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ABSTRACT. This paper presents how to use the near neighbours technique in aim
to transform a given data set (Z, X, Y") of size N into a set of J = N local samples (Z, X),
with restrictions on minimal number K of members in each local sample and on maximal
difference of ¥" inside each local sample, where Z plays role of an outcome, X is an
independent variable, and Y' = (Y, ..., Y}) is a vector of L supplementary continuous
variables. Then the procedure for non-parametric joint linearisation of an obtained set of
local samples was proposed. The whole proposed method was applied to estimation of
models with standard deviation of measurements as outcome Z and measured value as
independent variable X. The paper was inspired by difficulties with estimation of the
measurement error, which often occur in medicine, if accuracy of a measurement
procedure depends on some properties of patient. Nevertheless, the proposed approach
seems to be more general. It can be useful in many analyses of observational studies,
which aim to estimate a family of the functions, preferable the linear ones, instead a
single multivariate model.
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I. INTRODUCTION

Let us consider a given set of N individuals. Suppose that the vector (Z, X,
Y") of some continuous variables was observed on each individual, where Z is an
outcome, X is an independent variable, and Y' = (Y|, ..., Y;) is a vector of L
supplementary variables. The problem arises if the multivariate regression
approach cannot be applied, because an outcome Z cannot be considered as a
function of the continuous covariates ¥, so the regression cannot be described
with single function Z = X, Y"). The conventional idea how this problem can
be overcome is as follows. On the beginning in the space of continuous
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covariates set of representative points ¥, ¥, , ..., ¥, was chosen. Then for each
point ¥ = idem a separate local sample (Z, X) was drawn and local regression
Z = 24X X J.T, j=1,2, .., J was estimated. Finally, the relations between

functions Z(X) were investigated and mapped into space of covariates ¥
(Domanski and Pruska 2000). In practice, however, we rarely have
opportunity to get a sufficient number of data (Z, X) for each local sample. For
this reason in the paper the nearest neighbours method was examined as tool,
which enables us to drawn a needed number J of local samples of needed size K,
with neglected differences of the covariates inside each local sample, from given
whole sample of size N near to J. It is obvious, that this procedure cannot
enlarge an initial quantity of information in the data, which remains correspond
to size N < J*K. A conventional number of independent local samples was assumed
near to N/K < J.

It is known, that estimation and testing of hypothesis about parameters in
a non linear regression model has continued to present formidable problems. The
difficulty lies mainly in the fact that the statistical methods of inference which
have optimal properties in linear models are not optimal in non-linear models
(Crowder and Hand 1990; Davidian and Giltinan 1995). For
this reason in the paper the non-parametric iterative procedure for joint
linearisation of all set of local samples was proposed. The iterative
transformations are justified with mini-max criterion of the consistency of the
resulting linear estimators.

It is known that the standard deviation of measurements for fixed measured
value and fixed covariates can be easy estimated by a few repeated
measurements (Bland and Altman 1986). In such way one can obtain
needed sample of data: estimated outcome Z (standard deviation) — independent
variable X (measured value) — covariates Y\, In practice three procedures for
estimation of standard deviation are in use, and it seems to be useful compare
their properties.

Finally, the plan of paper includes: in section II and III the local sampling
and the technique of nearest neighbours method was briefly discussed. In section
IV and V the procedure of joint non-parametric linearisation was explained and
families of linear lines with fixed and random parameters were briefly discussed.
At last, in VI section the known procedures for estimate a measurement error
were examined with Monte Carlo modelling.
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II. LOCAL SAMPLING WITH k-NN TECHNIQUE

In applied statistics a local sampling usually constitutes the initial step to
further non-parametric analysis like, for example, a local regression. A local
sample, drawn from some whole sample, contains all individuals, which are
sufficiently similar each to other or to assumed pattern. Similarity between
individuals is often defined by notion of distance in space of the observed
variables, but it is not essential (Dette and Gefeller 1995). Nevertheless,
there are a lot of approaches to local sampling. First of all we should distinguish
partitioning on the non-overlapping clusters and other methods. The simple
strategy for non-overlapping clustering is to categorise all observed variables
separately and then form cells as combinations of the categories. A drawback of
this strategy is that number of combinations gets large even for moderate (e.g.
two or three) numbers of categories. It usually leads to loss of some data,
because many cells incidences will be to small for assumed further analysis. The
more sophisticated procedures can divide given set of individuals into
approximately equal clusters. Nevertheless, any non-overlapping partitioning in
practice meet usually with contradiction between accessible number of all data,
number of considered variables, and postulated number of clusters and number
of data in each cluster. Thus, if further analysis is foreseen, then usually only
overlapping partitioning has practical meaning. In this two approaches can be
distinguish. First one admits that each individual can belong simultaneously to
each singled out local sample or, in other words, that each local sample can
includes all considered set of individuals. Consequently, the individuals belong
to separate local samples not at all, but with some weight, associated with notion
of kernel function or with member function (Keming and Jones 1998).
The second approach admits, that each individual can on the whole belong
simultaneously to some singled out local samples, at least some individuals can
belong to each local sample, but each local sample contain only some part of all
considered sample. It can be interpreted in the terms of the first approach in such
way, that some individuals belong to considered local sample with weight equal
1 and all remain individuals with weight equal 0.

Suppose a given data set Y',Y7,..Y ,Y .Y ., ..Yy, where
Y,T,YzT,...,Yf are assumed seeds of local samples, which includes K points
mostly similar to its seed, from given sample of points ¥,Y),...Y/, and

maybe some additional ones, Y/,,,Y/,,,....¥) . A member shares wy, of i-th
point into j-th local sample, i = 1, 2, ..., N,j =1, 2, ..., J, are equal 1 or 0. It
means, that any i-th point can all belong to L; > 1 local samples simultaneously.
A sum of member shares wy;, for each j-th local sample constitutes a number K;
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of members inside this local sample. It is assumed, that any separate analysis,
which concerns relations exclusively inside single local sample, is founded on
this number K; of data. Numbers K; can be used to estimate a significance of
result in each single local sample treated separately. Nevertheless, if any analysis
concerns all local samples simultaneously, then each local sample represents not
K; number of data, but only U; = X (w;/ L;),i=1,2,...,,N,j=1,2, ..., J, number
of data. In practice usually each or almost each local sample includes the same
number K of members. Then, if the differences between L; for i = 1, ..., IV, are
neglected, the numbers of data could be assumed equal U;= U =idem; j=1, ..., J,
with U = min(1, N / J), because the method did not limit number J of local
samples, and each local sample was treated as a source of single data. Moreover,
if any analysis includes comparisons between the local samples and the
Bonferroni adjustment should be taken into account, then number of independent
samples could be estimated as N/ K << J.

III. NEAREST NEIGHBOURS (k-NN) TECHNIQUE

The k-NN technique assumes, that similarity between individuals is defined
by Euclidean distances between points in the space of the L observed variables
Y' where Y' = (i, ..., Y;). Usually it is supplement with hypothesis, that given
data set was drawn from uniform distribution in a proper parallelepiped in space
of Y (Ripley 1979). If this hypothesis is true, the natural assumption is, that
each local sample should represent the same probability, what be expressed in
the demand, that each local sample should include the same number K of
members, or in the demand, that each local sample should get the same volume
in the parallelepiped. Both above demands lead to so named edge effect
(Doguwa and Upton 1988): the ideal local samples of the same
probability should be represent by greater spheres near to edge than in the
middle of a parallelepiped. Nevertheless, in practice a hypothesis of multivariate
uniform distribution is often replaced with non-equivalent set of L separate

requirements, that each variable Y, ..., ¥, must be previously transformed to
univariate uniform distribution on the interval (0, G;), where G, exemplify
importance of a [-th variable Y, [ = 1, ..., L. In such situation it is possible, that

edge effect appears inside the parallelepiped (0, G)), [ =1, ..., L, too.

In practical applications a minimal number K of data in local sample follows
from purpose of analyse. From other hand, a maximal distance inside local
sample cannot oppose to presumption, that differences between members can be
neglected. If any such information is not available, than it seems be reasonable
put Gi=1forall =1, ..., L; and start with 7 + 12 < K < 30 + 40 and maximal
distance between seed and member of local sample D < 0,20 + 0,25. In proposed



Estimation of Measurement Error Using Local Sampling... 103

procedure a role of a seed of local sample previously plays each data from a
given data set ¥, Y, ,...Y/, Y/, ,Y],,...Yy . For some assumed values of K

the numbers J of local samples with assumed D should be computed, and on this
base the final decision on K, D and J can be taken. All local samples with greater
D should be excluded from further analyses.

IV. LINEARIZATION BY MONOTONIC TRANSFORMATION OF AN
INDEPENDEND VARIABLE

Suppose strong ordering X , <X 2 X N . A definition on monotonic
transformation X, — X, implies, that (X; < X,) — (X, < X,) forall i, k = 1,
..., N. Function (Z;, X;) is a monotonic (and increasing) function if (X; < X;) — (Z;
<Z) forall i, k=1, ..., N; it is a monotonic (and decreasing) function if (X; < Xj)
— (Z;> Zy) forall i, k=1, ..., N. If transformation X , — X, is a monotonic one,

then a monotonic function (Z;, X , ) persists to be monotonic function after this

transformation, and a non-monotonic function (Z;, X ,-') persists to be monotonic

function after this transformation. Linear function Z; = by + bX;, where by and
by # 0 are fixed constants, i = 1, ..., N, is a monotonic function. Consequently,

only any monotonic function (Z;, X ,f) can be exactly transformed into any linear

function with the monotonic transformation X , — X; = (Z; - by) / by into a linear
function Z; = by + b, X;, where by and b, # 0 are freely chosen constants.

Consider a non-monotonic function (Z;, X , ). Let us look for minimal
number M; that Z;< min(Z; , yr+ 1, Zis M+ 25 -y Zn), foreach Z, i =1, ..., N- 1, and
if M; > 0 let us change Z;, , with Z,,,, =Z;" +m*0, where: Z' = (Zis 1, Zi 12,
Zy) I mym =1, ..., M; and 0 is a neglected small number. After above procedure
considered function (Z, X) get monotonicity and it can be exactly linearesed. The
differences & m = Zi 4 — Z,,,, can be treated as the errors of linearisation. They
don’t depend on freely chosen parameters of linear function by and b, # 0. They

don’t depend on any values of variable X, and they don’t depend on any values
of variable Z exept Z; , |, Z; 4 3, ..., Zy. It can be proved that for any chosen

constants by and by # 0 a value X = (Z] - by) / by leads to minimal value of

Z,-(ez) B b T B Consequently, each disorder of monotonicity
can be optimal linearised independently from others disorders under general
criterion £3(€”). Moreover, the monotonic linearisation can be formulated as
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task: find (X;, Xz, ..., Xy) which leads to minimal value of £Z(&%), under
restrictions X, < X; < ... < Xy.

Suppose now, that the known values of Z; were charged with random errors
e, i =1, ..., N. Probability P(Z; < Z;) depends on the distributions of errors e; and
¢;. Suppose that for j < i < N probability P(Z; < Z) 2 P; i, j =1, ..., N. An event
& = 0 take place, if (M, <i-1)and (M, <i-2)and ... and (M., < 1) and
(M; < 1). Consequently, probability P(g = 0) = P¥*V* 1 and probability P(Zé
= 0) = P((& = 0) and (& = 0) and ... (& = 0)) = P¥V "¥'2 For example, for
N =8 and P = 0,975; P(Z€ = 0) = 0,49; for N = 8 and P = 0,998; P(S¢” = 0) >
0,95. It should be noted, that P(& = 0) = 0 and P(ZE2 =0) 2 0 for continuous (e.g.
normal) distributions of errors e;, i = 1, ..., N. If event (£ > 0) take place, and
errors ¢; are distributed normally, with assumed the same (unknown) standard
deviation, then the distribution of 2%V, can be approximated by x distribution
with degree of freedom df = ZM;, where variation V; of € is estimated only for
groups of M; data with &> 0.

V. JOINT LINEARISATION BY MONOTONIC TRANSFORMATION OF AN
INDEPENDEND VARIABLE

Consider now some given samples (Zi;, X)), (Zos Xo;)s -0 Ziy X)),
where in each sample i = 1, ..., N;. Suppose that for each sample (Z;, X ﬂ ), i=1,

..., Nj, it could be find at least a single sample (Z;, X,;,. Yoodom ilisiohay N that
maximum (Xj;, Xy1) < minimum (Xj;, X,). Note that for any pair of samples with
maximum(Xj;, Xj;) > minimum(Xj;, X;,) the task of simultaneous linearisation
divides into two separate tasks and joint linearisation don’t occurs.

Let all given values of X’ were ordered X, < X, <...< Xy, where N = N, +

N; + ... + N;. Then task of joint linearisation can be formulated as follow: find
(X, X2, ..., Xy) which leads to minimum(maximum(ZZ(&%),, (), ...,
23(€),)) under restrictions X, < X5 < ... < Xy. This task can be solved with the
iterative procedure: first for each given sample the parameters by and by; of

regression Z7 = bg;+ b*X, j=1, ..., J, should be computed with the last square

errors criterion. Then criterion C = maximum(ZZ,(&));, E3(€Ys, ..., X))
should be computed. In each following step of procedure it is tested, whether
exist transformation X — X which gives a smaller C then in a previous step, or
which gives the same C then in a previous step but it gives a smaller sum X
(EZ(E)1, Z2(E), ..., ZE(E))). If such transformation exists, and it satisfies
restrictions on ordering of X’s, then it should be performed, if not — it leads to
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the end of procedure. In practical realisation an initial restriction X; < Xj;, should
be formulated as X;, — X; > h, i = 1, N -1, where small constant h should be
chosen accordingly to differences between X’s, e.g. as about 0,000001 of mean
difference. The procedure should be stopped, if a improvement of criterion C is
less then about 0,1% of its previous value. With such constants procedure
stopped after about (1 + 3)*J iterations (Gérkiewicz and Kawalec
1999).

It should be marked, that the joint linearisation distinctly differs from the
separate linearisation. Let us explain it on example of two monotonic samples
(Zyi, X'1) and (Zy, X'3), where X’j; = X’5; 1 = 1, ..., N. The separate
linearisation always leads to 221(82)1 = ZZi(ez)z = (), because for any monotonic
function £Zi(€%) = 0. The joint linearisation leads to £X,(€%), = ZX,(€%), = 0 only
if there exist constants ay and a, # 0 that Z;; = ap + a,*Z5;; i = 1, ..., N. Thus, in
joint linearisation of J samples in practice a minimal value of criterion
minimum(maximum(ZZi(&‘z)l, 30 . () VO 22,-(62)1)) occurs with all ZZ,-(sz)j> 0,
Ui Pt i

The proposed procedure for joint linearisation always leads to minimal value
of assumed criterion. Nevertheless, the minimal value can be find to much, and a
few mostly troubled samples should be excluded from joint linearisation, or
given set of samples should be divided into two or three parts with appropriate
values of criterion.

Some statistical approaches suit to further analyse of the approved results of
joint linearisation. The simplest approach assumes that a given initial data set (Z,

X, YT) was transformed into a new data sample (b, b);, er D=1 s where
YT are assumed representation of J-th local sample; by; and by; are assumed as
| P P ) j

random numbers drawn from normal distributions N(0, oy;) and N(0, oy)), where
oy and 0y; are estimated as the sample standard deviations SDy; and SD,;. Within
this approach the regressions bo® = f(Y") and b,* = f(Y") can be analysed.
Nevertheless, hypothesis by, = idem or b; = idem or bg; + Xo*by; = idem can be
tested, where constant X, represents a common cut point of all J lines. It is
known, that under assumption by; = idem a statistics CHI = X( by; / SDU)2
— (Z( by / (SDy)*)* I 2 1/(SDy)%, j = 1, ..., J; is a chi-square variable with df = J
~1 degree of freedom. A combined estimate of slope is b = 2(by; / (SD.J-)2 /2 1/

(SD,,-)Z. If obtained value of CHI is greater then critical value of chi-square test,
then hypothesis b;; = idem don’t valid. In such situation one can exclude a few
most confusing by;’s and try the above analyse once again (O m ar etal., 1999).

The more sophisticated approach takes into account all resulting local
samples, and consider them as separate random samples. Within this approach

the assays of regressions lines Z7 = a; + b*X are estimated and tested apart from
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parameters bg; and by; obtained with procedure of joint linearisation. Here, when
the hypothesis b; = idem of equal slope parameter is rejected, or hypothesis
a; + Xo*b; = idem is rejected, then the Johnson-Neyman technique can be used to
to determine a region of the independent variable for which no significant
differences of outcome Z can be detected (Schwenke 1990). Nevertheless,
instead of partitioning on the set of local samples, in the considering models
hypothesis of fixed parameters a; and b; can be changed with hypothesis of
random parameters (Hildrecht and Houck 1968, Longford 1995).
Methods for statistical analyse of the linear assays were examined by many
researchers (Hanusz 2000, Heckman and Zamar 2000, Jensen
1989, Srivastava etal 1980) and they were implemented in some known
statistical packages. It those ways of analyse don’t result successfully, the
previous approach must be applied. In a successful case for each considered
local sample its own representation should be chosen, and regression a” = fY")
and b = A(Y") can be analysed.

VI. ESTIMATION OF STANDARD DEVIATION BY REPEATED
MEASUREMENTS

The method proposed in the above sections can be applied to estimation of
models with measured value as independent variable X and standard deviation
SDE(X) of measurements error as outcome Z. Of course, a standard deviation
cannot be measured directly. So, in the paper the following procedure was
examined. For each considered i-th individual, i = 1, ..., N; a set of repeated
measurements X(i, r) was achieved, r = 1, ..., R;. If it can be assumed, that the
true measured value X and the standard deviation of measurements error o(X)
were constant over time of repeated measurements, then a sample mean
Z X(i, r), r=1, ..., R;; estimates a true value of X for i-th individual, and sample
standard deviation of measurements estimates X(i, r), r = 1, ..., R;; estimates a
true value of o(X) for i-th individual.

In order to compare the three known estimates of standard deviation a sets of
1000 individuals was modelled. For each individual a set of R values of X was
generated from the normal distribution N(0, 2) for R = 2, 3, ..., 11. A sample
standard deviation for each set of R measurements X was estimated as a single
number with the classical formula SD,(X) = (X, - XN * (X, - XN/ (R~-1))
and with the formula SD,(X) = Z [X, - X" / (R - 1), and ag the sample of R
numbers SD,(X) =R * |X, - X"| / (R - 1), where a mean value XA =3X, /R, r=1,
2, ..., R. It was confirmed that for 2 £ R < 11 all considered estimates are
unbiased, it means they practically don’t differ from assumed in modelling value
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o(X). Moreover, on the base on 1000 data for each R = 2, 3, ..., 11 the standard
deviation SD(SD,), SD(SD,) and SD(SD,) were estimated. It was stated, that for
R = 2: §D(SD,) = SD(SD,) = 0.85*0(X) and SD(SD,) = 0.6*o(X). For R = 3:
SD(SD,) = 0.75*0(X) and SD(SD,) = SD(SD,) = o(X). For4 <R < 11: SD(SD,) =
0.7*0(X) = idem, and practically SD(SD,) = SD(SD,). Besides, in each separate
sample of R data a sample standard deviation SDg(X) and sample standard
deviation SDg(SD,) was computed and for 4 < R < 11 significant regression
SDg(SD,) = 0.6 + 0.7 SDg(X) was confirmed. Thus, estimate SD, provides an
self-correcting property: samples with greater random sample deviation SDg(X)
have the greater sample deviation SDg(SD,) and they weekly exert on regression
between measured value X and estimated standard deviation of measurement
error then other samples with smaller random sample deviation SDg(X). It gives
reason for conclusion, that in considered task the use of estimate SD, can be
recommended. Nevertheless, the another problem arises, because if the
independent variable is measured as mean of some repeated measures with not
neglected standard deviation, than conventional parametric regression methods
are no valid (Caroll and al. 1999). Thus, it should be recommended to
choose number R of repeated measures under criterion SDg(X) << SD(SD)) =
SD(SD,).
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Maciej Gorkiewicz

ESTYMOWANIE BLEDU POMIAROWEGO Z ZASTOSOWANIEM LACZNEJ
NIEPARAMETRYCZNEJ LINEARYZACJI PROB LOKALNYCH

Praca prezentuje zastosowanie techniki najblizszych sasiadow w celu przeksztalcenia zbioru
N danych postaci (Z, X, Y") w zbi6r J = N préb lokalnych (Z, X), przy ograniczeniach dotyczacych
minimalnej liczby danych K oraz r6znic wartoéci YT' w kazdej probie lokalnej, gdzie Z petni role
zmiennej zaleznej, X — zmiennej niezaleznej, a ¥' = (Y, ..., ¥}) jest L-wymiarowg zmienng
dodatkowa. Nastepnie proponuje si¢ procedure nieparametrycznej tacznej linearyzacji zbioru prob
lokalnych. Obie procedury proponuje sig stosowaé do oceny doktadnosci metod pomiarowych, z
odchyleniem standardowym bledu pomiaréw jako zmienna Z i wielko$cia mierzong jako zmienna X.
Proponowane podejscie moze by¢ uzyteczne w innych zastosowaniach, kiedy zamiast modelu
regresji wielowymiarowej estymuje si¢ rodzing zalezno$ci regresyjnych.



