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Abstract

In this paper, we defined the concept of SUP-hesitant fuzzy interior ideals in Γ-

semigroups, which is generalized of hesitant fuzzy interior ideals in Γ-semigroups.

Additionally, we study fundamental properties of SUP-hesitant fuzzy interior

ideals in Γ-semigroups. Finally, we investigate characterized properties of those.
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1. Introduction

The theory of fuzzy sets (FSs), considered by Zadeh in [27] has applica-
tions in mathematics, engineering, medical science, and other fields. Torra
and Narukawa [25] extended the knowledge of a fuzzy set go to a hesitant
fuzzy set (HFS) which is a function from a reference set to a power set of
the unit interval and a generalization of intuitionistic fuzzy sets (IFSs) and
interval-valued fuzzy sets (IvFSs) [26]. Then in 2015, Jun et al. [14] intro-
duced the concept of HFSs and studied many algebraic structures, such as
properties of hesitant fuzzy left (right, generalized bi-, bi-, two-sided) ideals
of semigroups. In 1981, Sen introduced the concept of Γ-semigroup as a
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generalization of the plain semigroup and ternary semigroup. The many
classical notions and results of (ternary) semigroups have been extended
and generalized to Γ-semigroups, by many mathematicians. For instance,
Dutta, and Davvaz [7, 8] studied the theory of Γ-semigroups via fuzzy sub-
sets. Siripitukdet and Iampan [22, 23], Siripitukdet and Julatha [24], Dutta
and Adhikari [8], Saha and Sen [20, 21], Hila, [10, 11] and Chinram [4, 5],
and Uckun et al. [18] studied the theory of Γ-semigroup via intuitionis-
tic fuzzy subsets. Abbasi et al. [1] introduced hesitant fuzzy left (resp.,
right, bi-, interior, and two-sided) Γ-ideals of Γ-semigroups. Julatha and
Iampan [13] introduced a sup-hesitant fuzzy Γ-ideal, which is a general
concept of an interval valued fuzzy Γ-ideal and a hesitant fuzzy Γ-ideal, of
a Γ-semigroup and studied its properties via level sets, fuzzy sets, interval-
valued fuzzy sets, and hesitant fuzzy sets. In 2018, Mosrijai et al., [16]
presented the concept from HFSs in UP-algebras, namely SUP-hesitant
fuzzy UP-subalgebras (UP-filters, UP-ideals, strong UPideals). In 2019,
Muhiuddin and Jun [17] introduced and studied the properties of SUP-
hesitant fuzzy subalgebras and their translations and extensions. In 2020,
Muhiuddin et al. [17] studied the concept of SUP-hesitant fuzzy ideals
in BCK/BCI-algebras. In the same year, Harizavi and Jun [9] introduced
SUP-hesitant fuzzy quasi-associative ideal in BCI algebras. Later, Dey
et al. [6] developed the concept of hesitant multi-fuzzy sets by combining
the hesitant fuzzy set with the multi-fuzzy set. In 2021, Jittburus and
Julatha [12] discussed the properties of SUP-hesitant fuzzy ideals of semi-
groups and studied the characterizations in terms of sets, FSs, HFSs, and
IvFSs. In 2022, P. Julatha and A. Iampan [13] studied the SUP-hesitant
fuzzy ideal in Γ-semigroup and considered the basic properties of those.

In this paper, we study the definition and properties of SUP-hesitant
fuzzy interior ideals in Γ-semigroups and investigate the properties of those.

2. Preliminaries

Throughout this paper, we denote a Γ-semigroup by S.
In this section, we give some fundamental concepts about Γ-semigroups,

fuzzy sets, intuitionistic fuzzy sets, interval valued fuzzy sets and hesitant
fuzzy sets are presented. These notions will be helpful in later sections.

Let S and Γ be non-empty sets. Then S is called a Γ-semigroup S
if there exists a function S × Γ × S → S written as (e1, α, e2) 7→ e1αe2
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satisfying the axiom (e1αe2)βe3 = e1α(e2βe3) for all e1, e2, e3 ∈ S and
α, β ∈ Γ. A non-empty subset L of S is called a subsemigroup of S if
LΓL ⊆ L. A non-empty subset L of S is called a left (right) ideal of S
if SΓL ⊆ L (LΓS ⊆ L). By an Γ-ideal L of S, we mean a left ideal and
a right ideal of S. A subsemigroup L of S is called a interior ideal of S if
SΓLΓS ⊆ L.

A fuzzy set (FS) of a non-empty set T is a function ω : T → [0, 1].

Definition 2.1 ([15]). A FS ω of S is said to be a fuzzy subsemigroup
(FSG) of S if ω(e1γe2) ≥ ω(e1) ∧ ω(e2) for all e1, e2 ∈ S and γ ∈ Γ.

Definition 2.2 ([19]). A FS ω of S is said to be a fuzzy left (right) ideal
(FLI(FRI)) of S if ω(e1γe2) ≥ ω(e2) (ω(e1γe2) ≥ ω(e1)) for all e1, e2 ∈ S
and γ ∈ Γ. A FS ω of S is called an fuzzy ideal of S if it is both a fuzzy
left ideal and a fuzzy right ideal of S.

Definition 2.3 ([19]). A FS ω of S is said to be an fuzzy interior ideal
(FII) of S if ω is a FSG and ω(e1γe2αe3) ≥ ω(e2) for all e1, e2, e3 ∈ S and
γ, α ∈ Γ.

An intuitionistic fuzzy set (IFS) A in T is the form A = {e, ωA, ϑA |
e ∈ A} where ωA : T → [0, 1] and ϑA : T → [0, 1] and where 0 ≤
ωA(e) + ϑA(e) ≤ 1 for all e ∈ A [2].

Definition 2.4 ([18]). An IFSA = (ωA, ϑA) in T is called an intuitionistic
fuzzy subemigroup (IFSG) of S if ωA(e1γe2) ≥ max{ωA(e1), ωA(e2)} and
ϑA(e1γe2) ≤ min{ϑA(e1), ϑA(e2)} for all e1, e2 ∈ S and γ ∈ Γ.

Definition 2.5 ([18]). An IFS A = (ωA, ϑA) in T is called an intu-
itionistic fuzzy ideal (IFI) of S if ωA(e1γe2) ≤ max{ωA(e1), ωA(e2)} and
ϑA(e1γe2) ≥ min{ϑA(e1), ϑA(e2)} for all e1, e2 ∈ S and γ ∈ Γ.

Definition 2.6 ([18]). An IFSA = (ωA, ϑA) in T is called an intuitionistic
interior ideal (IFII) of S if A = (ωA, ϑA) is an IFSG and ωA(e1γe2αe3) ≥
ωA(e2) and ϑA(e1γe2αe3) ≤ ϑA(e2) for all e1, e2, e3 ∈ S and γ, α ∈ Γ.

Let C[0, 1] be the set of all closed subintervals of [0, 1], i.e.,

C[0, 1] = {p̃ = [p−, p+] | 0 ≤ p− ≤ p+ ≤ 1}.

Let p̂ = [p−, p+] and q̂ = [q−, q+] ∈ Ω[0, 1]. Define the operations ⪯, =,
⋏ and ⋎ as follows:
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(1) p̂ ⪯ q̂ if and only if p− ≤ q− and p+ ≤ q+.

(2) p̂ = q̂ if and only if p− = q− and p+ = q+.

(3) p̂⋏ q̂ = [(p− ∧ q−), (p+ ∧ q+)].

(4) p̂⋎ q̂ = [(p− ∨ q−), (p+ ∨ q+)].

If p̂ ⪰ q̂, we mean q̂ ⪯ p̂.

Definition 2.7 ([19]). Let T be a non-empty set. Then the function
ω̂ : T → C[0, 1] is called interval valued fuzzy set (shortly, IvFS) of T .

Next, we shall give definitions of various types of interval valued fuzzy
subsemigroups.

Definition 2.8 ([3]). An IvFS ω̂ of S is said to be an interval valued fuzzy
subsemigroup (IvF subsemigroup) of S if ω̂(e1γe2) ⪰ ω̂(e1) ⋏ ω̂(e2) for all
e1, e2 ∈ S and γ ∈ Γ.

Definition 2.9 ([3]). An IvFS ω̂ of S is said to be an interval valued fuzzy
left (right) ideal (IvF left (right) ideal) of S if ω̂(e1γe2) ⪰ ω̂(e2) (ω̂(e1γe2) ⪰
ω̂(e1)) for all e1, e2 ∈ S and γ ∈ Γ. An IvFS ω̂ of S is called an IvF ideal
of S if it is both an IvF left ideal and an IvF right ideal of S.

Definition 2.10 ([3]). An IvFS ω̂ of S is said to be an interval valued
fuzzy interior ideal (IvF interior ideal) of S if ω̂ is an IvF subsemigroup
and ω̂(e1γe2αe3) ⪰ ω̂(e2) for all e1, e2, e3 ∈ S and γ, α ∈ Γ.

Let L be a non-empty subset of T . An interval valued characteristic
function (λ̂L) of L is defined by

λ̂L : T → C[0, 1], e 7→

{
1 if eu ∈ L,

0 otherwise,

for all e ∈ T .
For two IvFSs ω̂ and ϑ̂ of S, define the product ω̂ ◦ ϑ̂ as follows: for all

e ∈ S,

(ω̂ ◦ ϑ̂)(e) =


⋎

e=tz
{ω̂(t)⋏ ϑ̂(z)} if e = tz,

0 otherwise.
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Definition 2.11 ([14]). A hesitant fuzzy set (HFS) on a non-emptyset T
is a function h : T → P([0, 1]).

Definition 2.12 ([1]). A HFS h on S is called a hesitant fuzzy subsemi-
group (HFSG) on S if it satisfies:

h(e1γe2) ⊇ h(e1) ∩ h(e2) for all e1, e2 ∈ S and γ ∈ Γ.

Definition 2.13 ([1]). A HFS h on S is called a hesitant fuzzy left (resp.,
right) ideal on S if it satisfies:

h(e1γe2) ⊇ h(x)(h(e1) ⊇ h(e2)) for all e1, e2 ∈ S and γ ∈ Γ.

An HFS h of S is called an hesitant fuzzy ideal of S if it is both a hesitant
fuzzy left ideal and a hesitant fuzzy right ideal of S.

Definition 2.14 ([1]). A HFS h on S is called a hesitant fuzzy interior
ideal (HFII) on S if it satisfies:

h is a HFs and h(e1γe2αe3) ⊇ h(e2) for all e1, e2, e3 ∈ S and γ, α ∈ Γ.

Let L be a non-empty subset of T . The characteristic hesitant fuzzy
set (CHL) of L is defined by

CHL : T → P([0, 1]), x 7→
{

[0, 1] if e ∈ L,
∅ otherwise,

for all e ∈ T .
For two HFSs h and g of S, define the product h ◦ g as follows: for all

e ∈ S,

(h ◦ g)(e) =


⋃

e=tz
{h(t) ∩ g(z)} if e = tz,

∅ otherwise.

3. SUP-hesitant fuzzy interior ideals in Γ-Semigroups

In this section, we define the concepts of SUP-hesitant fuzzy interior ideals
of S and characterize SUP-hesitant fuzzy interior ideals of S.

For any HFS h on T and Θ ∈ P[0, 1], define SUPΘ and S[h; Θ] by
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SUPΘ =

{
supΘ if Θ ≠ ∅,
0 otherwise,

S[h; Θ] = {x ∈ X | SUP h(x) ≥ SUPΘ}.

Then the following assertions are true:

(1) For every IvFS Ã on X ,SUPÃ(x) = sup Ã(x) = A+(x),∀x ∈ X .

(2) If Θ,Υ ∈ P[0, 1] with Θ ⊆ Υ, then SUPΘ ⊆ SUPΨ and S[h; Υ] ⊆
S[h; Θ].

Definition 3.1. An HFS h on S is called a SUP-hesitant fuzzy interior
ideal of S related to Θ (Θ-SUP-HFI) if the set S[h; Θ] is an interior ideal
of S. We call that h is a SUP-hesitant fuzzy interior ideal (SUP-HFII) of
S if h is a Θ-SUP-HFII of S,∀Θ ∈ P[0, 1] with S[h; Θ] ≠ ∅.

The following Lemmas are tools to prove Theorem 3.7.

Lemma 3.2. If Θ,Ψ ∈ P[0, 1] with SUPΘ = SUPΥ and h is a Θ-SUP-HFI
of S, then h is a Ψ-SUP-HFI of S.

Proof: Assume that Θ,Υ ∈ P[0, 1] with SUPΘ = SUPΥ and h is a
Θ-SUP-HFI of S. Then SUPΘ ⊆ SUPΨ and S[h; Υ] ⊆ S[h; Θ]. Thus, by
Definition 3.1, h is a Υ-SUP-HFI of S.

Lemma 3.3. Every IvF interior ideal of S is a SUP-HFII of S.

Proof: Assume that Ã is an IvF interior ideal of S and let Θ ∈ P[0, 1] with
S[Ã; Θ] ≠ ∅. Let e1, e3 ∈ S, e2 ∈ S[Ã; Θ] and γ, α ∈ Γ. Then sup Ã(e2) ≥
SUPΘ. Since Ã is an IvF interior ideal of S, we have SUPΘ ≤ sup Ã(e2) ⪯
Ã(e1γe2αe3). Thus, e1γe2αe3 ∈ S[Ã,Θ]. Hence, Ã is an interior ideal of S.
So, Ã is a Θ-SUP-HFII of S. Therefore, Ã is a SUP-HFII of S.

Lemma 3.4. Every HFII of S is a SUP-HFII of S.

Proof: Assume that h is a HFII of S and let Θ ∈ P[0, 1] with S[Ã; Θ] ̸= ∅.
Let e1, e3 ∈ S and e2 ∈ S[h; Θ] and γ, α ∈ Γ. Then h(e1γe2αe3) ⊇ h(e2).
Thus, SUPh(e1γe2αe3) ≥ h(e2) ≥ SUPΘ so e1γe2αe3 ∈ S[h; Θ].
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Hence, S[h; Θ] is an interior ideal of S, and so h is a Θ-SUP-HFII of S.
Therefore, h is a SUP-HFII of S.

Theorem 3.5. Let S be a regular Γ-semigroup S. Then HFS h is a SUP-
HFII of S if and only if h is a SUP-HFI of S.

Proof: It is a direct result from that a non-empty subset L of a regular
Γ-semigroup S is an interior ideal of S if and only if L is an ideal of S.

For every HFS h on T and Θ ∈ P[0, 1], we define the HFS H(h; Θ) on
T by ∀e ∈ T ,

H(h; Θ)(e) = {r ∈ Θ | SUPh(e) ≥ r}.

We denote H(h;
⋃

e∈T
h(e)) by Hh and denote H(h; [0, 1]) by Ih. Then the

following assertions are true: for all e ∈ T ;

(1) Ih. is an IvFS on S.

(2) h(e) ⊆ Hh ⊆ I.

(3) SUPh(e) = SUPHh(x) = SUPIh(e).

(4) H(h,Θ)(e) ⊆ Θ.

(5) H(h,Θ)(e) = Θ if an only if e ∈ S[h,Θ].

Lemma 3.6. An HFS h on S is a SUP-HFII of S if and only if H(h; Θ) is
an HFII of S,∀Θ ∈ P[0, 1].

Proof: Let Θ ∈ P[0, 1], e1, e2, e3 ∈ S and γ, α ∈ Γ. Suppose that h is
a SUP-HFII of S, and let r ∈ H(h; Θ)(e2). Then a ∈ H(h; Θ)(a). Thus,
SUP(h(a)) ≥ r ∈ Θ. Hence, e2 ∈ S[h(e2)]. Since h is a SUP-HFII of
S, we have e1e2e3 ∈ S[h(a)]. Thus, SUPh(e1e2e3) ≥ h(e1) ≥ r ∈ Θ.
Hence, r ∈ H(h; Θ)(e1e2e3). Therefore, H(h; Θ)(e2) ⊆ H(h; Θ)(e1e2e3).
We conclude that H(h; Θ) is a HFII of S.

In contrat, suppose that h is a H(h; Θ) is a HFII of S and e2 ∈ S[h; Θ],
e1, e3 ∈ S. Then H(h,Θ)(e2) = Θ. Since h is a H(h; Θ) is a HFII of S
we have Θ = H(h,Θ)(e2) ⊆ H(h; Θ)(e2) ⊆ H(h; Θ)(e1e2e3) and so Θ ⊆
H(h; Θ)(e1e2e3). Hence SUPh(e1e2e3) ≥ SUPΘ. Thus e1e2e3 ∈ S[h; Θ].
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Therefore S[h; Θ] is an interior ideal of S. This implies that h is a Θ−SUP-
HFII of S. Thus h is a SUP-HFII of S.

The following theorem is a result of Lemma 3.3, 3.4, and 3.6.

Theorem 3.7. Let h is a HFS in K. Then the following statements are
equivalent.

(1) Hh is an HFII of S.

(2) Hh is a SUP-HFII of S.

(3) Ih is a SUP-HFII of K.

(4) Ih is an HFII of S.

(5) h is a SUP-HFII of S.

(6) Ih is an IvFII of S.

Proof: By Lemma 3.4, we get that, 1 ⇒ 2 and 3 ⇒ 4.
By Lemma 3.6, we get that, 5 ⇒ 2 and 5 ⇒ 6.
By Lemma 3.3, we get that, 3 ⇒ 6.
Now, we proof 1 ⇒ 5. Let Θ ∈ P[0, 1], e1, e2e3 ∈ S and γ, α ∈ Γ.

Then SUPHh(e2) = SUPh(e2) ≥ SUPΘ. Thus, e2 ∈ S[Hh; Θ]. So,
S[Hh; Θ] is an interior ideal of S with e1γe2αe3 ∈ S[Hh; Θ] which implies
that SUPh(e1γe2αe3) = SUPHh(e1γe2αe3) ≥ SUPΘ. Hence, e1γe2αe3 ∈
S[h; Θ]. Therefore S[h; Θ] is an interior ideal of S. We conclude that h is a
SUP-HFII of S.

For 1 ⇒ 6, let e1, e2e3 ∈ S and γ, α ∈ Γ. Then e2 ∈ S[h; h(e)].
Thus, SUPh(e2) ≤ SUPh(e1γe2αe3). Hence, Ih(e2) = [0,SUPh(e2)]. So,
Ih(e2) ⪯ Ih(e1γe2αe3). Therefore, Ih is an IvFBII of S.

The proof of 2 ⇒ 6 is similar to 1 ⇒ 5.

In [12], the author define Fh in T by Fh = SUPh(x) for all x ∈ T .

Theorem 3.8. An HFS h on K is a SUP-HFBII of S if and only if Fh is
a FII of S.

Proof: Let e1, e2e3 ∈ S and γ, α ∈ Γ. Then h(e2) = Θ for some Θ ∈
P[0, 1]. Thus, e2 ∈ S[h; Θ]. By assumption, we have e1γe2αe3 ∈ S[h; Θ].
Hence, Fh(e1γe2αe3) = SUPh(e1γe2αe3) ≥ SUPΘ = SUP(h(e2)) =
h(a) = Fh(e2). Therefore, Fh is a fuzzy interior ideal of S.
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In contrat, let Θ ∈ P[0, 1], e2 ∈ S[h; Θ], e1, e3 ∈ S. Then
SUPh(e1e2e3) = Fh(e1γe2αe3) ≥ Fh(e2) = SUPh(e2) ≥ SUPΘ. This
implies that e1γe2αe3 ∈ S[h; Θ]. Hence, S[h; Θ] is an interior ideal of S.
So, h is a Θ-SUP-HFII of S. Therefore, h is a SUP-HFII of S.

The following result is an immediate consequence of Theorem 3.8.

Corollary 3.9. An HFS h in S is a SUP-HFII of S if and only if
SUPh(e1γe2αe3) = h(e2) for all e1, e2e3 ∈ S and γ, α ∈ Γ.

For any IFS A = (ωA, ϑA) on T and Θ ∈ P[0, 1], we define the HFS
HΘ

A on T and IvFS IA in A

HΘ
A(e) =

{
t ∈ Θ | ϑA(e)

2
≤ t ≤ 1 + ωA(e)

2

}
and

IA(e) =
[
1− ϑA(e)

2
,
1 + ωA(e)

2

]
for all e ∈ T .

Theorem 3.10. Suppose that A = (ωA, ϑA) be an IFS in S. The following
are equivalent.

(1) A is an IFII of S.

(2) HΘ
A is a HFII of S for all Θ ∈ P[0, 1].

(3) IA is an IvFII of K.

Proof: 1. ⇒ 2. Suppose that A is an IFII of S and Θ ∈ P[0, 1]. Let
e1, e2, e3 ∈ S, γ, α ∈ Γ and t ∈ HΘ

A(e2). Then t ∈ Θ and ϑA
2 ≤ t ≤ 1+ωA

2 .
Since A is an IFII of S, we have

ϑA(e1γe2αe3)

2
≤ ϑA(e2) ≤ t ≤ 1 + ωA(e2)

2
≤ 1 + ωA(e1γe2αe3)

2
.

Thus, t ∈ HΘ
A(e1γe2αe3). Hence, HΘ

A(e2) ⊆ HΘ
A(e1γe2αe3).

Therefore, HΘ
A is an HFII of S.

2. ⇒ 1. Suppose that HΘ
A is am HFII of S, and A is not an IFII

of S. Then there are e1, e2, e3 ∈ S and γ, α ∈ Γ such that ωA(e1e2e3) <
ωA(e2). Choose t = 1

4 (ωA(e1γe2αe3) + ωA(e2)). We have 1
2 + t ∈ [0, 1]
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and ωA(e1γe2αe3)
2 < t < ωA(e2). Thus,

ϑA(e2)
2 ≤ 1

2 < 1
2 + t < 1+ωA(e2)

2 . So,
1
2 + t ∈ HΘ

A(e2) Since HΘ
A is an HFII of S, we have H[0,1]

A is an HFII on S.
It implies that 1

2 + t ∈ H[0,1]
A (e1γe2αe3). Hence, 1

2 + t ≤ 1+ωA(e1γe2αe3)
2 and

ωA(e1γe2αe3) = 2

(
1 + ωA(e1γe2αe3)

2

)
− 1

≥ 2

(
1

2
+ t

)
= 2t

> ωAe1γe2αe3).

It is a contradiction. Hence, ωA(e1γe2αe3) ≥ ωA(e2). Therefore, A is an
IFII of S.

1. ⇒ 3. Suppose that A is an IFII of S. Let e1, e2, e3 ∈ S and

γ, α ∈ Γ. Then 1−ϑA(e1γe2αe3)
2 ≥ 1−ϑA(e2)

2 = 1−ϑA(e2)
2 and 1+ωA(e1γe2αe3)

2 ≥
1+ωA(e2)

2 = 1+ωA(e2)
2 . Thus, IA(e1γe2αe3) ⪰ IA(e2). Hence, IA is an IvFII

of S.
3. ⇒ 1. Suppose that IA is an IvFII of K, and let e1, e2, e3 ∈ S. Then

IA(e1γe2αe3) ⪰ IA(e2). Thus, 1−ϑA(e1γe2αe3)
2 ≥ 1−ϑA(e2)

2 and
1+ωA(e1γe2αe3)

2 ≥ 1+ωA(e2)
2 . Hence, ωA(e1e2e3) ≥ ωA(e2) and

ϑA(e1γe2αe3) ≤ ϑA(e2). Therefore, A is an IFII of S.

Corollary 3.11. Suppose that A = (ωA, ϑA) be an IFS in S. The fol-
lowings are equivalent.

(1) HΘ
A is a SUP-HFII of S for all Θ ∈ P[0, 1].

(2) IA is a SUP-HFII of S.

For any HFS h on T , the HFS h∗ is defined by h∗(e) = {1−SUPh(e)}
for all e ∈ T . We call h∗ a supermum complement [16] of h on T . Then
SUPh∗(e) = 1− SUPh(e) for all e ∈ T . Hence, (Fh,Fh∗) is an IFS in T .

Theorem 3.12. An HFS h on S is a SUP−HFII of S if and only if
(Fh,F∗

h) is an IFII of S.

Proof: Suppose that h is a SUP−HFII of S, and let e1, e2, e3 ∈ S,
γ, α ∈ Γ. Then, by Theorem 3.8,

SUPh(e1γe2αe3) = Fh(e1γe2αe3) ≥ h(e2) = SUPh(e2).
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and

Fh∗(e1γe2αe3) = 1− SUPh(e1γe2αe3) ≤ 1− SUPh(e2) = Fh∗(e2).

Hence, (Fh,F∗
h) is an IFII of S.

Conversely, suppose that (Fh,F∗
h) is an IFII of S. Then Fh is FII of S.

Thus, by Theorem 3.8, h is a SUP-HFII of S.

For HFS h on T and t ∈ [0, 1], define

USUP(h; t) = {e ∈ T | SUPh(e) ≥ t}

and
LSUP(h; t) = {e ∈ T | SUPh(e) ≤ t}.

We call the USUP a SUP-upper t-level subset and call the LSUP a SUP-
lower t-level subset [16] of h.

Theorem 3.13. Let h is an HFS on S. Then the following statements
holds;

(1) h is a SUP-HFII of S if and only if USUP(h; t) is either empty of an
interior ideal of S for all t ∈ [0, 1].

(2) h∗ is a SUP-HFII of S if and only if LSUP(h; t) is either empty of
an interior ideal of S for all t ∈ [0, 1].

Proof:

(1) Suppose that h is a SUP-HFII of S and t ∈ [0, 1] such that USUP(h; t)
̸= ∅. Choose Θ = {t}. Then S[h,Θ] = USUP(h; t) ̸= ∅. By assump-
tion, we have USUP(h; t) = S[h,Θ] is an interior ideal of S.

Conversely, suppose that USUP(h; t) is either empty of an interior
ideal of S for all t ∈ [0, 1] and Θ ∈ P[0, 1] such that S[h,Θ] ̸= ∅.
Choose t = SUPΘ. Then USUP(h; t) = S[h,Θ] ̸= ∅. By assumption,
we have S[h,Θ] = USUP(h; t) is an interior ideal of S. Thus, h is a
Θ-SUP-HFII of S. Hence, h is a SUP-HFII of S.

(2) Suppose that h∗ is a SUP-HFII of S and t ∈ [0, 1] such that LSUP(h; t)
̸= ∅. Choose Υ = {1 − t}. Then S[h∗,Υ] = LSUP(h; t) ̸= ∅. By as-
sumption, we have LSUP(h; t) = S[h∗,Υ] is an interior ideal of S.
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Conversely, suppose that LSUP(h; t) is either empty of an interior
ideal of S for all t ∈ [0, 1] and Υ ∈ P[0, 1] such that S[h∗,Υ] ̸= ∅.
Choose t = 1− SUPΥ. Then

LSUP(h; t) = S[h∗,Υ] ̸= ∅.

By assumption, we have S[h∗,Υ] = LSUP(h; t) is an interior ideal
of S. Thus, h∗ is a Ψ-SUP-HFII of S. Hence, h∗ is a SUP-HFII
of S.

For Θ,Ψ ∈ P[0, 1] with SUPΘ < SUPΨ, define a function H
(Θ,Υ)
L as

follows:

H
(Θ,Ψ)
L T → P([0, 1]), e 7→

{
Υ if e ∈ I,
Θ otherwise,

Theorem 3.14. Let L be a non-empty subset of S and Θ,Υ ∈ P[0, 1] with

SUPΘ < SUP. Then L is an interior ideal of S if and only if H(Θ,Υ)
L is a

SUP-HFII of S.

Proof: Suppose that L is an interior ideal of S and SUPH(Θ,Υ)
L (e1e2e3) <

SUPH(Θ,Υ)
L (e2) for some e1, e2, e3 ∈ S and γ, α ∈ Γ. Then SUPH(Θ,Υ)

L (e2)
= SUPΥ, which implies that e2 ∈ L. Since L is an interior ideal of S, we
have e1γe2αe3 ∈ L, and so

SUPH(Θ,Υ)
L (e1γe2αe3) = SUPΥ = SUPH(Θ,Υ)

L (e2).

It is a contradiction. Hence, SUPH(Θ,Υ)
L (e1γe2αe3) ≥ SUPH(Θ,Υ)

L (e2), for

all e1, e2, e3 ∈ S and γ, α ∈ Γ. By Theorem 3.8, H(Θ,Υ)
L is a SUP-HFII of

S.
Conversely, let e1, e3 ∈ S, e2 ∈ L and γ, α ∈ Γ. Then H(Θ,Υ)

L (e2) = Υ.

Since H(Θ,Υ)
L is a SUP-HFII of S, by Theorem 3.9,

we have H(Θ,Υ)
L (e1γe2αe3) ≥ SUPH(Θ,Υ)

L (e2) = SUPΥ, which implies that
e1γe2αe3 ∈ L. Hence, L is an interior ideal of S.

Corollary 3.15. Let I be a non-empty subset of K. Then, the following
statements are equivalent.

(1) L is an interior ideal of K.

(2) λ̃L is a SUP-HFII of K.

(3) CHL is a SUP-HFII of K.
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4. SUP-hesitant fuzzy translations

In this section, we define of SUP-hesitant fuzzy translations of SUP-HFIIs
of semigroups and discuss the cencepts of extensions and intensions of
SUP-HFIIs.

For an HFS h on T , let Kh := 1− sup{SUPh(e) | e ∈ T }.
Let t ∈ [0,Kh], and we say that an HFS g on T is SUP-hesitnat fuzzy

t+-traslation (SUP-HFT+
t ) of h if SUPh(e) + t for all e ∈ T . Then h is

a SUP-HFT+
0 of h, and in the case that ρ1 and ρ2 are SUP-HFT+

t of h,
we see that SUPρ1(e) = SUPρ2(e) for all e ∈ T but ρ1 may be not equal
to ρ2.

Theorem 4.1. Let h be a SUP-HFII of S and t ∈ [0,Kh]. Then every
SUP-HFT+

t of h is a SUP-HFII of S.

Proof: Suppose that ρ is a SUP-HFT+
t of h, and let e1, e2, e3 ∈ S,

γ, α ∈ Γ. Then

SUPρ(e1γe2αe3) = SUPh(e1γe2αe3) + t ≥ SUPh(e2) + t = SUPh(e2).

Thus, by Corollary 3.9, ρ is a SUP-HFII of S.

Theorem 4.2. Let h be an HFII of S such that it is a SUP-HFT+
t is

SUP-HFII of S for some t ∈ [0,Kh]. Then h is a SUP-HFII of S.

Proof: Suppose that a SUP-HFT+
t ρ of h is a SUP-HFII of S when

t ∈ [0,Kh]. Then for all e1, e2, e3S and γ, α ∈ Γ,

SUPh(e1γe2αe3) = SUPρ(e1γe2αe3)− t ≥ SUPρ(e2)− t = SUPρ(e2).

Thus, by Corollary 3.9, h is a SUP-HFII of S.

Theorem 4.3. Let h be an HFS on S and t ∈ [0,Kh]. Then a SUP-HFT+
t

of h is a SUP-HFII of S if and only if USUP(h;m− t) either empty or an
interior ideal of S for all m ∈ [t, 1].

Proof: (⇒) By Theorem 3.13. 1.
(⇐) Let ρ be a SUP-HFT+

t of h and e1, e2, e3 ∈ S, γ, α ∈ Γ. Choose
m := SUPρ(e2). Then m − t = SUPρ(e2) − t = SUPh(e2). Thus,
e2 ∈ USUP(h;m − t). By assumption, e1γe2αe3 ∈ USUP(h;m − t). Hence,
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SUPρ(e1γe2αe3) = SUPh(e1γe2αe3) + t ≥ m = SUPρ(e2). By Corollary
3.9, h is a SUP-HFII of S.

For an HFS h on S, define ±h := inf{SUPh(e) | e ∈ S}.
For t ∈ [0,±h] an HFS g of S is said to be SUP-hesitant fuzzy t−-

translation (SUP-HFTt−) of h if SUPρ(e) = SUPh(e) − t for all e ∈ S.
Then h is a SUP-HFT0− of h.

Theorem 4.4. Let h be a SUP-HFII of S and t ∈ [0,±h]. Then every
SUP-HFTt− of h is a SUP-HFII of S.

Proof: It follows Theorem 4.1.

Theorem 4.5. Let h be an HFS on S such that its SUP-HFTt− is a SUP-
HFII of S for some t ∈ [0,±h]. Then h is a SUP-HFII of S.

Proof: It follows Theorem 4.2.

5. Conclusion

In this paper, we study the results for SUP-hesitant fuzzy interior ideals in
Γ-semigroups. Finally, we get the relation of HFBII, SUP-HFII and IvFII
in Γ-semigroup in Theorem 3.7. In future work, we can study other results
in these algebraic structures.
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