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Abstract

G3 is Gödelian 3-valued logic, G3≤ L is its paraconsistent counterpart and G31
 L is

a strong extension of G3≤ L . The aim of this paper is to endow each one of the

logics just mentioned with a 2 set-up binary Routley semantics.
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1. Introduction

The aim of this paper is to define a 2 set-up binary Routley semantics (2bR-

semantics) for each one of the logics G3, G3≤ L and G31
 L. G3 is Gödelian

3-valued logic (cf. [3]), G3≤ L is the paraconsistent counterpart to G3 and

G31
 L is a strong extension of G3≤ L . The logics G3≤ L and G31

 L were intro-
duced in [6]. Proof-theoretically, they were defined as Hilbert-type systems.
Semantically, “two-valued” Belnap-Dunn semantics was the tool to inter-
pret them. Nevertheless, they were endowed with a general Routley-Meyer
semantics in [4] and with a binary Routley one in [7]. Recently, Avron
(cf. [1]) has provided Gentzen-type calculi equivalent to the Hilbert-type

formulations for G3≤ L and G31
 L defined in [6].

2 set-up Routley-Meyer semantics (2RM-semantics) is introduced in [2],
where the logics BN4, RM3 and  Lukasiewicz’s 3-valued logic  L3 are in-
terpreted with said semantics. Additionally, the logic E4 is also given a
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© Copyright for this edition by Uniwersytet  Lódzki,  Lódź 2022
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2RM-semantics in [5]. 2RM-semantics is a particular class of the general
Routley-Meyer semantics (cf. [10, Chapter 4]) adequate for interpreting
some finite many-valued logics. 2RM-models are based upon structures of
the type (K,R, ∗), where K is a 2 set-up set, ∗ is the Routley operator and
R is the ternary relation on K characteristic of the general Routley-Meyer
semantics.

On the other hand, 2 set-up binary Routley semantics (2bR-semantics)
is going to be introduced for the first time in the present paper, to the
best of our knowledge. As it is the case with general Routley-Meyer se-
mantics and 2RM-semantics, 2bR-semantics is a particular class of general
binary Routley semantics, introduced in [7]. 2bR-semantics is adequate for
interpreting some finite many-valued logics. 2bR-models are based upon
structures of the type (K,R, ∗), where K and ∗ are defined similarly as in
2RM-semantics, but R is a binary relation on K, instead of a ternary one.

It is our opinion that a semantic interpretation S of a given logic L
alternative to the standard one, especially if it is a simple one, as it is
the case with 2bR-semantics, sheds new light not only on the alternatively
interpreted logic L, but also on the connection between L and the class
of logics SL interpreted with S, as well as on the elements of the class SL
itself. In this regard, we hope that the 2bR-semantics for G3, G3≤ L and G31

 L

introduced in the present paper will be useful in the sense just explained,
but also in illustrating how the much discussed Routley-Meyer semantics
(cf., e.g., [8] and the references therein) behave in the simple setting of a
two-element model.

The structure of the paper is as follows. In Section 2, the definition
of the logics G3≤ L , G31

 L and G3 is recalled. In Section 3, G3≤ L is given a

2bR-semantics (a 2bRG3≤ L -semantics) and the (strong) soundness theorem

w.r.t. 2bRG3≤ L -semantics is proved. In Section 4, it is shown that G3≤ L
is (strongly) complete w.r.t. 2bRG3≤ L -semantics by using a proof based
upon a canonical model construction. In Section 5, (resp., Section 6), we
give a 2bRG31

 L-semantics (resp., a 2bRG3-semantics) for G31
 L (resp., G3).

Then, the results in Section 3 and Section 4 are essentially used to prove
(strong) soundness and completeness theorems for G31

 L and G3 w.r.t. their
respective 2bR-semantics.
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2. The logics G3≤
 L , G31

 L and G3

In this section, the logics G3≤ L , G31
 L and G3 are defined. Firstly, some

preliminary notions are noted. Then, we define the matrices MG3 L and
MG3.

Definition 2.1 (Some preliminary notions). The propositional language
consists of a denumerable set of propositional variables p0, p1, ..., pn, ..., and
some or all of the following connectives: → (conditional), ∧ (conjunction),
∨ (disjunction) and ¬ (negation). The biconditional (↔) and the set of
formulas (wffs) are defined in the customary way. A, B, etc, are metalin-
guisitic variables. Logics are formulated as Hilbert-type axiomatic systems,
the notions of “theorem” and “proof from a set of premises” being the
usual ones, while the following notions are understood in a fairly standard
sense (cf., e.g., [9]): extension and expansion of a given logic; logical ma-
trix M and M-interpretation, M-consequence and M-validity and finally,
M-determined logic.

Definition 2.2 (The matrices MG3 L and MG3). The matrix MG3 L is the
structure (V, D, F) where (1) V is {0, 1

2 , 1} with 0 < 1
2 < 1; (2) D = {1};

(3) F = {f→, f∧, f∨, f¬} where f∧ and f∨ are defined as the glb (or lattice
meet) and the lub (or lattice joint), respectively, and f¬ is an involution
with f¬(1) = 0, f¬(0) = 1, f¬( 1

2 ) = ( 1
2 ), while f→ is defined according to

the following truth-table (tables for ∧,∨ and ¬ are also displayed):

→ 0 1
2 1

0 1 1 1
1
2 0 1 1

1 0 1
2 1

∧ 0 1
2 1

0 0 0 0
1
2 0 1

2
1
2

1 0 1
2 1

∨ 0 1
2 1

0 0 1
2 1

1
2

1
2

1
2 1

1 1 1 1

¬
0 1
1
2

1
2

1 0

Then, MG3 is defined exactly as MG3 L, except that f¬ is now inter-
preted according to the following truth-table:

¬
0 1
1
2 0

1 0



490 Gemma Robles, José M. Méndez

Well then, the logic G3≤ L (resp., G31
 L) is determined by the degree of

truth-preserving (resp., truth-preserving) consequence relation defined on
the matrix MG3 L. On the other hand, Gödelian 3-valued logic G3 is deter-
mined by the truth-preserving consequence relation defined on the matrix
MG3 (cf. [6] and references therein).

The logics G3≤ L and G31
 L are expansions of positive intuitionistic logic

H+, while G3 is an extension of intuitionistic logic H. They are defined as
follows (cf. [6], [7] and references therein).

Definition 2.3 (The logic G3≤ L ). The logic G3≤ L can be axiomatized as
follows:

A1. A → (B → A)

A2. [A → (B → C)] → [(A → B) → (A → C)]

A3. (A ∧B) → A; (A ∧B) → B

A4. A → [B → (A ∧B)]

A5. A → (A ∨B); B → (A ∨B)

A6. (A → C) → [(B → C) → [(A ∨B) → C)]]

A7. A → ¬¬A

A8. ¬¬A → A

A9. (A ∨ ¬B) ∨ (A → B)

A10. ¬A → [A ∨ (A → B)]

A11. (A ∧ ¬A) → (B ∨ ¬B)

Rules

Modus Ponens (MP): If A → B and A, then B.
Contraposition (Con): If A → B is a theorem, then ¬B → ¬A is also

a theorem.

Remark 2.4 (Rules of inference and rules of proof). A rule r of a logic L is
a ‘rule of inference’ if it can be applied to any premises formulated in the
language of L; and r is a ‘rule of proof’ if it is applied only to theorems
of L. Notice that Con is formulated as a rule of proof in G3≤ L (cf. [6,
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Remark 6.23], [8, §1.5] on this important question in logics with weak rules
of inference).

Definition 2.5 (The logic G31
 L). The logic G31

 L is defined exactly as G3≤ L
except that now Con is understood as a rule of inference: If A → B, then
¬B → ¬A.

Definition 2.6 (The logic G3). The logic G3 is axiomatized by adding

A12. (A → B) → (¬B → ¬A)

A13. ¬A → (A → B)

to A1–A7 and A9 of G3≤ L . The sole rule of inference is MP (cf. [7, §A2]).

The section is ended by noting some theorems and rules of the logics
just defined.

Remark 2.7 (Some theorems and rules of G3≤ L , G31
 L and G3). The following

are provable in the three logics defined above (cf. [6, 7] and references
therein):

T1. A → A

T2. [(A → B) ∧A] → B

T3. (¬A ∧ ¬B) → ¬(A ∨B)

T4. ¬B → [¬A ∨ ¬(A → B)]

T5. ¬(A → B) → ¬B

T6. [¬(A → B) ∧ ¬A] → A

T7. [¬(A → B) ∧ (¬A ∧B)] → C

Efq. If ¬A is a theorem, then A → B is also a theorem.

In addition, the rule Ecq (“E contradictione quodlibet” —“Any proposition
is derivable from a contradiction”), if A ∧ ¬A, then B, is provable in G31

 L,

whereas A10 and A11 of G3≤ L and Ecq are, of course, provable in G3. (Efq
abbreviates “E falso quodlibet”: “Any proposition follows from a false
proposition”).
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3. A 2 set-up binary Routley semantics for G3≤
 L

In this section, G3≤ L is given a 2 set-up binary Routley semantics (2bRG3≤ L -
semantics, for short). Firstly, we define the concept of a model and related
notions.

Definition 3.1 (2bRG3≤ L -models). Let ∗ be an involutive unary operation
defined on the set K. That is, for any x ∈ K, x = x∗∗, and let K be the
two-element set {0, 0∗}. A 2 set-up binary Routley G3≤ L -model (2bRG3≤ L -
model, for short) is a structure (K,R, ∗,⊨) where (I) R is a reflexive binary
relation on K such that R00∗ or R0∗0, and (II) ⊨ is a valuation relation
from K to the set of all wffs such that the following conditions (clauses)
are satisfied for every propositional variable p, wffs A,B and a ∈ K:

(i) (Rab & a ⊨ p) ⇒ b ⊨ p

(ii) a ⊨ A ∧B iff a ⊨ A and a ⊨ B

(iii) a ⊨ A ∨B iff a ⊨ A or a ⊨ B

(iv) a ⊨ A → B iff for all b ∈ K, (Rab and b ⊨ A) ⇒ b ⊨ B

(v) a ⊨ ¬A iff a∗ ⊭ A

Definition 3.2 (2bRG3≤ L -consequence, 2bRG3≤ L -validity). For any non-
empty set of wffs Γ and wff A, Γ ⊨M A (A is a consequence of Γ in the

2bRG3≤ L -model M) iff for all a ∈ K in M, a ⊨M A whenever a ⊨M Γ (a ⊨M Γ

iff a ⊨M B for all B ∈ Γ). Then, Γ ⊨
2bRG3

≤
 L
A (A is a 2bRG3≤ L -consequence

of Γ) iff Γ ⊨M A for each 2bRG3≤ L -model M. In particular, if Γ = ∅, ⊨M A
(A is true in M) iff a ⊨M A for all a ∈ K in M. And ⊨

2bRG3
≤
 L

A (A is

2bRG3≤ L -valid) iff ⊨M A in every 2bRG3≤ L -model.

We prove some facts about 2bRG3≤ L -models.

Proposition 3.3 (0∗ ⊨ ¬A iff 0 ⊭ A). For any 2bRG3≤ L -model M and wff
A, 0∗ ⊨M ¬A iff 0 ⊭M A.

Proof: Immediate by clause (v) in Definition 3.1 and the involutiveness of
∗: 0∗ ⊨M ¬A iff (clause (v)) 0∗∗ ⊭M A iff (involutiveness of ∗) 0 ⊭M A.
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Lemma 3.4 (Hereditary Condition). For any 2bRG3≤ L -model M, a, b ∈ K
in M and wff A, (Rab & a ⊨M A) ⇒ b ⊨M A.

Proof: Induction on the structure of A. If A is B∧C or B∨C, the proof
is immediate. Then, let us prove the cases where A is B → C and ¬B. If
a = b, the proof is trivial. So, we assume a ̸= b (clauses (iv) and (v) in
Definition 3.1 are applied without mentioning them).

(I) A is B → C. (Ia) a = 0 and b = 0∗. Suppose then (1) R00∗ and (2)
0 ⊨M B → C. We have to prove 0∗ ⊨M B → C. There are two possibilities
to consider: R0∗0∗ and R0∗0. Suppose the first one, that is (3) R0∗0∗.
Assume also (4) 0∗ ⊨M B. By 1, 2 and 4, we get (5) 0∗ ⊨M C, as required.
Suppose now the second alternative, that is, (6) R0∗0. Assume also (7)
0 ⊨M B. By reflexivity of R, we have (8) R00, whence by 2 and 7, we
get (9) 0 ⊨M C, as it was to be proved. (Ib) a = 0∗ and b = 0. Suppose
(1) R0∗0 and (2) 0∗ ⊨M B → C. We have to prove 0 ⊨M B → C. There
are two possibilities to consider: R00 and R00∗. Then, the proof proceeds
similarly as in case Ia.

(II) A is ¬B. (IIa) a = 0 and b = 0∗. Suppose then (1) R00∗ and (2)
0 ⊨M ¬B (i.e., 0∗ ⊭M B). By the induction hypothesis, 1 and 2, we have
(3) 0 ⊭ B, i.e., 0∗ ⊨ ¬B, by Proposition 3.3, as required. (IIb) a = 0∗ and
b = 0. The proof is similar to that of IIa.

Lemma 3.5 (Entailment Lemma). For any wffs A, B, ⊨
2bRG3

≤
 L
A → B iff

(a ⊨M A ⇒ a ⊨M B, for all a ∈ K in all 2bRG3≤ L -models M).

Proof: (⇒) Let M be a 2bRG3≤ L -model. Suppose (1) ⊨
2bRG3

≤
 L

A → B

and (2) 0 ⊨M A (resp., 0∗ ⊨M A). By reflexivity of R, we have (3) R00 and
R0∗0∗. By 1, 2 and 3, we get (4) 0 ⊨M B (resp. 0∗ ⊨M B) as desired. (⇐)
Suppose (1) a ⊨M A ⇒ a ⊨M B, for all a ∈ K in M. Furthermore, suppose
(2) R0b (resp., R0∗b) and b ⊨M A for a given b ∈ K. Then (3) b ⊨M B
trivially follows from 1, as it was required.

Now, we can prove soundness of G3≤ L w.r.t. 2bRG3≤ L -semantics.

Theorem 3.6 (Soundness of G3≤ L ). For any set of wffs Γ and wff A, if
Γ ⊢

G3
≤
 L
A, then Γ ⊨

2bRG3
≤
 L
A.

Proof: If A ∈ Γ, the proof is trivial; and if A has been obtained by
applying MP, the proof is immediate by leaning upon the reflexivity of R.
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Then, suppose that A has been obtained by an application of Con. In
this case, A is of the form (1) ¬B → ¬C and, by hypothesis, we have
(2) ⊨

2bRG3
≤
 L

C → B. We need to prove ⊨
2bRG3

≤
 L

¬B → ¬C. We use

the Entailment Lemma. So, suppose for any arbitrary 2bRG3≤ L -model M,
(3) 0 ⊨M ¬B (resp., 0∗ ⊨M ¬B). By clause (v) (resp., Proposition 3.3), we
have (4) 0∗ ⊭M B (resp., 0 ⊭M B), whence by the Entailment Lemma and
2, we get (5) 0∗ ⊭M C (resp., 0 ⊭M C) and (6) 0 ⊨M ¬C (resp., 0∗ ⊨M ¬C)
by applying again clause (v) (resp. Proposition 3.3).

Concerning the axioms, we focus on the characteristic MG3 L -axioms,
that is, A9, A10 and A11. The proof of the validity of A1-A6 as well
as that of the double negation axioms A7 and A8 is left to the reader
(notice that A7 and A8 are immediate by involutiveness of ∗).

A9, (A ∨ ¬B) ∨ (A → B), is 2bRG3≤ L -valid. Suppose that M is a

2bRG3≤ L -model falsifying A9. Then, for some wffs A,B, either (I) 0 ⊭M

(A ∨ ¬B) ∨ (A → B) or (II) 0∗ ⊭M (A ∨ ¬B) ∨ (A → B). Case I: We have
(1) 0 ⊭ A, (2) 0 ⊭ ¬B (i.e., 0∗ ⊨ B) and (3) 0 ⊭ A → B. There are two
possibilities to consider: (4) R00, 0 ⊨ A and 0 ⊭ B; and (5) R00∗, 0∗ ⊨ A
and 0∗ ⊭ B. But 4 contradicts 1, while 5 contradicts 2. Case (II) We have
(1) 0∗ ⊭ A, (2) 0∗ ⊭ ¬B (i.e., 0 ⊨ B) and (3) 0∗ ⊭ A → B. There are
two possibilities to consider: (4) R0∗0∗, 0∗ ⊨ A and 0∗ ⊭ B; and (5) R0∗0,
0 ⊨ A and 0 ⊭ B. But 4 contradicts 1 whereas 5 contradicts 2.

A10, ¬A → [A ∨ (A → B)], is 2bRG3≤ L -valid. Suppose that M is a

2bRG3≤ L -model falsifying A10. By the Entailment Lemma, for some wffs
A,B, either (I) 0 ⊨M ¬A and 0 ⊭M A ∨ (A → B) or (II) 0∗ ⊨M ¬A and
0∗ ⊭M A ∨ (A → B) . Case I: We have (1) 0∗ ⊭ A, (2) 0 ⊭ A and (3)
0 ⊭ A → B. Now, either (4) R00, 0 ⊨ A and 0 ⊭ B or (5) R00∗, 0∗ ⊨ A
and 0∗ ⊭ B. But 4 contradicts 2, and 5 contradicts 1. Case II is treated
similarly.

A11, (A ∧ ¬A) → (B ∨ ¬B), is 2bRG3≤ L -valid. The proof is similar to
that of A10.

4. Completeness of G3≤
 L

Completeness of G3≤ L is proved by using a canonical model construction.

We begin by defining the notion of a G3≤ L -theory and the classes of G3≤ L -
theories of interest in the present paper.
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Definition 4.1 (G3≤ L -theories. Classes of G3≤ L -theories). A G3≤ L -theory

(theory, for short) is a set of formulas containing all G3≤ L -theorems and
closed under Modus Ponens (MP). Let t be a theory. We set: (1) t is prime
iff whenever A ∨ B ∈ t, then A ∈ t or B ∈ t; (2) t is trivial iff it contains
all wffs; (3) t is a-consistent (‘consistent in an absolute sense’) iff t is not
trivial; (4) t is w-inconsistent (‘inconsistent in a weak sense’) iff ¬A ∈ t, A

being a G3≤ L -theorem; then t is w-consistent (‘consistent in a weak sense’)
iff t is not w-inconsistent; (5) t is inconsistent iff A ∧ ¬A ∈ t for some wff
A; then t is consistent if it is not inconsistent (cf. [8] and references therein
on the notion of w-consistency).

Lemma 4.2 (Extension to prime theories). Let t be a theory and A a wff
such that A /∈ t. Then, there is a prime theory u such that t ⊆ u and
A /∈ u.

Proof: We extend t to a maximal theory u such that A /∈ u. If u is not
prime, then there are wffs B,C such that B ∨C ∈ u but B /∈ u and C /∈ u.
Then, we define the sets [u,B] = {D | B → D ∈ u}, [u,C] = {D | C →
D ∈ u}. By using A2, it is shown that (1) [u,B] and [u,C] are closed
under MP; by using A1, (2) that they include u. Finally, by T1, (3) that
B ∈ [u,B] and C ∈ [u,C]. Next, by the hypothesis and (1), it follows that
neither [u,B] nor [u,C] is included in u, whence we have A ∈ [u,B] and
A ∈ [u,C] due to the maximality of u. But then, we have (4) A ∈ u by A6
and the fact that B ∨ C ∈ u, contradicting our hypothesis. Consequently,
u is prime.

In what follows, it is shown how canonical 2bRG3≤ L -models are built,
Also, we prove some general facts about them.

Let Γ be a set of wffs and A a wff such that Γ ⊬
G3

≤
 L

A. Then, A is

not included in the set of consequences derivable from Γ (in symbols, A /∈
CnΓ[G3≤ L ]). By the Extension Lemma, there is a prime theory T such that

CnΓ[G3≤ L ] ⊆ T and A /∈ T . (Notice that T is a-consistent.) Then, the

canonical 2bRG3≤ L -model built upon T is defined as follows.

Definition 4.3 (Canonical 2bRG3≤ L -models). The canonical 2bRG3≤ L -mo-
del built upon T , as this theory has been defined above, is the structure

(KC , RC , ∗C ,⊨C), where (1) KC = {T , T ∗C} and for any wffs A,B and
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a, b ∈ KC , we have: (2) RCab iff (A → B ∈ a & A ∈ b) ⇒ B ∈ b; (3)

a∗
C

= {A | ¬A /∈ a} and (4) a ⊨C A iff A ∈ a.

We prove some significant and useful facts about canonical 2bRG3≤ L -

models. By T , we refer to the G3≤ L -theory upon which each canonical

2bRG3≤ L -model is built (the superscript C above R and ∗ is dropped when
there is no risk of confusion).

Proposition 4.4 (T is a w-consistent G3≤ L -theory). The G3≤ L -theory T is

a w-consistent G3≤ L -theory.

Proof: Suppose ¬A ∈ T , A being a G3≤ L -theorem. By the rule Efq,

¬A → B is a G3≤ L -theorem where B is an arbitrary wff. Then, B ∈ T ,
contradicting the a-consistency of T .

Proposition 4.5 (T ∗C

is a prime G3≤ L -theory). The ∗C-image of T , T ∗C

,

is a prime G3≤ L -theory.

Proof: (I) T ∗ is closed under MP: Suppose (1) A → B ∈ T ∗ (i.e., ¬(A →
B) /∈ T ) and (2) A ∈ T ∗ (i.e., ¬A /∈ T ) but (3) B /∈ T ∗ (i.e., ¬B ∈ T ).

By using the G3≤ L -theorem ¬B → [¬A ∨ ¬(A → B)] (T4), we have (4)
¬A ∈ T or ¬(A → B) ∈ T . But 1 and 2 contradict 4. (II) T ∗ contains

all G3≤ L -theorems: Let A be a G3≤ L -theorem such that A /∈ T ∗. Then,
¬A ∈ T , contradicting the w-consistency of T . (III) T ∗ is prime: Suppose
(5) A ∨ B ∈ T ∗ (i.e., ¬(A ∨ B) /∈ T ) but (6) A /∈ T ∗ (i.e., ¬A ∈ T ) and

(7) B /∈ T ∗ (i.e., ¬B ∈ T ). By the G3≤ L -theorem (¬A ∧ ¬B) → ¬(A ∨ B)
(T3), we have (8) ¬(A ∨B) ∈ T , contradicting 5.

Next, an alternative reading of the canonical accessibility relation is
provided together with the proof that RC is a reflexive relation such that

RCT T ∗C

or RCT ∗CT . Then, it is shown that ∗C is an involutive operation
in canonical 2bRG3≤ L -models. Also, that clauses (i), (ii), (iii) and (v) hold

in canonical 2bRG3≤ L -models.

Proposition 4.6 (RCab iff a ⊆ b). For any a, b ∈ KC , RCab iff a ⊆ b.

Proof: (⇒) Suppose (1) RCab and (2) A ∈ a, and let (3) B ∈ b. By A1
and 2, we have (4) B → A ∈ a, whence (5) A ∈ b follows by 1, 3 and 4.
(⇐) Suppose (1) a ⊆ b. (2) A → B ∈ a and (3) A ∈ b. By 1 and 2, we have
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(4) A → B ∈ b. By T2, [(A → B) ∧A] → B, 3 and 4, (5) B ∈ b follows, as
it was to be proved.

Proposition 4.7 (RCT T ∗C

or RCT ∗CT ). The canonical relation RC is

a reflexive relation such that RCT T ∗C

or RCT ∗CT .

Proof: By Proposition 4.6, it is immediate that RC is reflexive. On the
other hand, suppose that there are A,B such that (1) A ∈ T , (2) B ∈ T ∗

(i.e., ¬B /∈ T ), (3) A /∈ T ∗ (i.e., ¬A ∈ T ) and (4) B /∈ T . By (A ∧ ¬A) →
(B ∨ ¬B) (A11), we have (5) B ∨ ¬B ∈ T . But 2 and 4 contradict 5.

Proposition 4.8 (∗C is an involutive operation on KC). The canonical
operation ∗C is an involutive operation on KC .

Proof: Let a ∈ KC . Given that a is a G3≤ L -theory, A ∈ a iff ¬¬A ∈ a
follows by A7 and A8 Then, we have A ∈ a iff A ∈ a∗∗ by Definition 4.3(3).

Proposition 4.9 (Clauses (i), (ii), (iii) and (v) hold canonically). Condi-
tions (i), (ii), (iii) and (v) in Definition 3.1 hold when canonically inter-
preted according to Definition 4.3.

Proof: Condition (i) is trivial by Proposition 4.6 and condition (v) by
Definition 4.3(4). Then, condition (iii) (resp., condition (ii)) is immediate
by A5, A6 and primeness of both T and T ∗ (resp., A3 and A4).

Concerning clause (iv), we have:

Proposition 4.10 (Clause (iv) holds in the canonical 2bRG3≤ L -model).

Condition (iv) in Definition 3.1 holds in the canonical 2bRG3≤ L -model.

Proof: (⇒). Let a ∈ KC and suppose a ⊨C A → B (i.e., A → B ∈ a),
RCab (i.e., a ⊆ b) and b ⊨C A (i.e., A ∈ b). Then, b ⊨C B (i.e., B ∈ b) is
immediate by MP.

(⇐) We use Proposition 4.7. (I) T ⊆ T ∗. (Ia) Assume A → B /∈
T (i.e., ¬(A → B) ∈ T ∗). Given RT T and RT T ∗, it suffices to show
[A ∈ T & B /∈ T ] or [A ∈ T ∗ & B /∈ T ∗]. For reductio, suppose (1)
[A /∈ T & A /∈ T ∗] or (2) [A /∈ T & B ∈ T ∗] or (3) [B ∈ T & A /∈ T ∗]
or (4) [B ∈ T & B ∈ T ∗]. But 1, 2, 3 and 4 are impossible by ¬A →
[A ∨ (A → B)] (A10), (A ∨ ¬B) ∨ (A → B) (A9), A → (B → A) (A1) and
A1, respectively. (Ib) Assume A → B /∈ T ∗ (i.e., ¬(A → B) ∈ T ). Given
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RT ∗T ∗, it suffices to show A ∈ T ∗ and B /∈ T ∗. Suppose, for reductio, (1)
A /∈ T ∗ (i.e., ¬A ∈ T ) or (2) B ∈ T ∗ (i.e, ¬B /∈ T ). By I and 1, (3) A /∈ T
follows. But 1 and 2 are impossible by [¬(A → B) ∧ ¬A] → A (T6) and
¬(A → B) → ¬B (T5), respectively.

(II) T ∗ ⊆ T . (IIa) Assume A → B /∈ T . Given RT T , it suffices to
show A ∈ T and B /∈ T . By II and IIa, we have (1) A → B /∈ T ∗ (i.e.,
¬(A → B) ∈ T ). Suppose now, for reductio, (2) A /∈ T or (3) B ∈ T . If
3 obtains, then A → B ∈ T is immediate by A1, contradicting IIa. Let
then 2 be the case. By II, we have (4) A /∈ T ∗ (i.e., ¬A ∈ T ). Next,
[¬(A → B) ∧ ¬A] → A (T6) is used. By T6, 1 and 4, (5) A ∈ T follows,
contradicting 2. (IIb) A → B /∈ T ∗ (i.e., ¬(A → B) ∈ T ). Given RT ∗T ∗

and RT ∗T , it suffices to show [A ∈ T ∗ & B /∈ T ∗] or [A ∈ T & B /∈ T ].
Then, the proof is similar to that of Ia by using now [¬(A → B)∧¬A] → A
(T6), [¬(A → B) ∧ (¬A ∧B)] → C (T7) and ¬(A → B) → ¬B (T5).

We remark that the use of A9 (resp., T7) requires the primeness (resp.,
the a-consistency) of T .

Remark 4.11 (On the canonical clause (iv)). Suppose that R is required to

be only reflexive: it is not demanded of 2bRG3≤ L -models that one of R00∗

and R0∗0 be present. Then, the proof of the canonical validity of clause (iv)
would require the theoremhood of disjunctive Peirce’s law, A ∨ (A → B).

Once Proposition 4.10 proved, it immediately follows that the canonical
2bRG3≤ L -model is indeed a 2bRG3≤ L -model.

Lemma 4.12 (The canonical model is indeed a model). The canonical

2bRG3≤ L -model is indeed a 2bRG3≤ L -model.

Proof: (1) By Proposition 4.7, RC is a reflexive relation such that RT T ∗

or RT ∗T . (2) By Proposition 4.8, ∗C is an involutive operation on KC .
(3) Finally, by Propositions 4.9 and 4.10, ⊨C fulfils conditions (i)–(v) in
Definition 3.1.

Now, we prove completeness.

Theorem 4.13 (Completeness of G3≤ L ). For any set of wffs Γ and wff A,
if Γ ⊨

2bRG3
≤
 L
A, then Γ ⊢

G3
≤
 L
A.

Proof: Suppose Γ ⊬
G3

≤
 L
A. By the Extension Lemma (Lemma 4.2), there

is a prime theory T such that Γ ⊆ T and A /∈ T . Then, the canon-
ical 2bRG3≤ L -model is defined upon T as shown in Definition 4.3. By
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Lemma 4.12, the canonical 2bRG3≤ L -model is a 2bRG3≤ L -model. Then,
Γ ⊭C A, since T ⊨C Γ but T ⊭C A. Consequently, Γ ⊭

2bRG3
≤
 L

A by

Definition 3.2.

5. A 2 set-up binary Routley semantics for G31
 L

In this section, G31
 L is given a 2 set-up binary Routley semantics (2bRG31

 L-
semantics, for short) and G31

 L is proved strongly sound and complete w.r.t.
said semantics (we lean upon the results in Sections 3 and 4).

Definition 5.1 (2bRG31
 L-models). A 2-set-up binary G31

 L-model (2bRG31
 L-

model, for short) is a structure (K,R, ∗,⊨) where K, ∗ and ⊨ are defined

exactly as in 2bRG3≤ L -models and R is a reflexive relation such that R00∗,

instead of being a reflexive relation such that R00∗ or R0∗0, as in 2bRG3≤ L -
models.

Definition 5.2 (2bRG31
 L-consequence, 2bRG31

 L-validity). The notions of
2bRG31

 L-consequence and 2bRG31
 L-validity are defined similarly as the cor-

responding notions for G3≤ L , except that in each model M they are restricted
now to the element 0 in K. Thus, for example, Γ ⊨M A iff 0 ⊨M A, whenever
0 ⊨ Γ (0 ⊨ Γ iff 0 ⊨ B for all B ∈ Γ).

Then, we note that Proposition 3.3 and Lemmas 3.4 and 3.5 still hold
for G31

 L and are proved in a similar way as in G3≤ L .
Concerning soundness, the essential point is to prove that Contraposi-

tion (Con) holds as a rule of inference.

Proposition 5.3 (Con preserves 2bRG31
 L-validity). Con (if A → B, then

¬B → ¬A) preserves 2bRG31
 L-validity.

Proof: Let M be a 2bRG31
 L-model and A,B wffs such that (1) 0 ⊨ A → B

but (2) 0 ⊭ ¬B → ¬A. There are two possibilities to consider: (3) R00,
0 ⊨ ¬B (i.e., 0∗ ⊭ B), 0 ⊭ ¬A (i.e., 0∗ ⊨ A) and (4) R00∗, 0∗ ⊨ ¬B (i.e.,
0 ⊭ B) and 0∗ ⊭ ¬A (i.e., 0 ⊨ A). If 3 obtains, we get (5) 0∗ ⊨ B by 1, since
R00∗ holds in M. But 3 and 5 contradict each other. If, on the other hand,
4 is the case. we have (6) 0 ⊨ B by using again 1, since R00 holds in M.
But, as in the previous case, a contradiction arises (6 contradicts 4).

Remark 5.4 (Con cannot be validated w.r.t. K). We note that if 2bRG31
 L-

consequence is defined w.r.t. K instead of w.r.t. only 0 in K, Con as a rule
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of inference does not preserve 2bRG31
 L-validity. Consider a 2bRG31

 L-model
M where R0∗0 does not follow and, for distinct propositional variables p, q,
we have 0 ⊨M p (i.e., 0∗ ⊭M ¬p), 0 ⊭M q (i.e., 0∗ ⊨M ¬q), 0∗ ⊨M p and
0∗ ⊨M q. Clearly, 0∗ ⊨M p → q but 0∗ ⊭M ¬q → ¬p as R0∗0∗ holds by
reflexivity of R. Also, notice that by the Entailment Lemma, this 2bRG31

 L-
model shows that the contraposition axiom, (A → B) → (¬B → ¬A), is
not 2bRG31

 L-valid.

Now, the proof that MP preserves 2bRG31
 L-validity and that A1-A11

are 2bRG31
 L-valid is similar as in 2bRG3≤ L -models. In fact, it is simpler. If

A is an implicative axiom, only the case R00∗, not both R00∗ and R0∗0, as
in 2bRG3≤ L -models, has to be considered. And if A is A9, only truth w.r.t.
0, not w.r.t. both 0 and 0∗, has to be examined. Finally, that MP preserves
2bRG31

 L-validity is immediate by reflexivity of R, as in 2bRG3≤ L -models.

As regards completeness, the main difference w.r.t. G3≤ L is that G31
 L-

theories need now to be closed under Con. Consequently, the Extension
Lemma (Lemma 4.2) does not hold, as it stands, in the case of G31

 L. Nev-
ertheless, the disjunctive derivability strategy (as it is carried on in e.g., [9]
following [2] or [10]) is applicable since disjunctive Con (i.e., if C∨(A → B),
then C ∨ (¬B → ¬A)) is an admissible rule in G31

 L since it is admissible in
G3 L, that is, the logic containing all and only all MG3 L-valid wffs (cf. [4,
§4.3 and also Remark 6.20]). Consequently, we have an adequate Extension
Lemma at our disposal (cf., e.g., [9]), and then the completeness proof can

proceed similarly as in G3≤ L . However, three points have to be stressed.
(1) The G31

 L-theory T upon which the canonical G31
 L-model is defined is a

consistent G31
 L-theory. This is immediate since the a-consistency of T en-

tails its consistency due to its closure under the rule Ecq (cf. Remark 2.7).
(2) The property R00∗ holds when interpreted canonically. For suppose for

reductio that there is a wff A such that A ∈ T but A /∈ T ∗C

. Then, ¬A ∈ T
contradicting the consistency of T . (3) (I) in Proposition 4.10 suffices for
the proof of the canonical validity of the conditional clause, condition (iv)
in Definition 3.1.

Based upon the argumentation developed so far in the present section,
we think that we are entitled to state the following theorem.

Theorem 5.5 (Soundness and completeness of G31
 L). For any set of wffs

Γ and wff A, Γ ⊨2bRG31
 L
A iff Γ ⊢G31

 L
A.
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6. A 2 set-up binary Routley semantics for G3

This section on Gödelian 3-valued logic G3 mirrors the preceding section
about the logic G31

 L. That is, G3 is endowed with a 2 set-up binary Routley
semantics (2bRG3-semantics, for short) w.r.t. which G3 is shown strongly
sound and complete.

Definition 6.1 (2bRG3-models). A 2-set-up binary G3-model (2bRG3-
model, for short) is a structure (K,R, ∗,⊨) where K,R and ⊨ are defined
exactly as in 2bRG31

 L-models but ∗ is a quasi-involutive unary operation
on the set K, instead of a involutive one as in Definitions 3.1 and 5.1. That
is, we now have: for any x ∈ K, x∗ = x∗∗.

Definition 6.2 (2bRG3-consequence, 2bRG3-validity). The notions of
2bRG3-consequence and 2bRG3-validity are defined w.r.t. the set K (not

only w.r.t. 0 in K) similarly as in 2bRG3≤ L -models (and unlike in 2bRG31
 L-

models).

Regarding Proposition 3.3 and Lemmas 3.4 and 3.5, we note the follow-
ing facts.

Lemma 3.5 (Entailment Lemma) and conjunction, disjunction and con-
ditional cases in Lemma 3.4 (Hereditary Condition) are proved similarly as

in the case of G3≤ L , while the negation case in the latter lemma is proved
as follows.

Proposition 6.3 (The negation case in Lemma 3.4). The negation case
in Lemma 3.4 holds for G3.

Proof: (II) A is ¬B. (IIa) a = 0 and b = 0∗. Suppose (1) R00∗ and
(2) 0 ⊨M ¬B (i.e., 0∗ ⊭M B). By quasi-involutiveness of ∗, we get (3)
0∗∗ ⊭M B, whence (4) 0∗ ⊨M ¬B follows by clause (v) in Definition 3.1.
(IIb) a = 0∗ and b = 0. Suppose (1) R0∗0 and (2) 0∗ ⊨M ¬B. By clause
(v) in Definition 3.1, we have (3) 0∗∗ ⊭ B, whence by involutiveness of ∗
(4) 0∗ ⊭M B follows. Finally, (5) 0 ⊨M ¬B is obtained by applying again
clause (v) in Definition 3.1.

Contrary to what the strategy was in the case of G3≤ L , the negation
case in Lemma 3.4 has not been proved leaning upon Proposition 3.3, since
this proposition only holds from left to right.
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Proposition 6.4 (0∗ ⊨ ¬A ⇒ 0 ⊭ A). For any 2bRG3-model M and wff
A, if 0∗ ⊨M ¬A, then 0 ⊭M A.

Proof: Suppose (1) 0∗ ⊨M ¬A. By clause (v) (Definition 3.1), (2) 0∗∗ ⊭M

A, whence by quasi-involutiveness of ∗, we get (3) 0∗ ⊭M A, and finally, (4)
0 ⊭M A by Lemma 3.4, R00∗ and 3.

As regards soundness, the 2bRG3-validity of the contraposition and
Efq axioms ((A → B) → (¬B → ¬A) (A12) and ¬A → (A → B) (A13),

respectively) is the point of interest, by comparison to G3≤ L and G31
 L, since

the rest of the proof proceeds much as the corresponding proofs for the two
logics just mentioned. So, let us prove the 2bRG3-validity of A13 as a way
of an example.

Proposition 6.5 (Efq is 2bRG3-valid). The Efq axiom ¬A → (A → B)
(A13) is 2bRG3-valid.

Proof: A13, ¬A → (A → B), is 2bRG3-valid. Suppose that M is a
2bRG3-model falsifying A13. By the Entailment Lemma, for some wffs
A,B, either (I) 0 ⊨M ¬A and 0 ⊭M A → B or (II) 0∗ ⊨M ¬A and 0∗ ⊭M

A → B. Case I: We have (1) 0∗ ⊭M A and either (2) R00, 0 ⊨M A and
0 ⊭M B or (3) R00∗, 0∗ ⊨M A and 0∗ ⊭M B. But 3 contradicts 1, whereas
(4) 0∗ ⊨M A follows from R00∗ and 2, contradicting again 1. Case II:
we have (1) 0∗ ⊨M ¬A (i.e., 0∗∗ ⊭ A) and either (2) R0∗0∗, 0∗ ⊨M A
and 0∗ ⊭M B or (3) R0∗0, 0 ⊨M A and 0 ⊭M B. If 2 obtains, by quasi-
involutiveness of ∗ and 1, we get (4) 0∗ ⊭M A, a contradiction. If (3) is the
case, by Proposition 6.4, we have (5) 0∗ ⊭M ¬A contradicting 1.

Turning to completeness, the proof can be carried on similarly as that
for G3≤ L , given that the sole rule of inference is MP and consequently the
disjunctive derivability strategy used in the completeness proof for G31

 L is
not needed here. The only worth-remarking differences w.r.t. the com-
pleteness proof for G3≤ L are the following ones: (1) as it was the case with
G31

 L, (a) the theory T basing the canonical 2bRG3-model is a consistent
2bRG3-theory. (b) The property R00∗ is proved to hold when canonically
interpreted by using the consistency of T . (2) ∗C is now a quasi-involutive

operation on KC (not an involutive one as in the canonical 2bRG3≤ L - and
2bRG31

 L-models). The fact is proved by using the consistency of T and
the G3-theorem ¬A ∨ ¬¬A. (3) As it happened with G31

 L, (I) in Proposi-
tion 4.10 suffices in order to prove the canonical validity of clause (iv).
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The end of section mirrors that of the precedent one.

Theorem 6.6 (Soundness and completeness of G3). For any set of wffs Γ
and wff A, Γ ⊨2bRG3 A iff Γ ⊢G3 A.

7. Concluding remarks

In the present paper, a 2 set-up binary Routley semantics (2bR-semantics)
is provided for each one of the logics G3, its paraconsistent counterpart,
G3≤ L , and an extension of the latter, G31

 L. The logics G3≤ L and G31
 L were in-

troduced in [6], where they were given Hilbert-type axiomatic formulations,
once having been interpreted with a ‘two-valued’ Belnap-Dunn semantics.
Recently, Gentzen-type calculi equivalent to the Hilbert-type formulations
have been defined in [1].

The different 2bR-semantics defined above have been characterized by
having one of the two ensuing features listed in 1, 2 and 3 below.

1. Binary relation R. Property (a) R00∗ and property (b) R00∗ or R0∗0,
in addition to reflexivity (i.e,, R00 and R0∗0∗).

2. Unary relation ∗. (a) Involutiveness. (b) Quasi-involutiveness.

3. Definition of validity. (a) W.r.t. the set K of the two points. (b) Only
w.r.t. 0 in K.

But there are other possibilities that may be interesting to examine.
For example, inclusion of the property R0∗0. Of course, if R is such that
both R00∗ and R0∗0 hold, the resulting 2bR-semantics verifies all classical
tautologies. But what about R0∗0 and involutiveness? Or what about
R0∗0 and quasi-involutiveness? And which is the notion of validity the
2bR-semantics is going to be defined with? Are there interesting systems
characterized by the sketched 2bR-semantics?
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