment of the
data: in the first case, we choose the realizations that lie above a threshold, in the
second case - block-maxima. Frahm ez al. (2005) give estimators for the TDC
under different assumptions: using a specific distribution (e.g. t-distribution),
within a class of distributions (e.g. elliptically contoured distributions), using
a specific copula (e.g. Gumbel), within a class of copulae (e.g. Archimedean) or
a nonparametric estimation (without any parametric assumption). The authors
compare the performance of the different estimators for different cases: whether
the assumption is true or wrong and whether there is tail dependence or not. It
turns out that some of the estimators perform well if there is tail dependence but
bad if there is not. In practical applications, one will never know which copula
model is the correct one. The estimation can only be under misspecification. So
difficulties in selecting a copula model, brings us to the important issue of
testing for tail dependence.

IV. HOW TO TEST DEPENDENCIES ? A DIFFERENT APPROACH
FOR TESTING FOR TAIL INDEPENDENCE

One of the most interesting approach for testing for tail independence is
given in Falk and Michel (2006). They prove the following theorem:
With ¢ — 0, we have uniformly for t € [0,1]:
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t*; there is no tail dependence

P X+Y>ct|X+Y>c)=
t; else

Using this theorem, Falk and Michel propose four different tests for tail
independence, which can be grouped into 2 different classes: a Neymann-
Pearson test (NP) and three goodness of fit tests: Fisher’s x, Kolmogorov-

Smirnov and y*. In the latter class, the Komolgorov-Smirnov-test (KS) turns

out to be the best in the simulation study by Falk and Michel (2006). Therefore,
in the following, only NP and KS tests are described.

Neyman- Pearson test
Assume we have a random sample (X,,..,X,) (¥,...Y,) of independent

copies of (X,Y). The marginal distribution is assumed to be reverse exponential
(i.e. F(x,0)= F(0,x) =exp(x) ). Now, fix a threshold ¢<0 and consider
E={C,=X,+Y;C,>c}. Let K(n)=#E and define V,=C/c
Vi=1,..,k(n). The NP test considers the distribution function of ¥, and tests
whether it is more likely from £ (¢) = > or Fy ()=t . The test statistic for

testing £, (tail independence) against F{;, is (for fixed 7):

k(n) k(n)
Typ = 1og(1‘[i) =—> log(¥;) —k(n)log(2).
i=1 i=1

i

Fly, is rejected when T, gets large precisely, if the approximate p-value
k(n)

DPup = d)(k(n)’l/ZZ(2log(Vi)+l)) is too close to 0, typically if p,, <.05;
i=1

® - standard normal df.

Kolmogorov Smirnov test

A different possibility of using Falk and Michel (2006) theorem is to carry
out a goodness-of- fit test, in this case using the Kolmogorov Smirnov test.
Therefore, define, conditional on K(n)=m :

U, =F.(C//lc)y=(1-(1-C,))exp(C,))/(1-(1—c)expc), Vie{l,.m}.
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~ 1
Denote Fm(l)z—Z][O’,]Ci the ecdf of U,, i=1,.,m. The Kolmogorov
m

T 1 ~
test statistic is then: 7y :=— sup |F, (¢) — t‘ .
m ¢e[0,1]

The approximate p-value is p,g =1—K(Ty), where K is the cdf of the

Kolmogorov distribution. According to a rule of thumb given by the authors: for
m > 30, tail independence is rejected if Tyg > ¢ o5 =1,36.

V. ESTIMATION OF THE TDC AND TESTING FOR TAIL
INDEPENDENCE - EMPIRICAL ANALYSIS

Eight different data sets are analyzed, namely: MILLENIUM, GETIN,
PKNORLEN, PGNIG, ASECOPOL, COMARCH, NETIA, TPSA'. Our sample
period covers a total 601 observations from 08/08/2006 to 01/01/2009. The
series are non Gaussian (Jarque-Bera test with 95% level). We use data on stock
return pairs to estimate the tail dependences coefficients and to test hypotesis on
tails independence. We proceed in the following steps:

1. Fitting marginal distributions: using the Peak Over Threshold method,
we estimate the tail distribution of each series. The marginal tail estimation

formulas  (Fy(x)=1-k/n-(1+& /o, -(x—p)) ', i=1,...,n, where k is the
number of data exceeding the fixed threshold u, &, o, u — parameters of

shape, scale and mean) are estimated by choosing the thresholds for each series.
2. Fitting a copula to all pairs of joint standardized data using maximum
likelihood: we consider three widely used Archimedean copulas, namely the
Gumbel, Frank, Clayton and t-copulas®. It is difficult to compare the fit of the
two copulas directly because they are non-nested models. However, we did
compute Akaike’s Information Criteria for each model. For the four models

" Our objective was to create portfolio with selected stocks which accurately refelect the daily
returns of the sub-indexes: WIG — Banks, WIG - IT , WIG - Telecom, WIG - Fuel . We had pre-
selected 8 stocks.

% Gumbel copula (Gumbel, 1960): Cg(v,v) = exp(—((log v)e + (log v)e)
Clayton copula (Clayton, 1978): Cqy (v,v) = (vfo +v7 0 - 1)71/9
Frank copula (Frank, 1979): Cp(v,v) =1/60-log[(1+exp ® — )(exp ™ —1)/ (e — 1]

t-copula: C, (v,v,,p) =1, (1, (V). (v);p)
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considered for upper and lower tail thresholds, the Frank copula model has the
best performance (68% pairs).

3. Computing for all (i,j) (i,j=1,...8) pairs of returns the upper and
lower tail dependence coefficients using the copulas parameters estimates

(Table 1).

Table 1: Left (below diagonal) and upper tail independence coefficients (above diagonal)

PKN ASEC MILLE-

TPSA |NETIA ORLEN PGNIG OPOL COMARCH NIUM GETIN
TPSA 1 0,1437] 0,3354 0,3176| 0,2067 0,235 0,2967 0,2145
NETIA 0,1624] 1 0,1534 0,1134] 0,0978 0,1864 0,4142 0,1045
PKNORLEN | 0,3689] 0,1769] 1 0,3641] 0,2964 0,2835 0,3528 0,2741
PGNIG 0,3567| 0,106 | 0,405 1 0,2372 0,2375 0,3056 0,2701
ASECOPOL | 0,246 | 0,078 | 0,3067 0,2369] 1 0,2402 0,3186 0,2183
COMARCH | 0,2496] 0,163 | 0,296 0,2432| 0,2453 1 0,3692 0,3285
MILLENIUM| 0,328 | 0,1486]| 0,4061 0,3647| 0,3375 0,4064 1 0,4682
GETIN 0,208 | 0,114 ] 0,312 0,2969] 0,2666 0,3462 0,4694 1

4. Testing for tail independence: Because the perception that left tails are
heavier than the right tails we consider tests for lower tail. According to NP test
one can see among the same sector only TPSA-NETIA and ASECOPOL-
COMARCH are strongly linked in a way that tail dependence can be observed.
Bad news for TPSA and Comarch should mean bad news for Netia and
ASECOPOL, respectively. The null hypothesis of tail-independence can be
rejected for 34% of considered pair of stocks (Table 2). Interestingly, in times,
where tail independence can be rejected, the estimates for the TDC are not
necessarily higher than in ones where this is not the case. This emphasizes the
importance of the test for tail independence. Choosing the threshold u is difficult
in practice and makes some technical problems. The higher the threshold, the
lower the variance but the higher the bias. Therefore, the threshold has to be
chosen approximately such that for the Gaussian distribution we can accept the
null hypothesis of tail independence, whereas for all others, we are able to reject
it. According to Falk and Michel (2006) simulations with u close enough to 0 all
tests are equally good for independent data (control Type I error). But Neyman—
Pearson gets problems with a smaller ¢ (it does not control Type I error then). So
if the threshold is not close to 0, one should take Kolmogorov-Smirnov for
testing for tail independence.
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Table 2.Goodness of fit
pair of stocks PNP PKS pair of stocks PP PKS

TPSA NETIA 0,000 | 0.00329 | PKNORLEN ASECOPOL 0,204 | 0,2857
TPSA PKNORLEN 0,001 | 0.00460 | PKNORLEN COMARCH 0,040 | 0,0503
TPSA PGNIG 0,026 | 0.02816 | PKNORLEN MILLENIUM 0,589 | 0,6732
TPSA ASECOPOL 0,528 | 0,7376 | PKNORLEN GETIN 0,520 | 0,6106
TPSA COMARCH 0,528 | 0,7058 | PGNIG ASECOPOL 0,944 | 0,9978
TPSA MILLENIUM 0,000 | 0.01939 | PGNIG COMARCH 0,155| 0,1867
TPSA GETIN 0,025 | 0.02179 | PGNIG MILLENIUM 0,100 | 0,1135

NETIA PKNORLEN 0,093 | 0,1834 | PGNIG GETIN 0,356 | 0,4721

NETIA PGNIG 0,011 | 0.00542 | ASECOPOL COMARCH 0,000 | 0.00285
NETIA ASECOPOL 0,000 | 0.00465 | ASECOPOL MILLENIUM 0,462 | 0,4664
NETIA COMARCH 0,000 | 0.00305 | ASECOPOL GETIN 0,509 | 0,6017
NETIA MILLENIUM 0,472 | 0,6118 | COMARCH MILLENIUM 0,174 | 0,2018
NETIA GETIN 0,180 | 0,1853 | COMARCH GETIN 0.000 | 0,003

PKNORLEN PGNIG 0,873 | 0,9477 | MILLENIUM GETIN 0,382 | 0,4058

5. Incorporating tail dependence into Markowitz Mean-Variance Model:
For this 8-dimensional data, the sample correlation coefficients are given in
Table 3. We observe they are all positive. Comparing values form Table 3 to
those in Table 1 we observe that the tail adjusted estimates are smaller than the
Pearson correlation coefficient based on the entire data set. Most important, the
strength of correlations estimated for joint negative values are different from
those estimated for joint positive returns, an asymmetry not detected in Table 3.
Testing tail dependence permits to construct less risky investment portfolio than
classsical one (Table 4).

Table 3: Standard sample correlation coefficients

PKN ASECO- MILLE-

TPSA | NETIA ORLEN PGNIG POL COMARCH NIUM GETIN
TPSA 1,0000
NETIA 0,1781 | 1,0000
PKNORLEN |0,4058 | 0,1823 | 1,0000
PGNIG 0,3501 | 0,1380| 0,4255| 1,0000
ASECOPOL |0,2534| 0,0882 | 0,3843] 0,2470| 1,0000
COMARCH |0,2762| 0,1850 | 0,3146 | 0,2838 | 0,2812 1,0000
MILLENIUM | 0,3287 | 0,1740 | 0,4427| 0,4127| 0,4398 0,4183 1,0000
GETIN 0,2926 | 0,1665| 0,3887| 0,3106| 0,2847 0,3605| 0,4829 | 1,0000
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Table 4: Portfolios compositions

EXPECTED PKN ASECO- MILLE-
RETURN RISK |TPSANETIA ORLEN PGNIG POL COMARCH NIUM GETIN
Classical 0.0400 0.9682]| 0,25 | 0,28 0,06 0,14 0,16 0,10 0,00 0,02
Upper-
Adjusted 0.0400 0.8338] 0,10 | 0,15 0,05 0,11 0,19 0,22 0,11 0,08
Lower-
Adjusted 0.0400 0.8740[ 0,09 | 0,12 0,03 0,19 0,14 0,42 0,02 0,00
CONCLUSION

Testing tail independence is simple and transparent enough to be
implemented and easily monitored. Omitting the test for tail independence
would introduce a large bias in the estimation and make it difficult to decide
whether there is just correlation or in fact tail dependence. One important feature
of this paper is the implementation of the tests for tail independence, which is
recognized to be indispensable but rarely utilized in a financial context. On the
basis of tail dependence test we are able to improve allocation results based on
daily returns.
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TESTOWANIE NIEZALEZNOSCI W OGONACH ROZKEADOW WARTOS(}I
EKSTREMALNYCH - ZASTOSOWANIE NA POLSKIEJ GIELDZIE PAPIEROW
WARTOSCIOWYCH

Okreslanie stopnia zaleznosci migdzy aktywami jest niezbgdne w wielu obszarach rynku
finansowego. Koncepcja zaleznosci w ogonie rozkladu stanowi obecny trend w ocenie sity
ekstremalnych zaleznosci. Przeprowadzona zostala analiza zaleznosci w ogonie rozktadu na
podstawie stop zwrotu wybranych spotek polskiej gietdy oraz analiza poréwnawcza wybranych
testow niezalezno$ci: Neyman-Pearson i Kolmogorov-Smirnov. Celem pracy jest uwypuklenie
potrzeby uwzgledniania zagadnienia okres$lania zalezno$ci w ogonach rozktadu stop zwrotu
sktadnikow portfela w zarzadzaniu portfelem inwestycyjnym.



