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ABSTRACT. T his  p ap er p resen ts how  to use the near ne ighbours technique in aim  

to transfo rm  a g iven data  set (Z, X, YT) o f  size N  into a set o f  J  «  N  local sam ples (Z, X), 

w ith  restric tions on m inim al num ber К  o f  m em bers in each local sam ple and on m axim al 

d ifference  o f  Ý' inside each local sam ple, w here Z  plays role o f  an ou tcom e, X  is an

independen t variab le , and V  = (K |........ YL) is a  vector o f  L  supp lem en tary  con tinuous

variables. T hen  the procedure  for non-param etric  jo in t linearisation  o f  an ob ta ined  se t o f 

local sam ples w as proposed. T he w hole proposed  m ethod w as app lied  to  estim ation  o f  

m odels w ith  standard  dev iation  o f  m easurem ents as ou tcom e Z  and  m easured  value as 

independen t variab le  X. T he  p ap er w as insp ired  by d ifficu lties w ith estim ation  o f  the 

m easurem ent error, w hich often occu r in m edicine, if  accuracy  o f  a m easurem ent 

p rocedure  dep ends on som e p roperties o f  patient. N evertheless, the p roposed  approach 

seem s to  be m ore general. It can  be useful in m any analyses o f  observationa l studies, 

w hich aim  to estim ate  a fam ily o f  the functions, p referab le  the linear ones, instead  a 

sing le  m ultivaria te  m odel.
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I. INTRODUCTION

Let us consider a given set o f N  individuals. Suppose that the vector (Z, X,

Y ) o f some continuous variables was observed on each individual, where Z is an 

outcome, X is an independent variable, and Y1 = (ľ b ..., YL) is a vector o f L 

supplementary variables. The problem arises if the multivariate regression 

approach cannot be applied, because an outcome Z cannot be considered as a 

function o f the continuous covariates YT, so the regression cannot be described 

with single function Z = ДХ, YT). The conventional idea how this problem can 

be overcome is as follows. On the beginning in the space of continuous
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covariates set of representative points Y ' , Y ? , Y j  was chosen. Then for each 

point YT = idem a separate local sample (Z, X)  was drawn and local regression 

Z = Zj(X) I Y j ,  j  = 1 , 2 ........J  was estimated. Finally, the relations between

functions Z/X) were investigated and mapped into space of covariates Y 

( D o m a ń s k i  and P r u s k a  2000). In practice, however, we rarely have 

opportunity to get a sufficient number of data (Z, X)  for each local sample. For 

this reason in the paper the nearest neighbours method was examined as tool, 

which enables us to drawn a needed number J  of local samples of needed size K, 

with neglected differences of the covariates inside each local sample, from given 

whole sample of size N  near to J. It is obvious, that this procedure cannot 

enlarge an initial quantity of information in the data, which remains correspond 

to size N  < J*K.  A conventional number of independent local samples was assumed 

near to NIK < J.
It is known, that estimation and testing o f hypothesis about parameters in 

a non linear regression model has continued to present formidable problems. The 

difficulty lies mainly in the fact that the statistical methods of inference which 

have optimal properties in linear models are not optimal in non-linear models 

( C r o w d e r  and H a n d  1990; D a v i d i a n and G i 1 1 i n a n 1995). For 

this reason in the paper the non-parametric iterative procedure for joint 

linearisation o f all set of local samples was proposed. The iterative 

transformations are justified with mini-max criterion of the consistency o f the 

resulting linear estimators.

It is known that the standard deviation of measurements for fixed measured 

value and fixed covariates can be easy estimated by a few repeated 

measurements ( B l a n d  and A 11 m a n 1986). In such way one can obtain 

needed sample of data: estimated outcome Z (standard deviation) -  independent 

variable X  (measured value) -  covariates YT. In practice three procedures for 

estimation o f standard deviation are in use, and it seems to be useful compare 

their properties.

Finally, the plan of paper includes: in section II and III the local sampling 

and the technique of nearest neighbours method was briefly discussed. In section 

IV and V the procedure o f joint non-parametric linearisation was explained and 

families of linear lines with fixed and random parameters were briefly discussed. 

At last, in VI section the known procedures for estimate a measurement error 

were examined with Monte Carlo modelling.



II. LOCAL SAMPLING WITH k-NN TECHNIQUE

In applied statistics a local sampling usually constitutes the initial step to 

further non-parametric analysis like, for example, a local regression. A local 
sample, drawn from some whole sample, contains all individuals, which are 

sufficiently similar each to other or to assumed pattern. Similarity between 

individuals is often defined by notion of distance in space of the observed 

variables, but it is not essential (D e 11 e and G- e f  e 1 1 e r 1995). Nevertheless, 
there are a lot o f approaches to local sampling. First of all we should distinguish 

partitioning on the non-overlapping clusters and other methods. The simple 

strategy for non-overlapping clustering is to categorise all observed variables 

separately and then form cells as combinations of the categories. A drawback of 

this strategy is that number of combinations gets large even for moderate (e.g. 

two or three) numbers of categories. It usually leads to loss of some data, 
because many cells incidences will be to small for assumed further analysis. The 

more sophisticated procedures can divide given set of individuals into 

approximately equal clusters. Nevertheless, any non-overlapping partitioning in 

practice meet usually with contradiction between accessible number of all data, 
number o f considered variables, and postulated number of clusters and number 

of data in each cluster. Thus, if further analysis is foreseen, then usually only 

overlapping partitioning has practical meaning. In this two approaches can be 

distinguish. First one admits that each individual can belong simultaneously to 

each singled out local sample or, in other words, that each local sample can 

includes all considered set of individuals. Consequently, the individuals belong 

to separate local samples not at all, but with some weight, associated with notion 

of kernel function or with member function (K e m i n g and J o n e s  1998). 
The second approach admits, that each individual can on the whole belong 

simultaneously to some singled out local samples, at least some individuals can 

belong to each local sample, but each local sample contain only some part of all 

considered sample. It can be interpreted in the terms of the first approach in such 

way, that some individuals belong to considered local sample with weight equal

1 and all remain individuals with weight equal 0.

Suppose a given data set ľ,7 , Y2 ,..., Y j , Yj+l, ľ /+2, ..., Yj, , where 

ľ,7 , Y2 ,..., ľ /  are assumed seeds of local samples, which includes К points 

mostly similar to its seed, from given sample of points ľ / , Y2 ,..., Y j , and 

maybe some additional ones, Yj+[, ľ /+2, ..., Y%. A member shares Wy, o f i-th 

point into j -th local sample, i = 1, 2, ... ,  N , j  = 1, 2, . . . , / ,  are equal 1 or 0. It 

means, that any i-th point can all belong to L, > 1 local samples simultaneously. 

A sum of member shares Wy, for each j -th local sample constitutes a number Kj



of members inside this local sample. It is assumed, that any separate analysis, 
which concerns relations exclusively inside single local sample, is founded on 

this number Kj of data. Numbers Kj can be used to estimate a significance of 

result in each single local sample treated separately. Nevertheless, if any analysis 

concerns all local samples simultaneously, then each local sample represents not 

Kj number o f data, but only Uj = X (wy/ Li), i = 1 , 2 , . . . ,  N , j  = 1,2, ..., J, number 

of data. In practice usually each or almost each local sample includes the same 

number К  of members. Then, if the differences between L, for / = 1, ... ,  N, are 

neglected, the numbers of data could be assumed equal Uj= U = idem ;j = 1, 

with U = m in(l, N  / J), because the method did not limit number J  of local 
samples, and each local sample was treated as a source of single data. Moreover, 

if any analysis includes comparisons between the local samples and the 

Bonferroni adjustment should be taken into account, then number of independent 

samples could be estimated as N / K « J .

III. NEAREST NEIGHBOURS (k-NN) TECHNIQUE

The k-NN  technique assumes, that similarity between individuals is defined 

by Euclidean distances between points in the space of the L  observed variables 

ľ7, where Y1 = (Ki, ... ,  YL). Usually it is supplement with hypothesis, that given 

data set was drawn from uniform distribution in a proper parallelepiped in space 

of YT (R i p 1 e у 1979). If this hypothesis is true, the natural assumption is, that 

each local sample should represent the same probability, what be expressed in 

the demand, that each local sample should include the same number К  of 

members, or in the demand, that each local sample should get the same volume 

in the parallelepiped. Both above demands lead to so named edge effect 

(D o g u w a and U p t o n  1988): the ideal local samples o f the same 

probability should be represent by greater spheres near to edge than in the 

middle o f a parallelepiped. Nevertheless, in practice a hypothesis of multivariate 

uniform distribution is often replaced with non-equivalent set of L  separate 

requirements, that each variable Y\, ..., YL must be previously transformed to 

univariate uniform distribution on the interval (0, G|), where G\ exemplify 

importance of a /-th variable Y\, I = 1, ..., L. In such situation it is possible, that 

edge effect appears inside the parallelepiped (0, G|), / = 1, L, too.

In practical applications a minimal number К of data in local sample follows 

from purpose o f analyse. From other hand, a maximal distance inside local 

sample cannot oppose to presumption, that differences between members can be 

neglected. If any such information is not available, than it seems be reasonable 

put G\ = 1 for all / = 1, ... ,  L; and start with 7 + 12 < К  < 30 + 40 and maximal 

distance between seed and member of local sample D < 0,20 + 0,25. In proposed



procedure a role of a seed of local sample previously plays each data from a 

given data set ľj7 , Y2 Y f , YJ+1, y J+2, ..., Y„ . For some assumed values of К  

the numbers J  of local samples with assumed D  should be computed, and on this 

base the final decision on K, D  and J  can be taken. All local samples with greater 

D should be excluded from further analyses.

IV. LINEARIZATION BY MONOTONIC TRANSFORMATION OF AN 

INDEPENDEND VARIABLE

Suppose strong ordering X, < X 2 < ... < X N . A definition on monotonic 

transformation X, —» X,- implies, that (X, < X k ) —» (X,- < X k) for all i, к = 1, 

..., N. Function (Z,-, X,) is a monotonic (and increasing) function if (X, < X k) —> (Z,
< Zk) for all i, к = 1......N: it is a monotonic (and decreasing) function if (X,- < Xk)

—» (Z, > Zk) for all i, к = 1, ..., N. If transformation X, —> X, is a monotonic one, 

then a monotonic function (Z„ Xr) persists to be monotonic function after this 

transformation, and a non-monotonic function (Z,-, X ,) persists to be monotonic 

function after this transformation. Linear function Z, = b0 + £|X„ where b0 and 

b i * 0  are fixed constants, i = 1, ..., N, is a monotonic function. Consequently, 

only any monotonic function (Z„ X,-) can be exactly transformed into any linear 

function with the monotonic transformation Xr ->  X, = (Z, -  b0) / b\ into a linear 

function Z, = b0 + b\Xj, where bo and b\ Ф 0 are freely chosen constants.

Consider a non-monotonic function (Z„ X ,). Let us look for minimal 

number A/, that Z, < min(Zl + M+1, Zi + M + 2, •••, Zw), for each Z,-, i = 1 ,..., N  -  1, and 

if Mi > 0 let us change Zi + „, with Z i+m = Z,A + m*0, where: Z,A = (Z,+ b Z, + 2, ..., 

ZM) / m\ m =  1 ,..., M\ and 0 is a neglected small number. After above procedure 

considered function (Z, X) get monotonicity and it can be exactly linearesed. The 

differences e, + m = Zl + m -  Z i+rn can be treated as the errors of linearisation. They 

don’t depend on freely chosen parameters of linear function bo and b\ Ф 0. They 

don’t depend on any values of variable X, and they don’t depend on any values 

of variable Z exept Z,- + |, Z,- + 2, ..., ZM. It can be proved that for any chosen 

constants bo and b { Ф 0 a value Х,л = (Z rA-  b0) / b, leads to minimal value of

^•(e2) = e2/+ i + e2r + 2 + ... + í^í + m - Consequently, each disorder of monotonicity 

can be optimal linearised independently from others disorders under general 

criterion H i e 2'). Moreover, the monotonic linearisation can be formulated as



task: find (Хь Х 2, XN) which leads to minimal value o f EE/Ci2), under 

restrictions X\ < X 2 < ... < X N.

Suppose now, that the known values of Z, were charged with random errors 

i?„ i = l , N. Probability P(Zj < Zi) depends on the distributions o f errors e, and 

Cj. Suppose that for j  < i < N  probability P(Zj < Z,) > P\ i , j  = 1, ..., N. An event 

£,■ = 0 take place, if  (Mt < / -  1 ) and (M2 < i -  2 )  and ... and (Ми  < 1) and 

(Mi < 1 )• Consequently, probability P(e, = 0) > p^-'41»*'-1, and probability P ( Z i  

= 0) = P((Ei = 0) and (e2 = 0) and ... (ew_, = 0)) > P(N~l) *NI2. For example, for 

N  = 8 and P  = 0,975; P ( l ł  = 0) > 0,49; for N  = 8 and P = 0,998; Д Е е2 =  0) >

0,95. It should be noted, that P(e, = 0) > 0 and Д Е е2 = 0) > 0 for continuous (e.g. 

normal) distributions o f errors e„ i =  1, ..., N. If event (Ее2 > 0) take place, and 

errors e, are distributed normally, with assumed the same (unknown) standard 

deviation, then the distribution of Ee2/ ^  can be approximated by distribution 

with degree of freedom d f  = EM„ where variation Ve o f e  is estimated only for 

groups o f M, data with "Lr> 0.

V. JOINT LINEARISATION BY MONOTONIC TRANSFORMATION OF AN 

INDEPENDEND VARIABLE

Consider now some given samples (Zu, Xj,), (Z2i, X 2i), ... ,  (ZM, Х л ), 

where in each sample i = 1, ... ,  Nj. Suppose that for each sample (Zjh X ß ), i = 1,

..., Nj, it could be find at least a single sample (Zki, X ki), i = 1, ..., Nk, that 

maximum (Xß, Xki) < minimum (Xß, Хц). Note that for any pair of samples with 

m axim um ^,, Xki) > minimum(A'jl, X*i) the task of simultaneous linearisation 

divides into two separate tasks and joint linearisation don’t occurs.

Let all given values of X ’ were ordered X\  < X 2 < ... < X N , where N  = N\ + 

N 2 + ... + Nj. Then task of joint linearisation can be formulated as follow: find 

(X|, X2, ..., XN) which leads to minimum(maximum(EE,(e2) I, EE,(e2)2, ..., 

EE.ie2̂ )) under restrictions X, < X 2 < ... < XN. This task can be solved with the 

iterative procedure: first for each given sample the parameters b0J and b {j of

regression Z j  = by  + b\j*X,j  = 1, ... ,  J, should be computed with the last square

errors criterion. Then criterion С = maximumíEE/íe2),, EEi(e2)2, ..., EE^e2),) 

should be computed. In each following step of procedure it is tested, whether 

exist transformation X  —» X  which gives a smaller С then in a previous step, or 

which gives the same С then in a previous step but it gives a smaller sum E 

(EE^e2)!, EE/ie2)^ ..., EE/ie2) )̂. If such transformation exists, and it satisfies 

restrictions on ordering of X ’s, then it should be performed, if not -  it leads to



the end of procedure. In practical realisation an initial restriction X, < X,+| should 

be formulated as ДГ,- + i -  X,- > h, i = 1, N  -1 , where small constant h should be 

chosen accordingly to differences between X’s, e.g. as about 0,000001 of mean 

difference. The procedure should be stopped, if a improvement of criterion С is 

less then about 0,1% of its previous value. With such constants procedure 

stopped after about (1 + 3)*J iterations ( G ó r k i e w i c z  and K a w a l e c  

1999).
It should be marked, that the joint linearisation distinctly differs from the 

separate linearisation. Let us explain it on example of two monotonic samples 

(Ži,, X ’ii) and (Z2i, X ’2i), where X ’n = X ’2i; i = 1, ..., N. The separate 

linearisation always leads to ZXi(e2)i = ZEi(e2)2 = 0, because for any monotonic 

function ££j(e2) = 0. The joint linearisation leads to БЕ,-(e*)\ = SS,(e2)2 = 0 only 

if there exist constants ao and a\ Ф 0 that Zu = a0 + ai*Z2i; / = 1, ... ,  N. Thus, in 

joint linearisation of J  samples in practice a minimal value of criterion 

minimumtmaximumCEEXe2)!, 'ĽĽi( ŕ ) 2, EE^e2)./)) occurs with all IZ^e2) ^  0, 

j =  1....... J.

The proposed procedure for joint linearisation always leads to minimal value 

of assumed criterion. Nevertheless, the minimal value can be find to much, and a 

few mostly troubled samples should be excluded from joint linearisation, or 

given set o f samples should be divided into two or three parts with appropriate 

values o f criterion.
Some statistical approaches suit to further analyse of the approved results of 

joint linearisation. The simplest approach assumes that a given initial data set (Z, 

X, YT) was transformed into a new data sample (b0j, b\j, Y j  ) , j  = 1, ..., J\ where

Y j  are assumed representation of /-th local sample; b0j and b are assumed as

random numbers drawn from normal distributions N(0, a0j) and jV(0, cty), where 

cr(y and G\j are estimated as the sample standard deviations SD0j and SDy. Within 

this approach the regressions b0A = f(Y7) and b,A = f(YT) can be analysed. 
Nevertheless, hypothesis b0j, = idem or bij = idem or b0j + Х0*Ьу = idem can be 

tested, where constant X0 represents a common cut point of all J lines. It is 

known, that under assumption by = idem a statistics CHI = £( by / SDij)2

-  (£( Z>ij / (SD\j)2)2 / £  M{SD\j)2, j  = 1, ..., J; is a chi-square variable with d f=  J  

-1  degree of freedom. A combined estimate of slope is b,л = E(feiy / (SD^)2 / £  1/ 

(SD\j)2. If obtained value of CHI is greater then critical value of chi-square test, 

then hypothesis b\j = idem don’t valid. In such situation one can exclude a few 

most confusing by  s and try the above analyse once again ( O m a r  et al., 1999).
The more sophisticated approach takes into account all resulting local 

samples, and consider them as separate random samples. Within this approach 

the assays of regressions lines ZyA = a, + bj*X are estimated and tested apart from



parameters boj and b\j obtained with procedure o f joint linearisation. Here, when 

the hypothesis bj = idem o f equal slope parameter is rejected, or hypothesis 

aj + X0*bj = idem is rejected, then the Johnson-Neyman technique can be used to 

to determine a region of the independent variable for which no significant 

differences of outcome Z can be detected ( S c h w e n k e  1990). Nevertheless, 

instead of partitioning on the set of local samples, in the considering models 

hypothesis o f fixed parameters aj and bj can be changed with hypothesis of  

random parameters (H i 1 d r e c h t and H o u c k  1968, L o n g f o r d  1995). 

Methods for statistical analyse of the linear assays were examined by many 

researchers (H a n u s z 2000, H e c k m a n  and Z a m a r 2000, J e n s e n  

1989, S r i v a s t a v a et al. 1980) and they were implemented in some known 

statistical packages. It those ways of analyse don’t result successfully, the 

previous approach must be applied. In a successful case for each considered 

local sample its own representation should be chosen, and regression aA = f ( Y r) 

and bл = ß y r) can be analysed.

VI. ESTIMATION OF STANDARD DEVIATION BY REPEATED 

MEASUREMENTS

The method proposed in the above sections can be applied to estimation of 

models with measured value as independent variable X and standard deviation 

SDE(X) o f measurements error as outcome Z. Of course, a standard deviation 

cannot be measured directly. So, in the paper the following procedure was 

examined. For each considered i'-th individual, i -  1, N\ a set of repeated 

measurements X(i, r) was achieved, r  = 1, If it can be assumed, that the

true measured value X  and the standard deviation of measurements error a(X) 

were constant over time of repeated measurements, then a sample mean 

£  X(i, r), r =  1, estimates a true value of X  for i-th individual, and sample

standard deviation of measurements estimates X(i, r), r = 1, ... ,  /?,; estimates a 

true value o f o(X) for i-th individual.

In order to compare the three known estimates o f standard deviation a sets of 

1000 individuals was modelled. For each individual a set of R values o f X  was 

generated from the normal distribution N(0, 2) for R = 2, 3, ..., 11. A sample 

standard deviation for each set of R measurements X was estimated as a single 

number with the classical formula SD|(X) = V Z((Xf -  Хл) * (Xr -  Хл) / (R -  1)) 

and with the formula S D 2(X) = 1  \Xr -  Хл| /  (R -  1), and as the sample of R 

numbers S D r(X) = R * \Xr -  Хл| / (R -  1), where a mean value Хл = "LXr / R, r = 1,

2, ... ,  R. It was confirmed that for 2 < R < 11 all considered estimates are 

unbiased, it means they practically don’t differ from assumed in modelling value



o(X). Moreover, on the base on 1000 data for each R = 2, 3, ... ,  11 the standard 

deviation SD(SDi), SD(SD2) and SD(SDr) were estimated. It was stated, that for 

R = 2: SD(SD2) = SD(SDr) = 0.85*c<X) and SD(SD,) = 0.6*o(X). For R = 3: 

SD(SDr) s  0.75*o(X) and SD(SD,) = SD(SD2) s  o(X). For 4 < fl < 11: SD(SDr) s

0.7*cr(X) = idem, and practically SD(SD \) = SD(SD2). Besides, in each separate 

sample of R data a sample standard deviation SDK(X) and sample standard 

deviation SDK(SDr) was computed and for 4 < R < 11 significant regression 

SDK(SDr) = 0.6 + 0.7 SDK(X) was confirmed. Thus, estimate SDr provides an 

self-correcting property: samples with greater random sample deviation SDR(X) 

have the greater sample deviation SDR(SDr) and they weekly exert on regression 

between measured value X  and estimated standard deviation of measurement 

error then other samples with smaller random sample deviation SDR(X). It gives 

reason for conclusion, that in considered task the use o f estimate SDr can be 

recommended. Nevertheless, the another problem arises, because if the 

independent variable is measured as mean of some repeated measures with not 

neglected standard deviation, than conventional parametric regression methods 

are no valid ( C a r o  11 and al. 1999). Thus, it should be recommended to 

choose number R  o f repeated measures under criterion SDR(X) «  SD(SD i) = 

SD(SD2).

REFERENCES

B l a n d  J. M. ,  A l t m a n  D. G. (1986), Statistical Methods fo r  Assessing Agreement Between 

two Methods o f  Clinical Measurement, “Lancet”, I, 307-310.

C a r r o l  R. J., M a c a J. D., R u p p e r t D. (1999), Nonparametric Regression in the 

Presence o f  Measurement £>ror,”Biometrika", 86, 3, 541-554.

C r o w d e r  M.  J, H a n d  D. J. (1990), Analysis o f  Repeated Measures. Chapman and Hall, 

London.

D a v i d i a n  M. ,  G i l t i n a n  D. M. (1995), Nonlinear Models fo r  Repeated Measures. 

Chapman and Hall, London.

D e t t e ,  H.,  G e f e l l e r ,  O. (1995), The Impact o f  Different Definitions o f  Nearest 

Neighbour Distances fo r  Censored Data on the Nearest Neighbour Kernel Estimators o f  the 

Hazard Rate. "Journal of Nonparametric Statistics”, 4, 271-282.

D o g u w a S. I., U p t o n G. J. G. (1988), On Edge Correction fo r  the Point-Event Analogue 

o f  the Clark -Evans Statistic, “Biometrical Journal", 30, 8, 957-963.

D o g u w a S. 1., U p t o n G. J. G. (1990), On the Estimation o f  the Nearest-Neighbour 

Distribution G(t) fo r  Point Processes, “Biometrical J”, 32, 7, 863-876.

D o m a ń s k i  Cz. (1990), Testy statystyczne, PWE, Warszawa.

D o m a ń s k i  Cz., P r u s k a  К. (2000), On Unemployment Investigation in Small Areas, 

“Acta Universitas Lodziensis”, Folia Oeconomica 152, 99-115.



G ó r k i e w i c z  M. ,  K a w a l e c  E. (2000), Estimation o f  non-Cox Proportional Hazard by 

k-Nearest Neighbours Sampling and Transformation o f  Local Hazard Estimates. Proc o f  

Statistics and Clinical Practice, 82-85, Warszawa.

H a n u s z Z. (2000), Relative Potency fo r  the Multivariate Contaminated Normal Responses, 

“Acta Universitas Lodziensis”, Folia Oeconomica 152, 127-139.

H e c k m a n  N. E., Z a m a r R. H. (2000), Comparing the Shapes o f  Regression Functions, 

“Biometrika”, 87, 1, 135-144.

H i 1 d r e c h t C., H o u c k J. P. (1968), Some Estimators fo r  a Linear Model with Random  

Coefficients, “Journal o f the American Statistical Association”, 63, 584-595.

J e n s e n  D. R. (1989), Joint Confidence Sets in Multiple Dilution Assays, “Biometrical 

Journal”, 31 ,7 , 841-853.

J i a n q u i n g F., S h e n g -K u e i L. (1998), Test o f  Significance when Data are Curves, 

“Journal o f the American Statistical Association”, 93, 443, 1007-1021.

K e m i n g  Y., J o n e s M. C. (1998), Local Linear Quantile Regression, “Journal of the 

American Statistical Association”, 93, 441, 228-237.

K o r z e n i e w s k i  J. (2000), Sample Breakdown Point o f  the Wilcoxon and Sign Tests fo r  

Location. “Acta Universitas Lodziensis”, Folia Oeconomica 152, 93-98.

L o n g f o r d  N. (1995), Random Coefficient Models, Oxford Science Publications. Oxford.

O m a r  R.  Z.,  W r i g h t E. M. ,  T u r n e r  R. M. ,  T h o m p s o n  S. G. (1999), Analysing 

Repeated Measurements Data: A Practical Comparisons o f  Methods, “Statistics in 

Medicine”, 18, 1587-1603.

R a o C. R. (1975), Simultaneous Estimation o f  Parameters in Different Linear Models and 

Applications to Biometric Problems, “Biometrics”, 31, 545-554.

R i p l e y  B. D. (1979), Tests o f  Randomness fo r  Spatial Point Patterns, “J. Roy. Statist. Soc”. 

Series B, 41, 368-374.

S c h w e n k e  J. R. (1990), On the Equivalence o f  the Johnson-Neyman Technique and 

Fieller's Theorem, “Biometrical Journal” , 32, 4, 441-447.

S r i v a s t a v a  V. K., B h a t t a c h a r у а В. N., К u m а г К. (1980), Improved 

Estimation o f  Potency in Slope Ratio Assays, “Biometrical Journal”, 22, 1, 61-66.

M aciej G órkiew icz

ESTYMOWANIE BŁĘDU POMIAROWEGO Z ZASTOSOWANIEM ŁĄCZNEJ 

NIEPARAMETRYCZNEJ LINEARYZACJI PRÓB LOKALNYCH

Praca prezentuje zastosowanie techniki najbliższych sąsiadów w celu przekształcenia zbioru 

N  danych postaci (Z, X, Y1) w zbiór J  ~ N  prób lokalnych (Z, X), przy ograniczeniach dotyczących 

minimalnej liczby danych К  oraz różnic wartości Y1 w każdej próbie lokalnej, gdzie Z  pełni rolę

zmiennej zależnej, X -  zmiennej niezależnej, a Y1‘ -  ( ľ , ........ YL) jest /.-wymiarową zmienną

dodatkową. Następnie proponuje się procedurę nieparametrycznej łącznej linearyzacji zbioru prób 

lokalnych. Obie procedury proponuje się stosować do oceny dokładności metod pomiarowych, z 

odchyleniem standardowym błędu pomiarów jako zmienną Z i wielkością mierzoną jako zmienną X. 
Proponowane podejście może być użyteczne w innych zastosowaniach, kiedy zamiast modelu 

regresji wielowymiarowej estymuje się rodzinę zależności regresyjnych.


