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Abstract

Hilbert algebra with a Hilbert-Galois connection, or HilGC-algebra, is a triple
(A, f,g) where A is a Hilbert algebra, and f and g are unary maps on A such that
fla) <biff a < g(b), and g(a — b) < g(a) — g(b) for all a,b € A. In this paper,
we are going to prove that some varieties of HilGC-algebras are characterized
by first-order conditions defined in the dual space and that these varieties are
canonical. Additionally, we will also study and characterize the congruences
of an HilGC-algebra through specific closed subsets of the dual space. This
characterization will be applied to determine the simple algebras and subdirectly
irreducible HilGC-algebras.
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1. Introduction

This paper can be read as a continuation of [6] where we defined the notion
of Hilbert-Galois algebra. Recall that an order-preserving connection in a
Hilbert algebra A is a pair (f,g), where f,g: A — A are order-preserving
maps such that a < (go f) (a) and (f o g) (a) < a, for a € A (see Definition
2.6). A Hilbert-Galois connection on A is an order-preserving connection
(f, g) such that g is a Hilbert semi-homomorphism, i.e., g(a — b) < g(a) —
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g(b), for all a,b € A. A Hilbert algebra with a Hilbert-Galois connection,
or HilGC-algebra, is a triple (4, f,g) where A is a Hilbert algebra and the
pair (f,g) is a Hilbert-Galois connection. As shown in [6], the class of
HilGC-algebras is a variety. Moreover, it was proved that there exists a
topological duality between the category of HilGC-algebras and the class
of Hilbert-Galois spaces. A Hilbert-Galois space is a structure (X, 7k, R)
where (X, T ) is a Hilbert space (the dual space of a Hilbert algebra), and R
is a binary relation on X satisfying certain conditions (see Definition 2.12).

In this paper we applied the representation developed in [6] to char-
acterize some subvarieties of HilGC-algebras in terms of first-order condi-
tions defined in the dual space. As consequence of this characterization, we
show that these varieties are canonical. The duality given in [6] is applied
to study the congruences of HilGC-algebras. We prove that the lattice
of congruences of a HilGC-algebra (A4, f,g) is isomorphic to the lattice of
Galois implicative filters (Definition 4.1), and dually isomorphic to the lat-
tice of certain closed subsets of the dual space of (A4, f, g) called G-closed
(Definition 4.3). The characterization is applied to study the simple and
subdirectly irreducible HilGC-algebras.

2. Preliminaries

We assume that the reader is familiar with basic concepts with Hilbert
algebras and with the duality between the category of Hilbert algebras and
Hilbert homomorphisms, and the category of Hilbert spaces and H-func-
tional relations [2, 3, 4, 5, 8]. Nevertheless, in this section we will recall
the definitions, results and notations that will be needed in the rest of this
paper.

Let (X, <) be a poset and consider the powerset P(X). Let Y C X. We
say that Y is an upset (resp. downset) if Y ={z € X: Iy eY (y<ax)} =
[Y) (resp. ¥V ={zeX:FyeY (z<y)} = (Y]) . The set of all upset
subsets of X is denoted by Up (X). The set complement of a subset Y C X
is denoted by Y.

The purely implicational subreducts of Heyting algebras are known in
the literature as Hilbert algebras, or (positive) implication algebras [7, 8, 9].
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DEFINITION 2.1. A Hilbert algebra is an algebra A = (A,—,1) of type
(2,0) such that the following axioms hold in A:

l.a—a=1,

2. 1—>a=a,

3.a—=(b—=c)=(a—b) — (a—c),

4. (a—=b) = (b—a)—=a)=(b—a)—= ((a—=0b) —=Dd).

Hilbert algebras form a variety denoted by Hil. Every Hilbert algebra
A has a natural order < defined by a < b iff a — b = 1. Given a Hilbert

algebra A and a sequence a,aq,...,a, € A, we define:
(a i a) = ar —a if n=1,
Lo B %= a4y = (agy ..oy ap;a)  if no> 1

A nonempty subset F' C A is an implicative filter of Aif 1 € F, and if
a,a — b€ Fthenb € F. The set of all implicative filters of A is denoted by
Fi(A). Note that every implicative filter of A is an upset of A. Let S C A.
The implicative filter generated by S is (S) = ({F € Fi(4) : S C F'}. The
deductive system generated by a subset S C A can be characterized as
the set

(S)y={acA:3{a1,...,an} TS :(a1,...,an;a) =1}.

The following result is proved in [2] and [9] and we will be useful in this
paper:

LEMMA 2.2. Let A € Hil. Let F € Fi(A) and a € A. Then,
Fvia)=(Fu{a))={bcA:a—beF}.

Let F € Fi(A) — {A}. We will say that F is irreducible if for any
Fy, Fy € Fi(A) such that F' = Fy; N Fy, it follows that F' = Fy or F = Fj.
The set of all irreducible implicative filters of a Hilbert algebra A is denoted
by X(A). A downset I of A is called an order-ideal of A if for all a,b € I
there exists ¢ € I such that a < ¢ and b < ¢. The set of all order-ideals of
A is denoted by Ido(A).

The following is a Hilbert algebra analogue of Birkhoft’s Prime Filter
Theorem and it is proved in [3].
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THEOREM 2.3. Let A € Hil. Let F' € Fi(A) and let I € Ido(A) such that
FNI=0. Then, there exists x € X(A) such that F C z and x N1 = 0.

COROLLARY 2.4. Let A € Hil. Then,

1. for all a,b € A, if a £ b, then there exists # € X (A) such that a € =
and b ¢ x.

2. If z € X(A) and a,b ¢ z, there exists ¢ ¢ x such that a,b < c.

3. If x € X(A), then a — b ¢ z iff there exists y € X(A) such that
xCy,ac€yanddéy.

Let (X, T) be a topological space. We recall that the specialization dual
order of (X,T) is the binary relation <C X x X defined by:

z<yif YW e T(x ¢ W theny ¢ W). (2.1)

If (X,T) is Tp, then (X, <) is a poset. Now we define the Hilbert spaces
as special T topological spaces (X, Tic) having a base of compact sets K.
Recall also that a subset Y C X is said to be irreducible when, for all closed
sets Y1,Ys C X, we have that Y = YiUYs entails Y = Y7 or Y = Y5. A space
is sober when, for every irreducible closed set Y C X there exists a unique
x € X such that Y = cl(z). Let D(X) :={U :U°® € K}.

DEFINITION 2.5. [4] An H-space is a topological space (X, Tx) such that:
(H1) K is a base of open and compact subsets for the topology T,

(H2) U=V =(UnV e D(X), for all U,V € D(X),

(H3) (X, 7x) is sober.

If (X, Tx) is an H-space, then it is easy to see that D(X)=(D(X),=, X)
is a Hilbert algebra.

Let A € Hil. Then A is isomorphic to the subalgebra D(X(A)) =
{¢(a) : a € A} of the Hilbert algebra (Up (X(A4)),=, X (A)) via the map
¢: A— Up(X(A)) defined by p(a) = {z € X (A): a € z}. From the re-
sults on representation for Hilbert algebras in [4] we have that (X (A4), Tx )
is an H-space where the family K4 = {¢(a)° : a € A} is a base of compact
subsets.

Next we will review definitions and properties of Hilbert algebras with
Hilbert-Galois connections introduced in [6].
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DEFINITION 2.6. [6] Let A € Hil. A pair (f,g), where f : A — A and
g: A — A are maps, is called Hilbert-Galois connection between in A if

1. f(a) <biff a < g(b), for all a,b € A.

2. g(b— ¢) < g(b) = g(e), for all b,c € A, i.e., g is a semi-homomor-
phism on A.

A triple (A4, f,g) is a Hilbert algebra with a Hilbert-Galois connection, or

a HilGC-algebra for short, if (f,g) is a Hilbert-Galois connection defined
in A.

In [6] we give the following equational characterization of HilGC-alge-
bras.

THEOREM 2.7. [6] Let A € Hil and let f : A — A and g : A — A two
maps. Then (A, f,g) is a HilGC-algebra if and only if the maps f and g
satisfy the following conditions for all a,b € A:

(HIlGC1) g(1) = 1.

(HilGC2) f(a) < f((a = b) —b).
(HilGC3) g(a — b) — (g(a) — g(b)) = 1.
(HiIGC4) a = g (f(a)) =1.

(HiIGCS5) f(g9(a)) > a=1.

In [6] we prove that f, g are monotonic maps. We denote by HilGC the
variety of HilGC-algebras.

PROPOSITION 2.8. Let (A, f, g) be a HilGC-algebra. Then:
(1) If F € Fi(A) then g~(F) € Fi(A),
(2) If z € X(A) then f~1(z¢), (9(z°)] € Ido(A).

PROOF: Item (1) and the affirmation f~!(z¢) € Ido(A), for each z €
X (A), are proved in Proposition 14 of [6]. We prove that (g(z°)] € Ido(A).
Assume that z € X(A) and let a,b € (g(z°)]. Then there exist ¢,d ¢ =
such that a < g(c) and b < g(d), or equivalently, f(a) < ¢ and f(b) < d.
Since ¢,d ¢ z, by Corollary 2.4, there exists e ¢ x such that ¢,d < e. Thus,
f (a) < eand f(b) < e and consequently, a < g(e) and b < g(e). Since
e € z° results, g(e) € (g(z°)], and thus (g(z°)] € Ido(A). O
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LEMMA 2.9. [6, Lemma 21] Let (A, f,g) € HIIGC. Then
1. Let x € X(A). For alla € A, g(a) ¢ x iff there exists y € X(A) such
that g~ (x) Cy and a ¢ v,

2. Letx € X(A). Foralla € A, f(a) € x iff there exists y € X(A) such
that y C f~!(x) and a € y.

We recall that a IntGC-frame is a relational structure (X, <, R) where
(X, <) is a poset and R C X x X is a relation satisfying the condition

< 1oRo<"'CR. (2.2)

We note that by the condition (2.2) and the reflexivility of <~!, we
have that <=1 oR = R and Ro <~'= R.

LEMMA 2.10. Let F = (X, <, R) be an IntGC-frame. Then,
R™(x), R(x)¢ € Up(X), for each x € X.

PRrROOF: Let © € X. We prove that R(z)° € Up(X). Let y < z and
y € R(x)°. Suppose that z € R(z). As (z,y) € <7! results (z,y) € R and
s0, y € R(z), which is an absurd. Thus, z € R(z)°. Similarly, we can prove
that R~*(z) € Up(X). O

It is know that if (X, <) is a poset, then (Up(X), U N,=,0,X) is a
Heyting algebra. Moreover, we define the operators fr : Up(X) — Up(X),
and gr : Up(X) — Up(X) as

frRO)={r € X : R(x)NU # 0} = R~ (U), (2.3)

and
gr(U)={z e X :R ' (z) CU}, (2.4)

for each U € Up(X), respectively. The condition (2.2) ensures that A(F) =
(Up(X),U,N,=, fr,gr, 0, X) is a Heyting-Galois algebra, and in particular
is a Hilbert-Galois algebra (see [6] Example 19).

If (A, f,g) € HIIGC, then F(A) = (X(A),C, Ra) is an IntGC-frame,
where the relation R4 C X(A) x X (A) is defined by

(z,y) € Raiff y C f~' ().
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By [6, Lemma 24], the relation R4 can be also defined as
(z,y) € Ra iff g~' (y) C =

The following representation theorem for HilGC-algebras follows from the
results given in [6].

THEOREM 2.11 (of Representation). Let A = (A, f,g) € HIIGC. Then the
map ¢ : A — A(F(A)) is an embedding. Thus, A is isomorphic to some
subalgebra of A(F(A)).

Now we recall the dual topological spaces of HilGC-algebras.

DEFINITION 2.12. [6, Def. 22] (X, T, R) is a Hilbert-Galois space, or HG-
space, if (X, Tic) is an H-space and

1. R-(U) € D(X), for all U € D(X),
2. R(U°)¢ € D(X), for all U € D(X),
3. R~!(x) is a closed subset of (X, T), for all z € X.

In [6] was proved that if (X,7x,R) is an HG-space, then
(D (X),=, fr,gr, X) is a HilGC-algebra where the operators fr : D(X) —
D(X) and ggr : D(X) — D(X) are defined by (2.3) and (2.4), respectively.
Moreover, the map ex : X — X (D(X)) given by e(z)={UeD(X):z€U}
is a homeomorphism such that (z,y) € R iff (¢(x),e(y)) € Rpx), for all
x,y € X. If (A, f,g) € HIIGC, then (X(A), Tk, Ra) is an HG-space such
that the map ¢ : A — D(X(A)) given by ¢(a) = {z € X(A):a € z} is an
isomorphism of HilGC-algebras. For more details on the duality between
HG-spaces and HilGC-algebras see [6].

3. Some canonical subvarieties of HGC-algebras

By Theorem 2.11, any HilGC-algebra A is a subalgebra of the HilGC-
algebra A(F(A)). The algebra A(F(A)) is known as the canonical exten-
sion or canonical embedding algebra of A. We shall say that a variety V
of HilGC-algebras is canonical it it is closed under canonical extensions,
ie., if A €V then A(F(A)) € V. The notion of canonical varieties is an
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algebraic formulation of the notion of canonical logics ([1]). In this section
we prove that certain varieties of HilGC-algebras are canonical.

Remark 3.1. Let V be a variety of HilGC-algebras. Let
Fr(V)={F(A): AeV}

be the class of IntGC-frames associated to V. Let F be a class of IntGC-
frames. Let Alg(F) = {A(F) : F € F} be class of HilGC-algebras asso-
ciated to F. We note that if F is a class of IntGC-frames such that
Alg(F) € V and Fr(V) C F, then V is canonical. Indeed. If A € V,
then F(A) € Fr(V) CF. So, A(F(A)) € Alg(F) CV, i.e. V is canonical.

Let A be a HilGC-algebra . We will write A = o < § when the equation
aAf ~ «aisvalid in A. In the following Theorem 3.2, we characterize some
classes of IntGC-frames. In the Theorem 3.3 we prove that some varieties
of HilGC-algebras are canonical.

THEOREM 3.2. Let F = (X, <, R) be an IntGC-frame. Then

L AGF) F a < g(a) iff ACF) = (@) Sa if RC<.

2. A(F) Egla) <aiff A(F) =a< f(a) iff R is reflexive.

3. A(F) E gla) < g*(a) iff A(F) & f2(a) < f(a) iff R is transitive.

4. ( ) Eg (a) g(a) iff A(F) E f(a) < fz(a) iff R is weakly dense,
, RC R%

5. A(F) E fla) < gla) iff A(F) Fa<g®(a)iff A f*(a) < aiff

VaVyVz((z,y) € RA (y,2) € R= z < z).

A(F) E gla) < f(a) iff R(x) N R™Y(z) # 0 for all z € X.

PROOF: We prove (1), (4), and (6). The others items are left to the reader.

(1) =) Let (z,y) € R. Let U = [y) € Up(X). Asy € U C gr(U), we
get R7Y(y) CU. So, z € [y) e,y <.

<) Assume that R C<71. Let z € U and let y € R™(x). So, x <y
and as U € Up(X), y € U. Thus, U C gr(U).

(4) =) Let (z,y) € R. Suppose that z ¢ R(z) for all z € R~ Y(y).
Let U = (z]° € Up(X). We prove that y € gr(g R( ), ie., R71(y) C
gr(U). Let w € R7*(y). We need to prove that R~*(w) C U (2], ie.,
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R~ Y(w)N(z] = 0. On the contrary, we suppose that there exists u € R~ (w)
such that v < x. Thus, (z,w) € R, which contradicts our assumption
because w € R™(y). So, y € gr(gr(U)) C gr(U) and consequently,
R71(y) CU = (]°. Contradiction, because # € R™!(y). The direction <)
is easy and left to the reader.

(6) =) Let x € X and consider U = R(x)°. Suppose that R(z) N
R~ Y(z) = 0, then R7(z) C R(z)¢. So, x € gr(U) C fr(U), i.e., R(z) N
R~Y(z) # 0, which is a contradiction. Thus, R(x) N R~1(z) # 0.

<) Let U € Up(X) and let z € gr(U), i.e., R~!(z) C U. By assump-
tion, R(x) N R™(x) # 0. So, there exists y € X such that y € R(x) and
y € R7!(z). Thus, y € R(z) and y € U, and consequently, x € fr(U). O

THEOREM 3.3. Let A € HilGC. Let (X, <,R) be the IntGC-frame of A.
Then,

L Aka<g(a)iff Al f(a) <aiff RCCT
2. AEg(a)<a iff A= a < f(a) iff R is reflexive.
3. AEg(a) < g%(a) iff A= f2(a) < f(a) iff R is transitive.

4. A= g%(a) < gla) iff A= f(a) < f2(a) iff R is weakly dense, i.e.,
R C R2.

5. A= fla) < gla) ff A a<g*(a) iff A= f2(a) < aiff
VaVyVz ((z,y) € RA(y,z) € R= 2z Cx).

6. A g(a) < f(a) iff R(x) N R~ (x) # 0 for allx € X.

ProOOF: We will prove only the assertions (2), (4) and (6). The other
proofs are analogous.

(2) Assume that g(a) < a, for all a € A. In particular, for f(a) € A :
9(f(a)) < f(a) and by (HilGC4),

a<g(f(a)) < f(a).

Similarly, we prove that A = a < f(a) implies A E g(a) < a

To prove that R is reflexive showing that ¢g=!(z) C x, for every x € X.
Let a € g~ (x), then g (a) € x. By assumption a € x. Conversely, suppose
that there exists a € A such that g(a) £ a. So, there exists © € X such
that g(a) € z and a ¢ x. That is, g~ '(z) € z or equivalently, (z,z) ¢ R.
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(4) Assume that g2 (a) < g(a) for all a € A. Let x,y € X such that
(r,y) € R, ie., g1 (y) € x. By Proposition 2.8, g~ 1(y) € Fi(4) and
(g(z¢)] € Ido(A). Suppose that there exists a € g~ 1(y) N (g(x°)]. So,
g (a) € y and there exists b ¢ x such that a < g (b). Thus, g (a) < g2 (b) <
g (b) and consequently, g (b) € vy, i.e., b € g~ !(y). By assumption, b € =,
which is impossible. So, g71(y) N (g(x¢)] = @ and by Theorem 2.3, there
exists 2 € X such that g7*(y) C z and 2 N (g(2¢)] = 0. Consequently,
971 (2) Ng ! (g9(z%)) = 0 and as 2 C g~ * (g(x)), we get g~'(z) N2® =0,
i.e., g71(2) C x. Thus, we have that there exists z € X such that (z,z) € R
and (z,y) € R, this is, (z,y) € R%

Conversely, suppose that there exists a € A such that g2 (a) £ g(a).
So, there exists y € X (A) such that g2 (a) € y and g (a) ¢ y. By Lemma
2.9, there exists © € X such that (z,y) € R and a ¢ x. By assumption,
(z,y) € R?, this is, there exists z € A such that (z,2) € R and (2,y) € R.
So, g7H2) Cz and g7 (y) C 2. As a ¢ x, we get that g% (a) ¢ vy, which is
a contradiction.

Now, assume that f(a) < f?(a) for all a € A. Let z,y € X such
that (z,y) € R. We will prove that the implicative filter g~! () and the
order-ideal f~1 (z¢) of A are disjoints. On the contrary, suppose that there
exists a € A such that a € ¢g7! (y) and a € f~1(z¢), that is, g(a) € y
and f(a) ¢ x. Asy C f~1(z), we have f(g(a)) € x. By assumption,
f?(g(a)) € z. On the other hand, by (HilGC5), f(g(a)) < a and by
monotony of f, f?(g(a)) < f(a). Since z is an upset of A, f(a) € =,
which is a contradiction. Thus, g~ (y) N f~! (2¢) = 0 and so, there exists
z € X such that g7! (y) C zand f~ 1 (2¢)Nz =10, ie., 2 C f~!(x), that is,
(z,9) € R and (z,2) € R. Conversely, suppose that there exists a € A such
that f (a) £ f? (a). There exists x € X such that f (a) € z and f? (a) ¢ z.
By Lemma 2.9, there exists y € X such that (z,y) € R and a € y. By
assumption, there exists z € X such that (z,z) € R and (z,y) € R, i.e.,
zC f~Y(x)and y C f1(2). Asa €y, results f (a) € z and consequently,
f? (a) € z, a contradiction.

(6) Let g(a) < f(a) for all a € A. Let x € X. We will prove that
g Hx) N f~Y(z°) = 0. Suppose the contrary. Let a € A such that a €
g Y(z) and a € f~1(z°). As g(a) € z, by assumption we obtain f(a) € =,
which is impossible. Thus, there exists y € X such that ¢~!(z) C y and
y C f~Y(x). Consequently, y € R~ (z) N R (x).

Now, assume that R~! (z) N R (x) # () for all x € X and suppose that
there exists a € A such that g(a) £ f(a). So, there exists z € X such
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that g(a) € x and f(a) ¢ . By assumption, there exists y € X such that
g Hz) Cyand y C f~1(z). As a € g~1(z), we obtain f(a) € x, which is
contradiction. O

We denote by Vr be the variety of HilGC-algebras generated by the set
of equations I'. Let us consider the set of equations . By Theorem 3.2 and
Theorem 3.3 we have the following result.

THEOREM 3.4. Any variety of HilGC-algebras Vr, generated by a finite
subset Ty of the set of equations T = {pAg(P) = ¢, dAg(d) = g(d), g(d) A
9%(0) = 9(9), *(9)Ag(d) = g°(9), [(9)Ag(d) = [(8), F($)Ag(d) = g(9)}

is canonical.

4. Congruences of HilGC-algebras

Let A be a Hilbert algebra. Let Con(A) be the lattice of congruences of A.
It is known that the equivalence class

[lg={acA:(1,a) €0},

is an implicative filter. Moreover, if F € Fi(A), then the binary relation
O defined by
(a,b) € 0p iff a > b,b—sacF

is a congruence of A. A well-known result given by A. Diego [8] (see also [7]
or [9]) ensures that Con(A) is isomorphic to the lattice of the implicative
filters of A under inverse mappings 6 — [1]y and F — Op.

There exists a bijective correspondence between implicative filters of a
Hilbert algebra and closed subsets of the dual space of A ([4]). Let A be
a Hilbert algebra and let (X, T) its dual H-space. We denote by C(X) the
lattice of closed subsets of (X, 7). If F' € Fi(A), then

I(F)={r e X:FCua}eCX).
If Y € C(X), then
7(Y)={ac A:Y Cp(a)} €Fi(A4).
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Moreover, if Y € C(X) and F' € Fi(A) then, §(n(Y)) =Y and 7 (6 (F)) =
F. Thus, there is a dual isomorphism between Fi(A) and C(X). Note that
if Y € C(X) then

oY)={(a,b) e A’:a—bb—acm(Y)}

is a congruence of A.

If L is a lattice, we denote by L% the lattice with the dual order. To
denote that two lattices Ly and Lo are isomorphic we will write L1 = Lo.
By the results given by A. Diego [8] (see also [9]) and the results given in
[4], we have the following lattice isomorphisms

Con(A) = Fi(A) = C(X)™

Let A € HiIGC. An Hilbert congruence 6 is called G-congruence if it is
compatible with f and g, i.e., if (a,b),(c,d) € 6, then (f (a), f (b)) € 6,
and (g (a),g (b)) € 8. We denote by Cong(A) the set of all G-congruences
of A.

Now, we will study the particular class of implicative filters in a HilGC-
algebra A that are in bijective correspondence with its G-congruences.

DEFINITION 4.1. Let (A, f,g) be a HilGC-algebra. Let F' € Fi(A). We
said that F'is a Galois implicative filter, or G-filter for short, if F' satisfies
the following proprieties:

(GF1) a € F implies g(a) € F, ie., F C g7 1(F),
(GF2) a — b € F implies f(a) = f(b) € F.

The set of all Galois implicative filters of a HilGC-algebra A ordered
by inclusion will be denoted by Fig(A). It is almost trivial to prove that

m {F; : F; € Fig(A)} € Fig(A). Consequently, for every S C A there exists
the least G -filter containing S. Thus, given S C A, the set

(S)e =({F € Fig(A): SC F}

is called the G-filter generated by S. Note that (#), = {1} is the trivial
G-filter. Moreover, since Fig(A) is closed under arbitrary intersections and
contains the whole A, it is a complete lattice with respect to set inclusion
whose meets coincide with set intersections and joins are G-filter generated
by set unions of given G-filters.
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PROPOSITION 4.2. Let A = (A, f,g) be a HilGC-algebra. Then,
Fig(A) = Cong(A).

PrROOF: We need to prove that [1]gp € Fig(A), for each § € Cong(A) and
that 0 is a G-congruence of A, for each F' € Fig(A). Let 8 € Cong(A).
So, [1]9 € Fi(A). We prove that [1]y satisfies the conditions of Definition
4.1. Let a,b € A.

(GF1) Let a € [l]g, ie., (1,a) € 0. As 6 € Cong(A), (9(1),9(a)) =
(1,9(a)) € 6. Thus, g(a) € [1]y.
(1,

(GF2) Let a — b € [1]g, i.e., (1,a — b) € 0. Thus,
(I —=b,(a—>b)—=b)=(b(a—0b)—b)ecb.
As 0 € Cong(A), (f(b), f((a—b) = b)) € 0 and so,
(Fa) = F (). f(a) = f ((a—b) = b)) € 6.
By (HilGC2), (f(a) = f(b),1) € 6, that is, f(a) = f (b) € [1]s.

Now, assume that F' € Fig(A). Then 0 is a Hilbert congruence. Let
(a,b) € O, that is, a — b,b — a € F. By (GF2), f(a) — f(b),f(b) —
f(a) € F and consequently, (f(a),f (b)) € 6. On the other hand,
by (GF1), g(a —b),g(b—a) € F. Since g is a semi-homomorphism,
gla—0b) < g(a) = ¢g(b) and as F is an upset of A, we get g(a) —

g (b) € F. Analogously, we have g (b) — g (a) € F and so, (g (a),g (b)) €
0. Thus, 0 is an G-congruence of A. O

4.1. G-closed

Now we are going to prove that the lattice of G-filters of a HilGC-algebra
(A, f, g) is dually isomorphic to the lattice of certain closed sets of the dual
space of (A, f, g).

Let X be a set and R a binary relation defined on X. Let Y be a subset
of X. Let R7Y(Y) = | J{R' () :y e Y}.

We recall that if (X, Tx) is an H-space, then every closed subset of X
is an upset of X, i.e., for Y € C(X) we have that © <y and 2 € Y implies
y € Y, where we recall that the order < is given by (2.1).



548 Sergio A. Celani, Daniela Montangie

DEFINITION 4.3. Let (X, T, R) be an HG-space and let Y € C(X). We
shall say that Y is a G-closed if Y satisfies the following conditions:

(G1) R-Y(Y)CY.
(G2) max (R(z)) CY, forallz €Y.

The family of all G-closed subsets of an HG-space (X, T, R) is denoted
by Cq(X). It is clear that X and ) are trivially G-closed subsets of an
HG-space (X, T, R) and it is easy to check from the above definition that
the Cq(X) is closed under arbitrary intersections and that the union of
any finite family of G-closed subsets is again an G-closed set. So, we can
conclude that the set of all G-closed subsets of (X, Tk, R) is a complete
sublattice of P(X) which shall be denoted also by Cq(X).

LEMMA 4.4. Let (A, f,g) be a HilGC-algebra and let (X, T, R) be its dual
HG-space. Then, for all x € X and a € A such that f(a) € x there exists
z € max (R(z)) such that a € z

PROOF: Let z € X and let a € A such that f(a) € . We consider the
following family of implicative filters of A:

F={D€eFi(A):DC f*(z)and a € D}.

We prove that F # 0. As f(a) € x, by Lemma 2.9 there exists y € X
such that y C f=1(z) and a € y. We see that every chain in F has an
upper bound in F. Let C' = {D;},.; be a chain of elements of 7. Consider
P=UA{D;:D;eC}. As D; C P for every i € I, P is an upper bound

=,
of C. We will prove that P € F. As D; € Fi(A) forall i € I, 1 € D;
for all i € I and so, 1 € P. Let b,b — ¢ € P. So, there are 7,j € I such
that b € D; and b — ¢ € D;. Without loss of generality, we may assume
that ¢ < j and so, that D; C D;. Thus, b,b — c € D; and as D; € Fi(4),
¢ € Dj;. Thus, c € P and consequently, P € Fi(A). On the other hand. As
for all i € I, we get D; C f~1(z) and a € D; , so we have

P:U{Di:DiGC}gffl(x) and a € P,
il
and so, P € F. Thus, every chain in F has an upper bound in F and by

Zorn’s Lemma, there is m € max (F) and so, m C f~!(x) and a € m. Now,
we shall prove that m € X. Let a,b € A such that a,b ¢ m. We consider the
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implicative filters F,, = (m U {a}) and F, = (m U {b}). As m is maximal
of F and m C F,, we get that F, ¢ f~'(z). Analogously, F, ¢ f~!(z).
So, there exist ¢,d € A such that ¢ € F,, d € Fy, and ¢,d ¢ f~!(x). By
Lemma 2.2, a — ¢,b —>d € m. As f(¢), f(d) ¢ z and = € X, by Corollary
2.4, there exists k ¢ = such that f (c) < k and f (d) < k, or equivalently,
c<g(k)andd < g(k). Thus,a - c<a— g(k)andb — d < b — g(k), and
consequently, a — g(k),b — g(k) € m. Now, we will prove that g(k) ¢ m.
On the contrary. Suppose that g(k) € m C f~!(z). So, f(g9(k)) € = and
by (HilGC5), results k € z, which is impossible. So, for a,b ¢ m there
exists g(k) ¢ m such that a — g(k),b — g(k) € m. Thus, m € X and
consequently, m € R(x).

We have proved that for all implicative filters of A belonging to F there
exists m € X such that m is a maximal element of them. In particular, we
can affirm that this happens if we consider only irreducible filters. This is,
for all irreducible implicative filters of A belonging to F there exists m € X
such that m is a maximal element of them. Thus, if f(a) €  then there
exists z € max (R(x)) such that a € z. O

The next result gives a characterization of the G-congruences applying
the duality given in [6] for the HilGC-algebras.

PROPOSITION 4.5. Let (A, f,g) be a HilGC-algebra and let (X, 7T, R) its
dual HG-space. Then,

Ca(X)? = Cong(A).
PRrOOF: Consider the map o : Cg(X) — Cong(A) given by:
oY) ={(a,b) € A2 :a—bb—ac m(Y)}.

We recall that o(Y) is a Hilbert congruence. Let a,b € A such that (a,b) €
oY), ie,a—=bb—acn(Y) ie,Y Cyp(a—b) =p(a) = ¢(b) and
Y C ¢ (b) = ¢ (a). We prove that (f(a), f(b)) € o(Y), i.e.,

Y Co(fla)) = ¢(f(b) and Y S o (f(b)) = ¢ (f(a)).

First, we take z € Y and we will show that [z) N¢ (f(a)) C ¢ (f(b)). Let
y € X such that y € [z)Ny (f(a)). So, z Cyand f (a) € y. Since f (a) € y,
by Lemma 4.4, there exists z € max (R(y)) such that a € z. On the other
hand, as Y € C(X), Y is an upset of X and so, y € Y. Consequently,
max (R(y)) C Y because Y € Cg(X). Thus, z € Y C ¢ (a) = ¢ (b), that
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is, [z) N (a) C p(b). As z € [2) Np(a), we obtain z € ¢ (b) and so,
f(b) € y. We have proved that Y C ¢ (f(a)) = ¢ (f(b)). By a similar
argument we can prove that Y C ¢ (f(b)) = ¢ (f(a)).

To prove that (g(a), g(b)) € o(Y), we show that

Y Cp(g(a)) = ¢(g(b) and Y C ¢ (g(b)) = ¢ (g(a)).

Suppose that Y € ¢ (g )) w(gd )) So there exibts x € Y such that
x ¢ p(g(a)) = ¢(g9(b)), ie., [z)Np(g g ¢ (g(b)). Hence, there exists
z € X such that z € [x) v (g(a)) and z ¢ go( (b)) As g(b) ¢ z, by
Lemma 2.9, there exists w € X such that ¢g7!(2) C w and b ¢ w. As
g(a) € z, we have that a € w, i.e., w € ¢(a). Moreover, since ¢ € Y
and Y € Up(X), we have 2 € Y. Thus, w € R7}(Y) and as Y € Cg(X),
w € Y. By assumption, Y C ¢ (a) = ¢ (b), and so, [w) Ny (a) C ¢ (b).
Since w € [w) Ny (a), we have w € ¢ (b), which is a contradiction. Then,
we have proved that Y C ¢ (g(a)) = ¢ (g(b)). Analogously, we prove that
Y Cp(g(d) = ¢(g(a)). Thus, o(Y) € Cong(A), for each Y € Co(X) and
consequently o is well defined.

Let YW € Cq(X). It is clear that if Y C W then n(W) C n(Y)
and consequently, o(W) C o(Y). To prove that o is one-to-one, assume
that (W) = o(Y) and suppose that Y # W. Without loss of generality,
we assume that Y g W, i.e., there exists € Y such that z ¢ W. As
W is a closed subset of (X, T), there exists a € A such that W C ¢(a)
and z ¢ ¢(a). Thus, a =1 — a,1 = a — 1 € 7(W) and consequently,
(l,a) ec(W) =0(Y). So,a —» 1,1 - a €7 (Y). Thus a € 7 (Y) and so,
Y Cp(a). Asz €Y, we have a € x, which is a contradiction.

It remains to prove that o is onto. Let 6§ € Cong(A). We recall that
Y =6 ([1]y) € C(X). We prove that Y satisfies the two conditions of Defi-
nition 4.3.

(G1) Let « € X such that x € R71(Y). So, there exists y € Y such
that (x,y) € R, that it, [1]g C y and g~ ! (y) € 2. We prove that x € YV
showing that [1]g C x. Let a € [1]g. As 8 € Cong(A), by Proposition 4.2,
[1]o € Fig(A) and thus, g(a) € [1]p C y. Consequently, a € . We have
proved that R~1(Y) C Y.

(G2) Suppose that there exists € ¥ such that max (R(z)) € Y. So,
there exist x,z € X such that [1]g C z, z € max (R (x)) and z ¢ Y, i.e.,
1]g € z. So, there exists a € A such that a € [1]y and a ¢ z. We consider
the ideal f~!(z¢) and the implicative filter (2 U {a}) of A, and we will prove
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that there are disjoint. Conversely, suppose that there exists b € A such
that b € (zU{a}) N f~1(z°). By Lemma 2.2, a — b € z and f(b) ¢ .
By the assumption, z € R(z), i.e., z C f~!(z) and so, f(a — b) € x. On
the other hand, as (1,a) € 0, we obtain (b,a — b) € 6. As § € Cong(A),
we have (f (b),f(a — b)) € 0 and so, (1, f(a —b) — f(b)) € 6. Thus,
fla—b) — f(b) € [1]p C x and since f(a — b) € z, we get f(b) € «x,
which is a contradiction. Thus, (zU {a}) N f~1(2¢) = () and consequently,
there exists y € X such that 2 C y, a € y and y N f~1(2¢) = 0, that is,
y C f~1(x), ie., y € R(z). As z € max (R(z)) results y = z. Thus, a € z,
which contradicts our assumption. So, max (R(z)) CY for all z € Y.
Finally, we prove that o(Y) = 6. Let a,b € A. Then,

(a,b) €o(Y) iff a—bb—oaca(y)=r((1) =]l
iff (a,b) € 9[1]0 =40 O

By Propositions 4.2 and 4.5, we have the following result.

COROLLARY 4.6. Let (A, f, g) be a HilGC-algebra and let let (X, T, R) its
dual HG-space. Then,

Cong(A) = Fig(A) = Ca(X)4.

Simple and subdirectly irreducibles algebras

We are going to apply the topological characterization of the G-congruences
to give a characterization of the simple algebras and subdirectly irreducible
algebras.

Let us recall that an algebra A is subdirectly irreducible if and only if
there exists the smallest non trivial congruence relation 6 in A. A particular
case are the simple algebras, A is simple if and only if A has only two
congruence relations.

Let (A, f,g) be a HilGC-algebra and let (X, T, R) its dual space. By
Propositions 4.5 and 4.2, we can affirm that a HilGC-algebra (A, f,g) is
subdirectly irreducible if and only if there exists the smallest non-trivial
Galois implicative filter of A iff in the dual HG-space (X, T, R) there exists
the largest Y € Cq(X) — {X,0}. Moreover, (A, f,g) is simple iff Fig(A) =
{1}, A} iff Ca(X) = {0, X}.
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Let (X,T,R) be an HG-space. As the family Cq(X) is closed under
arbitrary intersections, we can define for each x € X the set

Y, =({Y €Ca(X):z €Y} €Ca(X).

Note that Y, is the smallest G-closed set containing the element x.
Now, we can characterize the simple and subdirectly irreducible HilGC-
algebras.

THEOREM 4.7. Let A be a HilGC-algebra and (X, T, R) its dual HG-space.
Then:

1. A is simple iff Y, = X, for each x € X.
2. A is subdirectly irreducible iff {xr € X : Y, # X} € Ca(X) — {X}.

PROOF: (1) Assume that A is simple. So, Cq(X) = {0, X}. Let z € X. As

x €Yy, Y, # 0 and since Y, € C5(X), we have that Y, = X. Reciprocally.

Let Z € Ce(X) and suppose that Z # ). So, there exists z € X such that

x€Z. Thus, X =Y, CZ C X. So, Z = X and consequently, A is simple.
(2) Consider the set

W={reX:Y, #X}

Assume that A is subdirectly irreducible and let V' be the largest element
of Cq(X) — {X}. We will prove that V' =W. Let « € X such that x € V.
As Y, is the smallest G-closed set containing the element x, Y, CV # X
and hence, x € W. To prove the other inclusion, we take x € W, i.e.,
Y, #X. Thus, Y, € Cq(X)—{X},and so, Y, CV. As x € Y,, we obtain
xz€V. Thus, W=V € Ca(X) — {X}.

Reciprocally, assume that W € Co(X) — {X}. We will prove that W is
the largest element of C(X) — {X}. Suppose that there exists Z € Cq(X)
such that Z ¢ W. So, there exists x € Z such that = ¢ W, thisis, Y, = X.
Thus, X =Y, C Z and so, Z = X. O
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