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Abstract. The trend of time series can change its direction. It is assumed that the 

time interval is divided into subintervals where the trend is given as particular linear 

function. The problem is how to divide the observation of time series into disjoint and 

coherent groups where they have linear trend.

That is why the problem of the scatter of multivariable observation was first 

considered. The degree of data spread is measured by means o f a coefficient called 

a discriminant of multivariable observation. It is equal to  the sum of volumes of the 

parallelotops spanned on multidimensional observations. On the basis of it the modi-

fications of the well known generalized variance were introduced. Geometrical properties 

of those parameters were investigated. The obtained results are used to  generalize 

well-known clustering methods of Ward. One of the advantages of the method is that 

it finds clusters of high linear dependent multivariate observations.

Finally, the results are used to partition a time series into homogeneous groups 

where observations are close to  linear trend. There is considered an example.

Key words: groupping criterion, agglomeration clustering, multidimensional variable, 

generalized variance, parallelotop, volume, discriminant, hyperplane, intra group spread, time 

series, linear trend.

1. BASIC D EFINITIO NS AND NOTATION

Let X =  [xy](i =  1 , h; j  =  I , N)  be an h  x N  matrix, where jc,j is 

the y'-th observation of an i-th h  dimensional variable. A y’-th column 

0  “  L —, N ) and an i-th row (i =  1,..., h) of X is denoted by \ j  and x l, 

respectively. Then X =  [x i ...xw], Xr  =  [(x1 ) r ...(x*)r ]. Let {ju . . . , j k} be 

a combination consisting of к  column numbers chosen from the m atrix X. 

Similarly, let {il3 ..., iw} be a combination consisting of w rows numbers 

chosen from X, where 1 <  w <  h  and 1 <  к  N.  Let
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X(w, k) = [ x j

Lx u .  ••• * w J

be submatrix of X. The w x к  matrix X(w, к) is obtained through omitting 

the rows and columns in X except the rows and the columns of numbers 

{i»  »«,} and { /j , ..., j k) respectively. Particularly X =  X(/z, N) and X(h, k) =  

=  [xh ,..., x j .  Symbol P(w, k\X)  denotes a collection of all different matrices

of the type X(w, k). The collection P(w, k\X)  consists of elements.

For example if X =  [ ] | ] ,  then [ “ }  [ “ ] ,  [ “ }

[ ‘9]' \ l l \ -  [£ }  [ 79} [£]}■ On the basis of the subm atrix 

X(2, 3) =  |̂ 4 5 6J ’ following collection is generated: P(2,2|X(2, 3) = )  j | ^ j ,

[ l ó ] ’ [ 5 0 ] } '  M oreover> xj e P (h. MX) x 'e P ( l ,  iV|X). The collection 

P(w, k|X) can be decomposed in the following way

P(w, k \ X ) =  1J P(w, k\X(h, к)) ( 1 )
Х(ЛД)еР(М|Х)

Let x =  =  N ^ J J X 7 be the mean vector, where each element

of an N  x  1 vector J N is equal to one. An h x N  matrix of deviations 

between observations of variables and their respective means is denoted by 

В =  [bij] (i — 1,..., h; j  =  1,..., N),  where btJ — x^ — x,. A submatrix B(w, к) 

is chosen from В in the same way as X(w, k) from X. Particularly, an /'-th 

row of В is b‘e P ( l ,  N\B)  a ;-th  column of В is bjeP(h,  1|B). The 

decomposition of the P(w, k|B) collection shows the equation:

P ( w , k \ B ) =  ( J  P(w, k)B(w, N))  (2)
B(w, N ) e P (w ,  N|B)

Submatrix B(w, k) is the following function of X(w, k)

B (w, к) = X(w, к) -  N _1X(w,  N )J nJ I  (3)

From  a geometrical point of view components of a vector Xj are 

coordinates of a point in the h dimensional space. We shall denote that 

point as Xj, too. Components of column by are the coordinates of the vector 

xxj.  The r dimensional volume of the parallelotop spanned by the vectors 

xj,ttx j, in the h dimesional space is for h ^ r  defined by the



equation (see e.g. J e f i m o w  and R o z e n d o r n  1974, p. 262 or B o r s u k  

1969, p. 116-120):

т (х л , ..., XjrJ  =  m(X(fc, r), xJrJ  =

=  V ď e W i , r) -  xu J~J)T(X(h, r) -  X j ' j J )  (4)

The r dimensional volume o f the parallelotop spanned by vectors 

ххл, xkj  is as follows

m(xJt, ..., xUi , x) =  m(bh , ..., bp  oh) =  m(B(h, r), o„) =

=  л/d e t ВT(h, r)B(h, r ) , (5 )

where by oh is denoted the h x  1 vector with all its elements equal to zero.

The r dimensional volume of the parallelotope spanned by the r vectors 

with their origin at the point oN and the end points bil, ..., bir in the 

N  dimensional space shows the equation:

m(bi>,..., b'') =  m(BT(r, N ), oN) =  ^ d e tB fo  N ) B T(r, N)  (6)

Borsuk 1969, p. 64, defined the discriminant of the system of ( r + 1 )  

points {xJt, ..., xjrii} =  X(/i, r - f  1) in the h dimensional space in the following 

way

q(X(h, r +  1) =  ( -  l) r—1 2~rd e tГ ° J ^ 1  (7 )
Lj r+1 D J

where D =  [d,v] is the (r +  1) x (r +  1 ) matrix. Its elements are the squared 

distances between vectors x ji and xJ 5  then

dtv = (xA -  х>/ ( х л -  x j )  =  x TjXjt -  2x]xj'  +  x]xj '

Lemma 1. ( B o r s u k  1969, p. 64 and 120). I f  r ^ h ,  then

q(X(h, r +  1)) =  mz(X(h, r + 1)) (8 )

2. M O D IFIED  SCATTER COEFFICIENTS

For a while let us limit our considerations to one-dimensional variable. 

The most simple and original way of spread measuring seems to be the 

way which follows from the expression:

N

q =  Z ( x f ~ xi) 2  It is easy to prove that 
J > ‘



Q = l  Z  (xJ - x i) 2  =  5  Z  [ ( Х ; - х ) - ( х , - х ) ] 2  =  JV £ ( х , - х ) 2  =  JV2 s2, 
z j . i = l  A j .  i = l  j = l  

N

where x =  N _ 1  £  Xj is the average and s2  is the variance of one dimensional 
)= i

variable. Then, the parameter q is proportionate to the variance, the most 

common coefficient of variability.

In order to generalize the coefficient q on multidimensional case we use 

the B o r s u k ’s 1969 definition of the discriminant of a point system 

explained by expressions (7) and (8 ).

Definition 1. The discriminant of degree r of the h dimensional observation 

set X =  {xx, ..., x,,} is as follows

9 ,/*(X) =  X  q № , r  + 1)), (9)
X(ft, г + 1) 6 P(h, r + 1 :X)

where 1 <  r <  h <  N.  Briefly, we shall call qr/A(X) the discrim inant of 

multidimensional variable.

The equation (8 ) immediately causes the following:

qrlh( X ) =  £  m2(X(h, r + 1)) (10)
Х(Л,г+1)бР(А,г+1:Х)

From  a geometrical point of view the defined coefficient is equal to the 

sum of squared volumes of the parallelotops spanned by vectors: х^хл , ..., 

XjXUi  where Xj e X(h, r +  1) e P(h, r + 11X). Especially q l/h is equal to the 

sum o f the squared Euclidean measure of the distances between the 

components of all pairs {x,, \j}(i > j  = 1,..., N).  Moreover, it is proportionate 

to the trace of the variance covariance matrix. The volume of the parallelotop 

spanned by a system consisting of ( r + 1 ) points is r! times greater than 

the volume of the simplex spaned by the same set of points (see e.g. 

B o r s u k  1969, p. 117). Then, the coefficient q2jh is proportionate to the 

sum of the squared area of the triangles spanned by the system of points 

{xyt, Xj2, XjJ eX . The parameter depends on volumes of the tetrahedrons 

spanned by the combinations consisting of four points and so on.

W i l k s  1932 introduced the generalized variance of multivariate variable 

as the determinant of its variance-covariance matrix. In our case the 

generalized variance shall be denoted by g(X) =  iV_AdetBBr . The generalized 

variance of any r components of an h dimensional variable is given by the 

equation:

g(X(r, N))  =  g(B(r, N)) = N~'detB(r,  N ) B T(r, N) (11)



Theorem 1. ( W y w i a ł  1989, 1992).

qrlh(X) =  N ' +i £  q(X(r, N)), (12)
X(r,N)eP(r,N:X)

Definition 2. Modified generalized variance qr/fc(X) of degree r of h dimen-

sional variable shows the equation:

Яг/л(Х) =  qrlh(B) =  N - ' ~  lqrlh(X) (13)

where 1 r <  h <  N  and qr//,(X) is given by Definition 1.

On the basis of (12) and (13) we infer that the coefficient qr/h is equal 

to the sum of generalized variances of all combinations consisting of 

r components chosen from h dimensional variable. In particular, qh/h = q(X) 

is the generalized variance in a simple sense of an h dimensional variable 

and q1/h is equal to the trace of a variance-covariance matrix.

A n d e r s o n  1958, p. 167 proved that g(X) is proportionate to the 

squared h dimentional volume of the parallelotop spanned by vectors with 

the same origin point oN and the end points b 1,..., b \  This property can 

be immediately generalized on the basis of the Definition 2 and expression

(6 ) in the following way.

Theorem 2.

4r/h(X) = N r~l Y j m2 (BT(r, N), Ojy),
X(r, N) G  P(r, W|B)

where: m(Br (r, N), oN) is the r dimensional volume of the parallelotop 

spanned by the vectors with the same origin at the point oN and the end 

points b‘\ ..., bir in the N  dimensional space.

Generalization of the second A n d e r s o n a ’s (1958, p. 170) theorem 

about the geometrical interpretation of the generalized variance is as follows:

Theorem 3. ( W y w i a ł  1989, 1992).

qrlh(X) = N ' - 1 £  m2 (X(/i„ r), x) (14)
X(A, r)eP(h, r|X)

qrlh(X)  =  N ' - 1 Y j m2(B(h, r), oh) (15)
B(A, r)eP(A, r|B)

From  the Theorem 3 we can infer that the modified generalized variance 

is proportionate to the sum of the squared volumes of the parallelotops 

spanned by the vectors x x j2,..., x x Jr , where \ j e X ( h ,  r)eP(h,  r|X).

Let { v e ^ C j, j  =  1 ,..., h — t ^ 0 }  be a system of equations. Then (see 

e.g. B o r s u k  1969, p. 87), solutions v of the system generate the t dimen-

sional hyperplane denoted by H t/* in the h dimensional space.



Theorem 4. ( W y w i a ł  1992). qr/h(X.) = 0 if and only if the points Xj

0  =  1 , N)  are included in a not more than (r — 1) dimensional hyperplane.

3. COEFFICIENTS OF IN TRA G R O U P SPREAD

Let us simplify the notation introduced in the first chapter. Up to the 

end o f the article we shall consider only submatrices consisting o f columns 

of the matrix X. So, the submatrix symbol X(h, к) is naturally reduced to 

the form: X(/c). An h x к matrix X(k)  consists of a & elements combination 

o f columns chosen from the observation matrix X. Similarly, the symbol 

P(h, k\X)  is reduced to P(k\X)  and it is the set consisting of all different 

matrixes of the type X(k)  which can be formed on the basis of the matrix 

X. Let P  =  P (X) be the set of all submatrices (not necessarily of the same
N

rank) made up of the columns of X. So, it is obvious that P(X) =  £  P(/c|X).

Let U =  {X(Nx) , X ( N a)} be the sequence of non-empty and disjoint sets 

consisting of columns chosen from X. The columns o f the submatrix X ( N a) 

represent elements o f a population, which forms the я-th group.

Definition 3. The in tranet discriminant of r degree of an h dimensional 

variable, we call the following parameter:

ö r/k(U )= i  q r , b ( W a)) (16)
fl = 1

where 1 <  r <  h. j

The coefficient Qrjh is proportionate to the following linear combination 

o f the generalized variances o f r degree in the groups belonging to U

G,/A(U) =  N - rQrlh(U) =  £  waqrlh(X(Na)) (17)
a= 1

where: we =  N raN ~ r.

Definition 4. The above-written coefficient Gr//l(U) will be called the 

weighted intra-group generalized variance of r degree of an A dimensional 
variable.

The param eter Gr/A(U) indicates the level of the intra-group spread.

The following property of Qr/h(U) and Gr/A(U) immediately results from 

Theorem 4 and Definition 3.

Theorem 5. If  U consists of non-empty and mutually disjoint groups, 

then 0,/„(U) =  Gr/A(U) =  0 if and only if Ха = е Я $  for all a =  1 , A, 
and t < r.



4. G EN ERA LIZING  W ARD’S CLUSTERING M ETHOD

We are going to describe an agglomeration method of clustering a fixed 

population into a set of disjoint groups. When the number o f the algorithm 

stage increases, the quantity of groups decrease. A t each stage of the 

algorithm groups are joined in such a way that the intra-group discriminant 

attains a minimun value. Before starting the clustering algorithm a population 

is treated as a collection o f one element groups. The number of elements 

making up a group shall be called the size of that group. From  Definitions

1 and 3 we infer that each created group has to consist of at least ( r +  1) 

population elements because, otherwise, each distriminant q(X(k)) = 0. In 

the first stage (r + 1 ) elements of a population are clustered in a group. 

Next, in the second stage of the algorithm there are two possibilities. 

A new group of size (r + 1 )  is formed or one element group is joined to 

a multi-element group formed in the previous stages. In the third stage 

there are three possible clustering options. The first two ones are the same 

as it was described in the second stage of the algorithm and the third is 

as follows: Two multi-element groups could be joined, if they were formed 

earlier. Generally, at the i-th stage one element groups are clustered into 

a group of size ( r +  1 ) or two groups are joined, where one of them is at 

least of size (r +  1 ).

Let us suppose that the following collection of groups results from the 
i-th stage o f the algorithm:

Vt = { В д ) ,  V <  í, X j  e X 0(M,)} (18)

where XV(N B) is an h x JVv matrix of data representing a group of size N v> r  

formed in the v-th stage. A number of such multi-element groups is denoted 

by A v A number o f one element groups remaining after i-th stage is 

denoted by M t. An h x  M t matrix X0 (M,) represents those one element groups.

Let X ( N t+1 ) be a matrix representing a new group which will be formed 

in the ( r + 1 )  stage, where N t+1>r.  Then the admissible set o f groups in 

the (t +  1 ) stage is:

U,+ i =  { Х д а ,  v < t ,  X ( N t+i), X0 (M t+1)} (19)

The increase of the criterion function, given by (16), is as follows

d„h(X(Nt+l)) = dr/i,( Ut+i) =  Q„*(UI+1) — Qr/*(U t) (20)

As it was mentioned there are three ways of clustering:

1. If M t >r,  then an admissible group of size (r +  1) is formed on the 

basis of the set X 0 (M t), so X(r +  l ) e P ( r  +  l |X0 (M t)). Hence, by Definition 1 

and expressions (4), (8 ), (10), (16) we look for such a cluster X(1)( [ /f+1) that



drlh(Xa \ N t+1)) = minimum {m2 (X(r +1))}  (21)
X(r +1) e J?(r - f1 |X0(M,))

2. If  M t > O, then each point x^eX 0 (M f) can be joined to an earlier 

formed group XV(NV), e U t, so X ( N t+l) = Xv(N w)uX j. Hence, the minimal 

increase of the criterion function is attained for such a set X m (Ut+l) if

dr,h(Xi2\ N t+О) =  minimum {qr/h(Xv(N v) u  x,) -  qr/h(Xv(N v))} (22)
v<t,x;eX0(Ai,)

3. If  set Ut has at least two multi-element groups XV(N V), X b(N b) e U t, 

then an admissible set is X(iV(+i) =  X X N v) u X b(Nb). So we have to choose 

the group X(3 )(iVf+1) which holds the expression:

drlh(Xw (N t+1)) = minjmum {qr,h(Xv(N v) \ j X b(Nb)) -  qr/h(Xv( N b)) -

-  qrlh(X XNv))} ” (23)

Finally, the optimal group is X t+i( N t+l) =  X lc\ N t+i), where

drlh(Xlc\ N t+1)) = minimum {dr/„(X(i)(iV,+x))} (24)
I -  1,2,3

If X,+x(iV,+i) =  X(1 )(JVt+1) then the new (r +  1) element group is created. 

When Xt+ 1 (N t+1) =  X(2 )(iV(+1), then the one element group is added to 

the appropriate multi-element one. Finally, if X t+l(N t+1) =  X(3 )(iVł+1), then 

two appropriate multi-element groups are joined. M oreover, if any group 

obtained at the earlier steps is a subset of the optimal one formed in te 

current stage, then it cannot be included in the set U t+1. Hence, if 

Xv(iVv)e U , and Xv(iVv) ^ X t+l(N t+l), then X v( N v<tUf+1).

I t is possible to prove almost immediately that if r — 1, then the 

expression (2 0 ) is reduced to the form:

dllh(X(N t+1 ) =  N bN X N b +  N v) -  l (xb -  x v)T(x„ -  xv),

where xv, xft are the mean vectors of variables in the groups XV(N V), 

X b( N b) eU „  respectively. Hence, di/*(X(N,+ 1)) becames the well-known 

clustering criterion proposed by W a r d  (1963). Therefore the W ard’s rule 

o f choice of optimal stage can be extended here. The set Uc obtained in 

the e-th stage will be optimal if it fulfils the expression:

dr/h( Ue+i) =  m axim um K/^U,)} (25)
t -  1,2,...

The set LJe is chosen if the increase of the criterion function is maximal 

at the next stage. Hence, the set Ut we choose as optimal because the 

increase of the intra-set scatter idicated by the difference dr/h(\Jt+1 ) =  

=  9 r/A(yt) - g r/A(Ur+1) has the largest level.



Let us consider the following example of clustering population represented

t
2  4  3 7 8 9 51 

8 8 9 2  3 4  1 ' k a s is

introduced algorithm we have: U* = {x .̂.., x7}, Q2/2U1 = 0l

U 2 =  {[x4x 5x 6], x j .x j .x j .x ,} ,  йг/гШ г) =  0. d2l2(\]2) = 0;
2 8 1 
4 8 1 
3 9 1

=  4,y 3 =  {[xjxzxa], [х4,х 5,х б],х7}, СЬ/гШз) =  ro2([xix2x3]) =  det2

^ 2 /гШз) =  4;

У 4=  { [ Х Л Х з ] ,  [X 4 ,X 5,X 6 ,X 7] } ,  02/2 (У4) =  '^ ( [ X l X z X a ] )  +  9 ( [ x 1x 2x 3 x 4] )  

=  /n2([x1x2x 3]) +  m2([x4x 5x6]) -f m2([x4x 5x7]) +  mz([x4x 6x7]) +

+  w2([x5x6x7]) =  12, 4/г(У4) =  6;

У 5 =  X, 02/2(У 5) =  Í2/2(X) =  9519, dz,2 Ш 5) =  9507.

Then, the set U4 of two groups is optimal because the increase d2/2(U s) 

has the largest level.

5. CONDITIONAL M ETHOD OF WARD

Our main problem is how to divide the observation o f time series into 
disjoint and coherent groups where they have a linear trend. The modified 
m ethod o f W ard divides the time series into such groups but under 
additional condition. Let A =  [fly] be the neighbour matrix. If elements 
number i and j  are (are not) neighbours, then ay =  l (ay =  0). The two 
elements of population, represented by x; and Xj, can be a cluster if and 
only if fly =  1. Similarly, two groups X, and X„ can be joined into one 
cluster if and only if there exists at least one pair (x„ Xj) such that x,eX „ 
and ay =  1. For example, the neighbour matrix for the time series of five 
elements is as follows:

A =

' 1 1 0  0  0  

1 1 1 0  0  

0  1 1 1 0  

0  0  1 1 1  

Lo о  0 1 1

The introduced assumption leads to conditional clustering m ethod of 
W ard considered in W y w i a ł  1994.



6. EXAMPLE OF TIM E SERIES DECOM POSITION

Let us consider the time series of electricity production in Poland from 

1970 to 1991. The data are as follows (year, production in mid kWh): 

(1970,65), (1971,70), (1972,77), (1973,84), (1974,92), (1975,97), (1976,104), 

(1977,109), (1978,116), (1979,117), (1980,122), (1981,115), (1982,118), 

(1983,126), (1984,135), (1985,138), (1986,140), (1987,146), (1988,144), 

(1989,145), (1990,136), (1991,135).

Our purpose is decomposition of that time series into subintervals 

where the observations of electricity production are highly linear dependent. 

Using the conditional method of Ward we have the following decompositions 

o f the time series2, through minimization of the intra-set discriminant

Ql/2'-

a) into four intervals: from 1970-1977 and 1978-1980 and 1981-1988 

and 1989-1991, d2/2 =  22900,

b) into three intervals: from 1970-1980 and 1981-1988 and 1989-1991, 

d2/2 =  51060,

c) into two intervals: from 1979-1980 and 1981-1991, d2/2 =  605315.

year

Fig. 1. The observed and the predicted production of electricity in Poland

2 It is realized by computer program written in PASCAL.



year

Fig. 2. The observed and the predicted production on the basis of two trends

Figure 1 represents the observations of the electricity production and 

the linear trend estimated on the basis of all observations. Figure 2 shows 

how the observations of the electricity production are approximated by 

two trends. The first (second) one was estimated on the basis of observations 

from the interval 1970-1980 (1981-1988). Those intervals were obtained 

through conditional minimization of Q2 / 2  as it was explained above at 

the point b). It is obvious that the two trends (Fig. 2) are fitted better 

to the observations then one trend (Fig. 1). The analysis o f the time 

series can be continued in the distinguished intervals. Especially, the 

significance of changing the trend parameters can be tested.

The minimization of the intra-set discriminant Q 1 / 2  (the order method 

of W ard) leads to the following system of clusters:

e) into four intervals: from 1970-1973 and 1974-1977 and 1978-1982 

and 1983-1991, d2,2 =  2405,

f) into three intervals: from 1970-1973 and 1974-1982 and 1983-1991, 

d2f2 =  / 280,

g) into two intervals: from 1979-1982 and 1983-1991, d2/2 =  53708.

The obtained intervals consist of observations which are not such linear

dependent as it was in the cases a), b), c).

The unconditional method of W ard (minimizing the intra-set coefficient 

Q2/2) leads to the following system of clusters.

h) into four clusters: {1970, 1971, 1984}, {1973, 1981, 1982, 1990}, 

{1972, 1974-1980}, {1983, 1985-1988, 1990, 1991}, d2/z = 76456,



i) into three clusters: {1970, 1971, 1973, 1981, 1982, 1984, 1989}, {1972, 

1974-1980}, {1983, 1985-1988, 1990, 1991}, dm  =  189459,

j) into two clusters: {1970-1982, 1984, 1989}, {1983, 1985-1988, 1990, 

1991}, d  = 2689736.

Then, unconditional method of W ard gave incoherent groups.
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Janusz Wywiał

D EKOM POZYCJA SZEREGÓW  CZASOWYCH OPARTA 
NA ZM ODYFIKOW ANEJ M ETODZIE WARDA

W dłuższym czasie trend w szeregu czasowym może zmienić swój kierunek. Dlatego też 
proponowany jest podział obserwacji w szeregu czasowym na rozłączne i spójne podzbiory, 
w których trend ma postać liniową.

W pracy rozważana jest modyfikacja uogólnionej wariancji oraz przeprowadzono badanie 
jej geometrycznych własności. Otrzymane wyniki są wykorzystane do zaproponowania uogólnienia 
znanych metod W arda w tym sensie, że osłabiają założenia, przy których metody te się stosuje.


