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ON THE CLASSIFICATION OF OBSERVATIONS
IN THE SWITCHING REGRESSION

Abstract. The paper discusses the method of determining the sample division
indicator for the switching regression model in case of two states generating values of
the explained variable, which ensures the least risk of making a mistake, understood
as the expected value of relevant loss function. This paper is an attempt to take
advantage of the discrimination analysis elements in the switching regression analysis.
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1. INTRODUCTION

The switching regression is a method of describing the dependence of
a certain variable on two or more sets of variables, when the probability
of determining the value of a variable explained by a defined group of
explanatory variables is either known or unknown. The analyzed relations
are presented by means of specific statistical models called the switching
regression models.

The parameters of these models can be estimated by different methods.
The maximum likelihood method is applied for this purpose most frequently.
It gives consistent, asymptotically most efficient and asymptotically normal
estimators of the switching regression models’ parameters (see Kiefer
1978). An important fact here is having information through which the
state of setting the value of the explained variable is generated, i.e. which
set of the explantory variables determines this value. Very often such data
are not available and decision is taken under uncertainty, on the basis of
the value of some random variable, which is subjectively chosen as being
adequate for performing such a role. This variable can be called on
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indicator of sample division. The way of classifying observations in the
switching regression models affects the shape of the likelihood function
being the basis for determining estimators of the model’s parameters.

The present paper suggests the method of determining the sample
division indicator for the switching regression model in case of two states
generating values of the explained variable, which ensures the least risk of
making a mistake, understood as the expectation of relevant loss function.
This paper is an attempt to take advantage of the discriminant analysis
clements in the switching regression analysis.

2. THE BASIC PROBLEM OF DISCRIMINATION

One of the problems the discriminant analysis is concerned with, is
decision, basing on a random sample, on which of the two possible classes
of the probability distribution the distribution of the investigated variable
can be included into (see Zubrzycki 1970, p. 294-299), when the
probability of which population a given sample element comes from can
be either known or unknown. In this paper we shall deal with the case
when this probability is known.

Let us assume that we have a random sample X, ..., X,, selected from
a population being a combination (set sum) of two populations. Let f,(.)
and f,(.) denote known densities of these populations, i.e. distributions of
the examined feature of given population. Let p, be probability that a given
sample element comes from the first population, and p, = 1 —p, — proba-
bility that it comes from the second population. Let L, denote a loss
resulting from classifying the element of random sample X, ..., X, into the
second population, when in fact it comes from the first population, and
L, — loss due to classifying a sample element into the first population, when
in fact it comes from the second population (L, and L, are known values).
Further let 4, and A, be such sets of real numbers which are disconnected;
in total they give a set of all real numbers and A4, is the set of these
values for which we conclude that a given sample element comes from the
first population, and A, is the set of these values, for which we decide
that a given sample element comes from the second population. Sets A,
and A, can be defined in different ways, depending on the criterion
determining the principles of decision making of classifying an observation
into a specific observation. In the classical discrimination analysis sets A,
and A, are determined in such a way so as to minimize the risk, i.e. the
loss expected value (loss function) resulting from the way of making
decision of observation classifying would be minimum.
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To facilitate further considerations, let us introduce the following symbols:

r — risk function determined from pairs of sets (4,, 4,);

L - loss function, function determining the loss we inflict, when taking
the decision on classifying an observation from a sample;

C, - event consisting in that a given sample eclement comes from the
first population;

C, — event consisting in that a given sample element comes from the
second population;

D, — event consisting in taking the decision that a given sample element
comes from the first population;

D, — event consisting in taking the decision that a given sample element
comes from the second population;

Let us notice that for each element of the sample X, .., X, the loss
function L is described by the formula:

L, when C,nD,
0,

when (C, nD,)u(C,NnD,) &)

Therefore, we can determine the expectation of the loss function, that
is the risk function, in the following way:

r=E(L) = L,P(C; " D,) + L,P(C, " D,) =
= L,P(C,)P(D,/C, + L,P(C,)P(D,/C,), 2.2)

hence

r=pLy Jf 1(X)dx + p,L, [ f5(x)dx (23)
2 Ay

We consider risk as the function of the sets 4, and A,. Hence, we
search for such sets of A, and A4,, that the function r(A4,, 4,) reached the
least value. Let us notice

(4, A,) =p,L1Jf1(x)dx + P1L1£f1 (x)dx + ‘! [p2Lof 2(%) = pyLyf 1 (x)]dx =

=p L, + J [P2Lof 5(x) — pyLyf 1 (X)]dx (2.4)

and
r(Ay, A;)=p,L, ;!f 2(x)dx + p,L, Jf 2(X)dx + J [Py Lyf1(%) — poLof 2(X)]dx =

= poL, + J [pyLyf (x) = paLof 5 (x)]dx (2.5
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So we reach the following description of optimum A, sets A4,:
A, = {xeR: p,L,f,(x) < p;Lif(x)} (2.6)
A, = {xeR: pLf (x) < poL,f (x)} ; (2.7)

The sign of unstrict inequality occurs in formula (2.6), and strict
inequality in formula (2.7). Because of the continuity of the investigated
populations, distributions it is insignificant. There could occur a reverse
case, which would not lead to different results of our considerations, i.e.
to changes in the level of risk.

So we showed that in case when we know the probability p, that an
observation comes from the first population, we are able to set optimum
in terms of minimizing the risk function, sets 4, and A, allowing to take
decision of classifying a sample element to one of the possible populations.

3. THE SWITCHING REGRESSION MODEL

The switching regression model is a particular case of a statistical model
with random coefficients. In this model, the coefficients can take only finite
number of values. It means that the explained variable can have distribution
belonging to one of several possible classes of distributions, that is, values
of the variable can be determined (generated) by one of several possible
states of setting. Some switching regression models are applied in the
market disequilibrium analysis (see, e.g. Fair and Jaffee 1972, Fair
and Kelejian 1974, Hartley and Mallela 1977, Laffont and
Monfort 1979).

In this paper we shall deal with a particular case of the form of a swit-
ching regression model (see, e.g. Quandt 1972, Kiefer 1978, Charemza
1981, p. 94-87, Tomaszewicz 1985, p. 442-446, Pruska 1987):

Xy + 8y, for teT,;
Xo0y + &5, for teT,

W=

(3.1)

where t=1,.., Tand TJ,UT,={1, 2,..., T} and T, T, = &, when the
sets of indices T; and T, can be either known or unknown. Other symbols
are as follows:

y, — variable explained by the model;

X1, Xz — column vectors of the explanatory variables;

oy, ®; — column vectors of the model’s structural parameters;

€11, €3 — random components of the model; random variables with
normal distributions with null expected values and variances ¢} and o3,
respectivelly, such that
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COV(GH, 82:) =0, COV(En, 811) ko 09 COV(EZ,, 82:) = 0,
cov(ey, &3,) =0, for t#7 and ¢, 7€{l,.., T}.

The model’s parameters (3.1) can be estimated by different methods.
We may apply the Bayesian estimation (see e.g. Ferreira 1975, Swamy
and Mehta 1975) or non-Bayesian estimation (see e.g. Fair and Jaffee
1972, Fair and Kelejian 1974, Quandt and Ramsey 1978, Schmidt
1982). If we use the maximum likelihood method (ML-estimation) we do
it in two stages. The first stage consists of determining the likelihood
function for a given model. The second stage is setting the point in which
the function reaches its maximum. In this paper we shall only deal with
the form of the likelihood function depending on the information we have
on sets T, and T,.

If we know sets 7, and 7, then the likelihood function for the model
(3.1) is determined by the following formula (see, e.g. Goldfeld and
Quandt 1972, p. 258-262, Pruska 1987, p. 21):

—-— - -— 1 ’
L(oty, ay, 0%, 03) = 21) "0 M0} "CXP{— 252 Z (¥, — X1,2)% —
1 1 tETl
" 203 ZT (v — x505) 2} (3.2)
tel;

where 1, = cardT,, 1, = cardT,.

If we do not know sets T, and T,, then model (3.1) can be written
down in the form:

= {x'noh +&y,  with probability p, B3

R X0, + &  with probability p,=1-—p,
where 0 <p; <1 and p, can assume either known or unknown value.

The likelihood function for the model (3.3.) is described by the for-
mula (see, e.g Quandt 1972, Charemza 1981, p. 116, Pruska
1987, p. 24):

! 1
L(ap o7 0'%, 0'%, pl) e H{ Py 'exp[— EO'—§ (y, - x’l,al)z] ufs

=1 /270,

+ ﬁ;ra_zexp[ i?%(}%—xz:“z) ]} (34)
In the process of estimating the parameters of the switching regression
models, one can take advantage of additional information on the sample

division. If we have at our disposal observations of the variable d, for
t=1,..., T, the distribution of which is in the form:
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P(d,=1)=P(teT)) = p,
P(d,=0) =P(teT,) =p,

then the proper use of these data can result in increased efficiency of
estimators obtained by the likelihood method (see Kiefer 1978, 1979,
Lee and Porter 1984). Variable d, is sometimes called the sample
division indicator.

In the case when observations of variable d, are available, for the ML
estimation of the model’s parameters (3.3) we can use the joint density
function of variables (y,, d,), which is described by the formula:

fOp d) = df(yld, = NP, =1)+(1~- dtyz(ytldt = 0)P(d, = 0) (3.6)

where f, and f, are conditional density functions of variable y, when,
respectively, d, =1 or d, = 0 (for the model (3.3), these are densities of the
normal distributions, different in parameters). The likelihood function built
on the formula (3.6) assumes value:

(3.5)

T
L(al’ %, 0'%, 0'%, P1) = I:[lf(.Vrs dt) (3'7)

where p, is either known or unknown value. If we know p;, we need not
estimate the parameter and then the function (3.7) depends only on
%, 0, 07, 03. The model’s parameters estimators (3.3) obtained in the
process of maximizing the likelihood function (3.7) are more efficient than
the estimators obtained from the function (3.4) (see Kiefer 1979).

4. DISCRIMINATIVE CONSTRUCTION OF THE SAMPLE DIVISION INDICATOR

From the considerations presented in the works by Kiefer (1979) and
Lee and Porter (1984) it follows, that having extra information on the
observations classification, which is provided by the sample division indicator,
results in increasing the efficiency of the ML-estimators of the switching
regression models. There arises a question whether there is also a possibility
to construct the sample division indicator. So far the observable variables
(or their transformations) linked to the examined process described by
means of the switching regression model, have been assumed as indicators.
Constructing the sample division indicator is suggested in the same way as
there are created sets of values of an investigated feature in the discriminant
analysis, which quarantee minimum risk while taking decisions on including
the sample element to one of the two possible populations. Some similarities
between problems appearing in the switching regression analysis and the
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discriminant analysis have already been noticed in the work by Kiefer
(1980). It includes a suggestion of a new method of estimating the switching
regression model’s parameters, alternative to the maximum likelihood
method, but not to the construction of the sample division indicator. For,
the model (3.1), wherein sets T, and T, are not known, let us create
variable d, of the form:

s Pl @
where

Ti={0<t<T: yedy}, T,={0<t<T: yedy} “4.2)

Ay ={yeR: p,Lyf2(y) < pyLuf1:(y)} 4.3)

Az ={yeR: p,Lif1(y) < p,Lof 2(y)} (4.4)

py=P(teT)), p, = P(teT,) 4.5

and L, and L, are values of the loss which is inflicted, when undertaking
a wrong decision (i.e. assuming element y, determined by the first equation
as generated by the second equation, or vice versa); fy, and f,, are densities
of random variable y, when it is determined by the first and second
equation, respectively.

Variable d, described by the formula (4.1) can play the part of sample
division indicator for the model (3.3), when probability p, is known and
densities f;, and f,, are known, too. In case of the switching regression
models we usually lack such information. Theorefore, the ML-estimation
of these models, using the discriminative indicator of sample division can
be performed only after estimating the model’s parameters by the maximum
likelihood method without an indicator. Then, the parameters of distributions
determined by densities f,, and f,, and probabilities Py, P, Wwill also be
estimated. Second estimation of the model’s coefficients aims at increasing
efficiency of their estimators. One should also notice that determining sets
Ay, and Ay, allows to define for each teT,UT, a group of variables
(factors), through which value y, was generated.

5. FINAL REMARKS

In the paper there has been suggested a construction of the sample
distribution indicator for a model of switching regression, using some
elements of discrimination analysis. Due to this, the switching regression
models can be used not only for describing and forecasting phenomena
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generated by various groups of factors, but also for determining which group
of factors set a given value of the observed random variable. Furthermore,
after reestimating of the model’s parameters using the indicator of sample
distribution, one can expect larger efficiency of estimators. To investigate the
properties of these estimators we need relevant simulation experiments.
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Krystyna Pruska
O KLASYFIKACJI OBSERWACJI W REGRESJI PRZELACZNIKOWEJ

W pracy zaproponowana jest metoda wyznaczania indykatora podzialu préby dla pewnego
modelu regresji przetacznikowej z dwoma stanami generujacymi wartosci zmiennej objasnianej.
Indykator ten zapewnia najmniejsze ryzyko popelnienia pomylki przy klasyfikacji obserwacji
rozumiane jako warto§é oczekiwana odpowiedniej funkcji straty. Przy konstrukcji tego
indykatora wykorzystuje si¢ elementy analizy dyskryminacji.



