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METHODS OF TWO DIMENSIONAL IMAGES RESTORATION

ABSTRACT. In the paper the problems of segmentation and restoration of two 
dimensional images on the basis of possessed distorted version of images are considered. 
Bayesian methods of image analysis, ICM Besag algorithm, mathematical morphology 
methods and Bayesian morphology methods are discussed. All methods are assessed 
from the point of view of three criteria: quality of the image restored, the speed of 
algorithms used and the quality of mathematical and statistical foundations. A new 
algorithm is also proposed and the results of applying all the methods discussed to some 
images are presented. The algorithm may be assessed as competitive especially as the 
speed and the quality of the image restored is concerned.
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I. BAYESIAN MORPHOLOGY

Let S be the set of all pixels which constitute the true but unknown image 
and the very image itself will be written as x={xh i e  5} and it will be treated as 
a realization o f a random vector X. The observed image !  is interpreted as 
a realization o f a random vector Y which is a degraded or contaminated version 
of X. The vector Y depends on X through a known conditional probability  
density function L(y/x) which incorporates both the image model and the noise 

model. We are looking for an estimator X = X (! ) of X that will allow us to 

restore true image X. Let us assume that P(x) is the distribution of X. Then the 
restored image x is  based on the posterior density of x, i.e. P{x/y) which is 
proportional to L{y/x) P{x). If we maximize this density we will arrive at the 
maximum a posteriori (MAP) estimate of x  In order to simplify maximization  
we have to make a few assumptions. Firstly, we assume that ": is the realization
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of a Markov random field. From this it follows that for all  pixels 

x N(i)) i.e. the conditional distribution depends only on the

pixels in a subset N(i) called the neighbourhood of pixel i. Secondly, we assume 
that Yi are conditionally independent and have the same conditional density 

function fiyi/Xi ) that depends only on x,. Then we can write L(y/x) = ! / < " # > -
ieS

To simplify heavy computations needed to find MAP we can apply the Iterated 
Conditional Modes algorithm of B e s a g (1986). It is an iterative algorithm. 
Given a current estimate x o f the image we compute a new one. We visit each 
pixel i  and the current value o f that pixel is replaced by the value that maximizes 

the conditional density $("%,|JcS4{f}, >>) This choice is motivated by the following 

equality

/*&'|+) = / >(*/|*S\{/}, y ) /J(x5\{;}|>0) (2)

Under the assumptions that were made, maximizing the conditional density 

is equivalent to maximizing /(_y(.|jc,)P(jc3|j7W(3)).

If we consider binary (two coloured) images then for all pixels i, x,e {:, 1}  
and y,6 {:,1}. The prior distribution for the true image X is the usually used Ising 
model

P(x) = Z (ß )~ l exp(/? v(jr)), (@)

where v(x) = ' £ 8 ( x i,x j ) is the number of pairs o f neighbouring pixels having
i - j

the same colour. Notation i ~ j  means that the pixels / and j  are neighbours and 

<5 is the Kronecker delta function. The quantity Z{ß) is the normalizing constant 
Z (ß ) = £ e x p (ß  v(jc)) and ß is a parameter that will be estimated later. The

X

conditional distributions of P(x) i.e. P U ,2•D{,}) have the form which is 

proportional to exp(/? ufai)), where !,("{)  = ^5(A ,.,xy) is the number of
je N(l)

neighbours o f pixel i having colour x,. The true images are assumed to be 
degraded by the so called channel noise characterized by the two parameters pm 
and pio understood in the following way

Pm = P(y>i = 1 #x, = :) / 7,0 = P(yi = OlXj = 1).



Thus, the expressionßy i/x t) can be written as

/ ( x | l )  = ( l - P |0) ’V4Piü)1  ‘! f ( y , \  0) = (I -  Pq\) * ( * > ! )*

For an Ising model we can change the colour of each pixel i according to the 
formulae given by F o r b e s  and R a f t e r y  (1997). The theorem is the 
fo llow ing.

For an Ising model with the channel noise given by parameters p w and p 0[, 
the current ICM estimate of the true image at pixel i is updated by changing xi

to x* according to the rule

X,! =

1 if Mi(1)-M i(0)>2w .

0 if Mi (!) — M, (0)  ̂—2 VV0 

 ,'*  Mi(l)-Mi(0)>2w .

where vv0 and Wi are positive integers that depend on the noise and model 
parameters p [0 , p0i and ß through

wn!=

w,! =

2ß

1

2ß

log

log

' " ! \
I! Pio

{! Poi J.

J- A )  i 

{! Pio

where parameter ß has to be estimated.

II. PARAMETER ESTIMATION

To estimate parameter ß for the model (2) we may try different approaches. 
The maximum likelihood estimator can be found by maximizing the following 
log-likelihood

\og(P(x))!=!ß v(x )- log (Z (ß ))



The derivative o f this function is given by the formula

^ e  =  v W - £ ( M ! i »  
dp

where Eß (v(X ))  = £ v (* )P ( ;c ) . From that it follows that Eß (v(X ))  = v(x) .
X

These basic properties allow us to investigate the behaviour of the 
expectation considered more closely and to establish an algorithm making use of 
the formulae given by F o r b e s  and R a f t e r y  (1997) to estimate ß. 
However, the exact computation of the appearing expectations is impossible 
because of the amount of computations needed and one would have to use some 
other algorithms which accelerate this process e.g. the Swendsen-Wang 
algorithm (1987).

Another approach is the pseudo-likelihood estimation. In this method we 
maximize the expression

!"*/|**\{/}) ( 3)
ieS

For the model (2) we have /?,(*,) = Z,(/3)''exp(j3 «,(*,)) where 

Pi(Xi) = / >(jc,|jc6-v̂ -p and Z j (ß )=  ^£exp(/3 #$%)). Maximizing expression (3)

is equivalent to maximizing the log-pseudo-likelihood F (ß ) = ^ ( ß  w,(&,) -
ieS

- lo g  (Z ,(ß)).

We can calculate derivatives and present them in a form similar to that o f the 
maximum likelihood case

aP ieS

where

El,.(ui ( X i))=  ^+ ,(%)0,.(%).
re d..."I

Similarly as in the case of the maximum likelihood estimation we find the 

estimate of ß, the difference and advantage of this method being that all the



expectations appearing can be computed exactly because they are restricted to 
some pixel’s neighbourhood.
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Fig. 1. Three kinds of pixel neighbourhoods considered in the new algorithm

III. NEW ALGORITHM PROPOSAL

Quite different method of restoring distorted two dimensional images is 
looking for algorithms which have more in common with the methods termed 
mathematical image morphology. The idea o f such algorithms is to consider 
small neighbourhoods of every pixel and to look for patterns of colours 
distribution in the neighbourhoods that would justify changing some pixels 
colours. For example we can change the colour o f the central pixel if all other  
pixels have the other o f the two colours. We were trying many combinations of 
neighbourhoods shapes and pixels-to-be-changed. Interesting results can be 
achieved if we try three kinds of neighbourhoods depicted in figure 1. The rule 
to change colours is the following : we change only one pixel which is marked 
as white (does not lie in the corner) if all other pixels have the other of the two 
colours. We ran each of these neighbourhoods three times to the Mickey mouse 
picture.

Fig. 2. True image (left) and its degraded version i.e. the same image with 15% channel noise



IV. COMPARISON OF PERFORMANCE

In figure 3 one can see the results of applying bayesian morphology 
restoration methods to the two coloured, two dimensional distorted Mickey 
mouse image which is presented in figure 2. The third picture in figure 3 
presents simple majority rule i.e. we change the colour of the central pixel of a 
symmetric 3 by 3 pixels neighbourhood to the colour of the majority of this 
neighbourhood. In figure 4 one can find the result of applying the new algorithm 
to the similar image. Intuitive visual examination, as well as comparison through 
the criterion o f the percentage of the number of pixels incorrectly restored, 
allows to state that the new algorithm is competitive. One has to remember 
however that the speed of work of the new algorithm is probably much faster 
(more precise comparison would require the same conditions for all methods).

Fig. 3. The Mickey mouse restored images received through: Bayesian morphology based on 
a likelihood criterion (upper left), Bayesian morphology based on a pseudo-likelihood criterion 

(upper right), majority rule restoration (down left).



Fig. 4. The Mickey mouse images used in the new algorithm : true undistorted image (upper left), 
the same image degraded with 15% channel noise (upper right), image restored with the new

algorithm (down left).
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METODY ODTWARZANIA OBRAZÓW DWUWYMIAROWYCH

W pracy rozwa!ane s" problemy segmentacji oraz odtwarzania obrazów dwuwymiarowych 
na podstawie posiadanej zanieczyszczonej wersji obrazu. Omówione s" metody bayesowskiej 
analizy obrazu, algorytm ICM Besaga, morfologia matematyczna i bayesowska. Wszystkie 
metody s" oceniane pod wzgl"dem trzech kryteriów: jako#ci obrazu odtworzonego, szybko#ci 
pracy algorytmu oraz solidno#ci podstaw statystycznych i matematycznych. Zaproponowany jest 
równie! nowy algorytm i przedstawione wyniki zastosowania wszystkich omawianych metod do 
odtworzenia kilku obrazów. Nowy algorytm mo!na oceni$ jako konkurencyjny zw%aszcza pod 
wzgl&dem szybko#ci pracy oraz jako#ci odtworzonego obrazu.


