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1. Introduction

In the theory of statistical inference a wide class of
goodness of fit tests includes tests for normality. They allow
to verify the goodness of fit of normel and empirical distri-
" butions of the tested random variable., The problem of the veri-
fication of normality assumptions of & distribution is of wvi-
tal importance for the mathematical statistics since majority of
the methods are based on this assumption.

Thie paper presents a class of tests for normality based
on measures of the distribution shape. These measures include
skewness (asymmetry) measure and kurtosis measure., On the baais
of these measures the departure of the considered distribution
from the normal distribution can be determined., They assume for
each distribution fixed values if there are finite values of
the first four central moments of the distribution. For instan~
ce, the measures of skewness in the case of symmetric distri=-
butions assume the value of zero.
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2. Measures of Asymmetry and Kurtosis

Let

(1) X = (X0 evas X))

be a p-dimensional random vector with finite distribution para-
meters

E_)&- g - (Pi‘ “ewe, yp)‘
{2)
DX = L = (du’)'
where 2, is a positive determined matrix,
in the case when p = 1 we shall use X, p and d2, respectively.
Let

(3) (Xyo eoes X)) -{EJ}

denote an n-element random sample of p-dimensional independent
vectors with a uniform distribution, which are the realiza~
tions of random vector X. If p = 1 the random sample is de-
noted as (xi, e xn) & {x }. Unbiased estimators of the pa=-
rameter sample E,g as well as p and d? are denoted as

R CPRTE
(4)

(8, . o> =L SN (X.-K)(X~X)*
s = (5,0 = d 5 (X DX
j=1

and X, S2, respectively.

Vle assume that the distribution of vector X is determined
by distribution function F_(x), while of variable X = distribu-
tion function F(x), where x e RP and x e R; Rl denotes an l=
-dimensional real space, We introduce notations cpp(g_) and @ (x)
for distribution function p-variate and univariate normal di-
stribution. Next by H & F_(x) -op(g) we denote a null hypo-
thesis stating that vector X has a p~dimensional normal distri-

bution while for varisble X we have H  : F(x) = ®(x),
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We ehall define next distribution parametars for p = 1
- central moment of the r~th order

(5) Pr.E[(x-t"T]‘ r=0,1, 84 ene

-

- asymmetry (skewness) coefficient

(6) VBy = vy or By = u/up.

- kurtosis coefficient

(7) B = P4/P§'

The following inequalities occur smong the above mentioned coc
ficients

(8) “2 >1 + ﬁi
By:< 3 <AD B,

The measures ﬂl and ﬁz are applied mainly to

1) a choice of representatives in a family of distributions
(e.g. in the family of Pearson®s distributions),

2) a determination of tests for normality (e.g. the test ba-
sed on the standardized fourth central sample moment),

3) studying the robustness of some testing procedures for
doparturb from normal distribution (e.g. using the coefficient
ﬁi; in studying robustness of t=Student test in the verifica-
tion of hypothesis p = Bor where p is an expected value in the
population, and p  its hypothetical value),

A decisive point in introducing the distribution of t-Student
statistic of a quotient form, is independence of the numerator
from the denominator which occurs at the hypothesis Ho. If the
sample comes from 8 population with non=-normal distribution, then
from the central limit theorem, especially from the Lindenberg-
-Levy theorem, it follows that the mean from the sample (X) and
unbiased variance estimator (s2) has en asymptotic normal distri-
bution (cf. [4]).

Let kr denote the r=th cumulant in a population, where k2 =
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= o k3 = P k " Yy =3 pg. The influence of nonnormality
on t statistic used in testing the hypothesis p = [ is express~
ed by the correlation coefficient between the variables X and S°
of the form

o) cov (X,5%) ky/n
g = tee > -
2/3\n2(c2)]|1/2 k,/k 2k 1/2
D<(X)0=(s%) 2(__4_ 2)]
[ ] [" M

n \n

k4 k

[k 2n k2]1/2 [n . 2,‘2)]1/2

because at n— o, 521-—+1. If the non-normal population is sym-
metric, k3 = 0 and hence p = 0, then X and 82 are asymptoti-
cally independent which allows to apply the theory of normal di-
stribution for large n. For k3 ¥ 0, p takes small velues when
k4 is large, but p # 0. Equation (9) 1s now written in the
form

ks N

8" F /% =7k
[kg(;g > 2>]1/2 (—;% + 2)1/2

2 2

g= (% ‘31)1/2

(10)

assuming that k4 = 0,

As a result, wunder the above assumptions, the correlation
goefficient p cen be treated as skewness measure, Assuming that
Vﬁ; = 0, we have g = O end thus, the variables X and 82 are
uncorrelated. The coefficient ﬁz is applied, firet of all, in
the verification of hypothesis that the expected value of joint
variasbles becomes zero when there is no assumption of normality
B o x and Anderson [2] using Pitman’s permutation
test, showed that the square of t statistic used in the veri-
fication of the above mentioned hypothesis of the expected va-
lue, has F distribution with n and (n-1)n degrees of freedom,
where ‘ .
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(32-3 {32'3
L

4 n(1- ﬂz)/n .2 n

(11) =1

¢ oft).

Thie result has been derived under the lack of the normality .as-
sumption for the distribution from which the sample {Xj} was
drawn.

Let us define now the basic paranmeters for multivariate dise
tributions p > 1:

- the mixed central moment of variables X, , ..., X (s < p)
1 ; S
of the (r1 * aee & r‘)-th order

(1 v evey 3 ) - rk
(12) & * gl | x, =pp)
¢ Fio soes Ty ik 1 Pik '
where (1,4 eoos 4g) is an arbitrary s-element subsequence from

the sequence (1, ..., P) @nd ry, ceey ry = 05 Lt 25 ke
- the asymmetry coefficient [11]

p
(13) By, = 2, N Z 1t fota F3ts 41ty s{e5e%
1,085,050 17,47,45e1 111 111

where Z;'1 -(dii'),

- kurtosis coefficient [11]

p p
’ . . -
(14) Bop " ’ A 'Z' Gtz Mo (1,4,1747)
1,471 17,4w1 Pa111

Besides, we introduce parameters from the sample for p = 1:
.= the r=th order central moment .

n :
(15) llr -%‘ Z(xj - i)r. r= 2' 3s seo's
3= |

~ the ssymmotry coefficient
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(16) V%I = m...,’/m;"/2 or by = mg/mg.
- the kurtosis coefficioent
(17) b, = m/m3 .

Similarly, for p > 1, we have
- the mixed central moment of variables X1 PRy x1
1

(rg ¢ ceu ¢ rg)=th order

(1 @ *ve 1 ) 1 R 3 r
(18) R .2 :E: [’] (x, =X )k
A n g, o
J=1 Lk=1
- the asymmetry coefficient [11]
P P » 11‘
(18) by ¥ Z si1iy siats sizly & !
11‘ 2‘13-1 1 2.13-1
where §~% a (sil) .
- the kurtosis coefficient [11]
. ' P ' itz 1243 (11121;15)
(20) b2p * :E: ¢ M1111 :
1 0dom 4,1,

3 T -
8

L
111

'111

he

L

213

The measures determined by formulae (19) and (20)cen be given

in the form of certain powers in two-linear and square f
n
(21) by ,p --ii ZE: [(5J %)* §51(55% - g)]s
' J.3°=1
n
(22) -%Z (% - 057t (x, - D) ]2
=1

orms

Assuming' that H  end Hop are true, we have (51 = (3109 and 3, =

’
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= 3 and ﬁz b (p + 2)p. Hence these hypotheses can bo pro-
sented in the equivalent forms:

H; H al a OA ﬂz - 3 nﬂd HUP : al'o s OA {SZ,p = p(’\»?).

Further on we shall construct test functions for tha veritiication

of hypotheses H and Hop'

3, Test Based on -/bl

e

Now, we shall discuss the attempts of determining the VE;
dietribution under the assumsiion of the hypothesis M, The best
results have been obtained using Johnson’s system of curves
[9]. Such a result is presented by D’Agostineo [5]
who reduced the VG; stotistic to a random variable with n(o,1)
distribution assuming the hypothesis H/ and n 3> 0.

Laet

e[St
6, ) = %(n +27n-70r)‘£9+1)(n+3) )
i [2 (B,lyfb,) = 1)]1/2 ’
§ = 1/ [1n W]¥/2,

7= [2002 - 1)]'1/2 :

then the variable

(23) Zw §1ln [v/-r +va/¢)2 + 1:]

has approximately the N(0,1) distribution. ;
The hypothesis H 18 rejected if |z| > uy, where d(uy) =
= 1- ao/2, end QA 13 a given significance level,
D'Agostino and Tietjen [7] cerried out
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cemparative studies of various approximations of the fS; di-
ttribuiion taking into account the following résults (cf. Table 1):

a) their own sinmulation results,

b) the curves §  (the approximation of D°Ago s t 4 no [5),

¢) the approximoted t-Student distribution,

d) Cernish~Fisher expreseion [3],

e) the modified Cornish-Fishei expression [8],

i) the approximation by normal distribution,

The approximation by t=distribution or VII-type curvee from
Pearson 8 system is as follows:

1/2
s )

t‘z(Vp)

The statistic given 4n formula (24) has t-Student distribution
with v degraes of freedom, with

ap, (87) - ©
(.’.5) v = ._.3____1!___' - 6( -2)/0[3]'
s, PR IS

where 16; is determined in formula (16), n[k]- n(n=1),,.(n=ke1),
- The approximation by normel distribution takes into  acecount
Y5, ©s & variable with normal distribution end with its expec-
ted volue equal zero and variance PZGVS:)'
On the besis of Table 1, ws can note that the approximation of
varieble 1c“ by normal distribution 4is of relatively smsll ac-
curacy. In other cases elight differences occur in quantiles of
ﬁz distribution,

The critical values for n > 25 were given by Pe ar son
and Hartloaoy [15] end forn < 25 by Mulholleand
[14] (cf Table 2), who found them on the basis of some analytical
studies on the singularity of the density function of yb, di-
stribution, .

DAgostino aend Tietjen [7] (ef. Table 3)
zlsc gave the critical velues for n = 5(1)11,13,15,17,20, 23,25, 30,
35, obtained uvcing the simulation method, A compdrison of the-
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Tableg 3

Quantiles of approximated Vbz distributions

n Approxima~ - o = “],
tion 0,10 0.05 0.01 c.001 |
8 (a) 0,760 0.991 1.455 1,873 |
(b) -1 -34 56
(e) 7 -1 -34 56
(d) 8 14 -14 -17
(e) -4 17 19 1 ‘
(f) 12 1 -52 -10 i
15 (a) 0,648 0,862 1.275 1,775 T
(b) 2 -12 -13 27 i
(e) 2 ~12 -16 27 !
(d) 0 -12 -9 48 i
(o) -1 -12 7 49 '
(f) 19 ~€ -64 -167
20 (a) 0.593 0.777 1,152 1.614
(b) -4 -5 -2 38
(e) -l -6 -4 38
(d) -6 -9 1 76
(e) -6 -9 2 76
(f) 13 1 -52 ~153
35 (a) 0.474 0.624 0.932 1.332
(b) 1 -3 -9 -13
(e) 1 -3 -11 -13
(d) 0 -4 -7 -4
(f) 12 2 -47 -156

Sourcae: On the basis of [7].
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THa bl g 2
Quantiles of distribution of 152 statistic
o o

i 0.05 0.01 i 0.05 0.01

4 0.987 1,120 18 0.651 1,272

5 1.049 1:.337 16 0.834 1.247

6 1,042 1,429 17 0.817 1,222

7 1.018 1,457 i8 0,801 1,199

8 0.998 1,452 19 0.786 1 4.478
{ 9 0.977 1.433 20 0,772 1.155
' 10 0.954 1,407 21 0.758 1,134

- & 0.931 1.381 22 0.746 1.114

o 1 0.910 1.353 23 0.733 1.096
13 0.890 1,325 24 0.722 1.078
14 c.870 1.298 25 0.710 1.060

Source: On the basis of [141.
‘Table 3
Quantiles of distribution of 15: statistic

[ n 5 6 7 8 9 10 11
| 0.05 | 1.058 1,034 | 1.,008 | 0,991 {0,977 | 0,950 {0,929

1 0.01|1.342 | 1,415 |1.432|1.425|1,408 | 1.397 | 1.376

n 13 15 17 20 23 25

0.05 | 0,902 0.862 0.820 0.777 0,743 0.714
o
0.01 | 1,312 1,278 1.188 1.152 1.119 1,073
Source: On the basis of [5].

se values with the results of Mulholland ehows slight differences
between them,
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4, Test Based on b
-

An accurate distribution of b2 for n > 4 assuming that
the hypothesis Ho is true, hes not been known so far. That is
vhy various approximations for b2 by Johneson’s su distribution
and Pearson’s 1IV-type distribution have been found, The sappro~
ximation by Su distribution has the following form [1]:

o ay
b, - b, = §\°
1’81"[_21;"/(2%:) ¢1J. n325

b, = E
7+ 810 B

(26) Z =4

n < 25

.
where constants 4, §, E end A will be found using the mothod of
moments, presented among others, by Pe arson and
Hartley [15]. The veriable Z has approximately normal N
(0,1) distribution. The verification of the hypothesis H, con-
8ists in o compaerison of the values of Z with a corresponding
value of u,, wherse & (uy) =1 -a,

Critical values of the distribution of b, were given by
Pearson and Hartley [15] (table 34c) for n<200
and o = 0,05, 0.01, Also for the same values of o critical va-
lues were given additionally by the approximation S, and VI-ty-

pe at n = 50(25) 150, 200, 400, These values do not differ fron
each other up to the second place after comme, Using the simu=-
lation method D°Agostino and Tiet jen [6] genec-

rated critical values for small sample sizes n = 7(1)10,12,15(5)
S0 (cf. Table 4),

Table 4

Quantiles of distribution of b2 statistic

o
2 0.05 0.01
lower upper lower upper
1 2 3 R 5
T 1.41 3.55 1.25 4,23
8 1.46 3.70 1.31 4,53




46 Czeslaw Domauski, Wiestaw Wagner

Table 4 (contd.)

1 2 3 4 XA
9 1.53 3.86 1,35 4,02
10 1.56 3.95 1,39 5,00
12 1.64 4,08 1,46 5.20
15 1.72 4.13 1.55 5,30
20 1.82 4,17 1,65 5.36
25 1.91 4,16 1,72 5,30
0| *+ 1.98 4,11 1.79 5,21
35 2.03 4,10 1.84 5,13
40 2,07 4,06 . 1,89 5.04
45 2.11 4,00 1,93 4,94
50 2,15 3,99 1,95 4,68

Source: On the basis of [6].

S. Properties of b1 p Statistic
L]

Now we shall diecuss the properties of the generalized skew-
vans coefficient bl.p'

(1) The by o otetistic ie invarient in relation to the ortho-
gonal transformaetion X = C X, It results immediately from the
form of eq. (21) to which we suybstitute EJ ~-XmwC Y 'z.

(11) The b, , etatistic'is invariant in relation to the non=
-singular transformation X = A X + b. It results from the form
of eq. (21) end X, - X =AY =Y,

(141) The bi.p statistic includes f = p (p + 1)(p + 2)/6 di~
stinct elements, ’ .

In the summation form of b1 statietic we have 2" elements
(variation with repetitions), 5ut only f = (9;2) (three-slement
combinations with repetitions) of distinct elements.

(4v) There is an inequality

< np3.

(27) ' by ,p



Peats for Normality Based on Skewn: u and furtosis Heasuros 47

Let

then
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(v) The b, , statistic expruossod by means of angles and Mshew
lenobis distances assumes the form [13]

n n
3
(28) bi.p -—1-2 z Z (rJrJ,coe OJJ-) ;
T S |

e = - - e = 2 20-20/2
where cos GJJ r“/v‘Jr'1 . rJJ (rJ + rJ djj ) 3

ctis b 0
and 3
. L3 = -1 X o
ry- (51 - X)'s7(x, ~ X).

(v1). The expected value of b, p is expressad by  the formu=
.
la .

(29) E<b1,p) = ﬁ&%[(n+1)(poi) - 6]- :

This formula is given by Ma r d 4 8 [12] for n-—+oo, E(bi.p}'“
Due to the invariance of the linear transformation we can
present the b, p Stetistic in the form
3 L

n
; , (1.4 13)2
E 172
(30) ' bi.P - {"111 } -

11n‘2013

a {"3 (1)}2 ® oes * 3 néiz)}z * soe * 6{%{1?3)}2 * soe
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vhera s

while

21

(123)
P11

m

(€:4.1.) (1.4,)

1123 112

111 =mt S 4y Ay,
(

(111111) K n‘ii)

111 3

n
ogt = 3 Z (x4 = %)%,
31

n

(12) 1 = %
o - Z ("13 - xi)(x;_,.1 - X)),

3=

n
--1'; JZ’. (xlj - 3_(.1) (XZJ - 22)()(31 e is)'

Assuming that the hypothesis that the sample {5 } comes from a
multidimensional normal population N_(Q, I), 8 true, we have
moments up to the n i=th order, of the form [11]

(31)

- a3 2173) w0, .
0?(21)= &/n,
e)e .

0?({13>) - 1/,

"IN Y
(154,145) (1545159

cov (’111

Ll L L
¢ Mygy ) =0, 15,4545 ¢ 14.45.15.

Note, that the essumption of p = 0 and X =1 1s  possible
due to the property (ii),
Let f = p(p+1)(p+2)/6~dimensional vector be given
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(32) n-( ;1). e r (12)'0000 ﬁ‘mi:§32 c-c)’
then
(33) bl.P = g‘_f’t_l N

On ‘the basis of formulae (31) we have

(34) &) » 0

D(M) = E(MM’) = diag (6/n, .ue, 6/n, 4ees 6/n) = (6/n)L.

Hence

(35) M~ N0, 6/n 1),

while ‘
. 2

(36) ni'H/6 = nby /6 ~ X%

Formulae (35) and (36) occur whon n-so. An accurate distribution
of the variable b1 is not yet known, Besides no other appro-
ximations of the vartable bl.p are known as in the univariate
case, For p > 7 the following aspproximation can be applied

(37)  (2nb, p/s)"/2 ~ N(2f=1,1).

Mardia [12] dotermined the critical values for the distri-
bution of by, , ueing the Monte<-Carlo method for n = 10(2)20
(s), 30(10), 100(50), 200(100), 400(200), 1000(500), 3000
(1000), 5000 and o = 0,001, 0,01, 0,025, 0.05, 0.075, 0,10 (cf,
Table §). For p =3 and p = 4 Mardie determined the critical
values, however they have not been published.
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Quantiles of distribution of b1 2 statistic
’

P —_r 77— e —_—
10 12 14 16 i8 20 [— 25 30 40 S0
1]

0.05 3.694 | 3,319 3.031 | 2.775 2.556 2,357 1.969 1.687 1,312 1,059

1
0.01 5.938 | 4,938 | 4,581 | 4,231 3.962 3.669 3.106 2.681 i 2,087 1.744

1

Source:t On the besis of [12],

Table 6

Quantiles of distribution of b, 5 statistic

10 12 14 16 18 20 25 30 40 S0

0.05 4.887 | 5.053) 5.179 | 5.318 | 5.382 5.533 | 5.689| 5.855 | 6.139 | 6.239
8,203 | 9.593| 9.769 | 9.941 {10,005 | 10,114 | 10,159{10.156 | 10.109 | 9.987

0.01 | 4.580 | 4.732| 4,842 | 4,977 | 5.045 5,175 | 5.351 5,518 | 5.703 | 5.209
10.378 (10.881{11,159 11.387 |11.478 | 11.609 | 11.628(11,594 11,453 (11.181

Source: On the basis of L12].

P—

Joudem MR{SOTY, ' [YBUBHOQ AE(SOZ)
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6. Properties of the bzip Statistic

For the b2 statistic the following properties occur.

(1) The b, 2,p Statietic is inveriant due to the orthogonal
transformation Y = C X 8nd non-singular X = A Y + b,

(41) The expected value of bz'p assumes the form [11]

2) (n-1
(38) E(by ) = Biﬂ%;Iiﬂ—-—

(1141) The variance of b, p is determined by the fornule [12]
L

8p(p+2)(n=3)
<n.1)22;.3)(n+s)

(nep=1) (n=p+1)

(39) oz(b2 2

22%2133 at n"2,

The first formula was introduced by taking into account the mul-
tivariate beta distribution, and the second one by using L &=
wley’s method [10].

(4v) bz.p can be expressed in the form
n
(40) % zi: Fes
J=1

where r, is Mahalanobis distance between X and X.
Taking formulae (38) and (39) we can obtain two tests verify-

ing the hypothesis H°P whose statistics are as follows,

{(ml)b - p(p+2)(n-1)}' {(nos)(n+5)}1/2
{Bp(poz)(n-s)(n-p-i)(n-poi)}llz

(41) Ny =

for the accurate variance Dz(b2 p) and
.

b, ‘e p(p+2)
{Bp(p¢2)/n}1/z

for the abproxtuatod variance Dz(b2 p) up to the n" order.

(42) N
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Statistics (41) and (42) have the N(0,1) distribution by vir=
tue of the central limit theorem.

An accurate distribution of the variable bz,p under the as~
sumption that the hypothesis H° is true, 4is unknown, The ne=
cessary critical values for the distribution of bz o have been
generated by Ma rdia [12] using the Monto-Cario method in
the same range of n as for b1,2' and o = 0,01, 0,025, 0.05,
0.10 giving two values - upper and lower., Table 6 presents the=
se values for n < 50,
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Czestaw Domanski, Wieslaw Wagner

TESTY NognAggoébx
OPARTE NA MIARACH SKOSNOSCI I SPLASZCZENIA

W artykule przedstawiono testy weryfikujgce hipotez¢ o nor-
malnodéci rozktadu zaréwno aodnowyniarowogo. jak 1 wielowymiaro=-
wego, oparte na miarach skoénodci i splaszczenia. Do wiekszosci
omawianych testéw podano niektdére kwantyle rozkladéw funkcii te~
stowych, Zamieszczono réwniez podetawowe wiasnoéci uogélnionej

miary skodnosci =- bi,p oraz miary kurtozy =~ b2.p'



