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AN ESTIMATION OF THE JUMP

OF THE MILNOR NUMBER

OF PLANE CURVE SINGULARITIES

ALEKSANDRA ZAKRZEWSKA

Abstract. The jump of the Milnor number of an isolated singularity f0 is

the minimal non-zero difference between the Milnor numbers of f0 and one of

its deformations fs. We estimate the jump using the Enriques diagram of f0.

1. Introduction

Let f0 : (Cn, 0) → (C, 0) be an isolated singularity, i.e. a function germ for

which there exists a representative f̂0 : U → C of f0, holomorphic in an open

neighbourhood U of the point 0 ∈ Cn such that f̂0(0) = 0, ∇f̂0(0) = 0, ∇f̂0(z) ̸= 0

for z ∈ U \ {0}. We put ∇f :=
(

∂f
∂z1

, . . . , ∂f
∂zn

)
. In the sequel a singularity means

an isolated singularity.

A deformation of a singularity f0 is the germ of a holomorphic function
f = f(s, z) : (C× Cn, 0) → (C, 0) such that

(1) f(0, z) = f0(z),
(2) f(s, 0) = 0.

The deformation f(s, z) of the singularity f0 will also be treated as a family (fs)
of function germs, taking fs(z) := f(s, z). Since f0 is an isolated singularity, fs for
sufficiently small s also has isolated singularities near 0 ([GLS06] Theorem 2.6 I).
Hence, for sufficiently small s one can define the Milnor number of fs

µs := µ(fs) = dimC On/(∇fs),
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where On is the ring of holomorphic function germs at 0, and (∇fs) is the ideal in

On generated by ∂fs
∂z1

, . . . , ∂fs
∂zn

.

Since the Milnor number is upper semi-continuous in the Zariski topology in
families of singularities ([GLS06], Theorem 2.6 I and Proposition 2.57 II), there
exists an open neighbourhood S of the point 0 such that

(1) µs = const. for s ∈ S \ {0},
(2) µ0 ≥ µs for s ∈ S.

The constant difference µ0 − µs (for s ̸= 0) will be called the jump of the
deformation (fs) and denoted by λ((fs)). The smallest non-zero value among all
the jumps of deformations of the singularity f0 will be called the jump of the
Milnor number of the singularity f0 and denoted by λ(f0).

From now on, we will consider only plane curve singularities f0 :
(
C2, 0

)
→

(C, 0).

The first general result concerning the jump of the Milnor number was obtained
by Sabir Gusein-Zade([GZ93]), who proved that there exist singularities f0 for
which λ(f0) > 1 and gave some sufficient conditions for which λ(f0) = 1. These
conditions are in terms of branches and the resolution process of plane surve sin-
gularities. In particular from his result follows λ(f0) = 1 for irreducible plane
singularities.

S. Brzostowski, T. Krasiński and J. Walewska in [BKW21] proved that for the
special reducible singularities fn

0 (x, y) = xn + yn, n ≥ 2, we have λ(f0) =
[
n
2

]
.

Determining the jump of a singularity is a difficult task because it is not a topolog-
ical invariant ([BK14], [dPW95] Section 7.3). For specific classes of deformations
i.e. for non-degenerated deformations (it means each element of the family fs is a
non-degenerated singularity in the Kouchnirenko sense [Kou76]) the jump problem
was considered in [Bod07], [Wal13], [BKW21], [KW19].

One of the results of this article is an extension of the Gusein-Zade result
([GZ93]) by giving a next sufficient condition for plane curve singularities f0 under
which λ(f0) = 1 (Theorem 4.1). Our methods give also the Gusein-Zade conditions.

The second result of the article (Theorem 3.1) is an estimation (from above) of
λ(f0) in terms of branches and the resolution process of plane curve singularities
using previous result concerning the jump in the case f0 is a homogenous (quasi-
homogenous) singularities ([Zak17],[Zak]).

We obtain both above results in the framework of narrower class of deformations
- linear deformations of the form f0 + sg, where g is a holomorphic function in the
neighbourhood of 0 such that g(0) = 0. We will denote the jump of f0 for this class
of deformations by λlin(f0). Of course λ(f0) ≤ λlin(f0) and so any estimation of
λlin(f0) from above is automatically an estimation of λ(f0),

To get this formula the Enriques diagrams will be used. To any singularity
we can assign a weighted Enriques diagram (D, ν) which represents the whole
resolution process of this singularity ([CA00] Chapter 3.9). It is a tree with two
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types of edges and a weight function ν : D → Z on vertices of the diagram.
M. Alberich-Carraminñana and J. Roé ([ACR05] Theorem 1.3, Remark 1.4) gave a
necessary and sufficient condition for two Enriques diagrams of singularities to be
linear adjacent. It means that one singularity is a linear deformation of another.
They used a wider class of Enriques diagrams, so-called abstract Enriques diagrams,
which are described in Section 2.

In Section 3 we estimate the jump λ(f0) in terms of its Enriques diagram and in
Section 4 we give sufficient conditions under which λlin(f0) = 1 and consequently
λ(f0) = 1.

2. Enriques diagrams

Information about abstract Enriques diagrams can be found in [ACR05] and
[KP99]. Moreover in my previous paper [Zak17], in which I gave the estimation of
λlin(f0) for homogeneous singularities, abstract Enriques diagrams are described
in more details with examples.

Definition 2.1. An abstract Enriques diagram (in short an Enriques diagram)
is a rooted tree D with a binary relation between vertices, called proximity, which
satisfies:

(1) The root is proximate to no vertex.
(2) Every vertex that is not the root is proximate to its immediate predecessor.
(3) No vertex is proximate to more than two vertices.
(4) If a vertex Q is proximate to two vertices, then one of them is the immediate

predecessor of Q and this is proximate to the other.
(5) Given two vertices P,Q with Q proximate to P , there is at most one vertex

proximate to both of them.

The fact that Q is proximate to P we will denote by Q → P . The vertices which
are proximate to two points are called satellite, the other vertices (except the root)
are called free. The vertex is final if has no successor. To show graphically the
proximity relation, Enriques diagrams are drawn according to the following rules:

(1) If Q is a free successor of P , then the edge going from P to Q is smooth
and curved and, if P is not the root, it has at P the same tangent as the
edge joining P to its predecessor.

(2) The sequence of edges connecting a maximal succession of vertices proxi-
mate to the same vertex P are shaped into a line segment, orthogonal to
the edge joining P to the first vertex of the sequence.

The example of an abstract Enriques diagram is shown in Figure 1.

We will now introduce few basic notations that are needed in the sequel.

A weight function of an abstract Enriques diagram D is any function ν : D →
Z defined on vertices of D. A pair (D, ν), where D is an abstract Enriques diagram
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• •
• •
• ◦ •

•
◦ ◦

• • •

Figure 1. The abstract Enriques diagram. Satellite vertices are
marked in white

and ν its weight function, is called a weighted Enriques diagram. A consistent
Enriques diagram is a weighted Enriques diagram such that for all P ∈ D

(1) ν(P ) ≥
∑
Q→P

ν(Q).

A complete Enriques diagram is a weighted Enriques diagram such that for all
non-final P ∈ D the equality in (1) holds and for all final P ∈ D it is a free vertex
with weight 1 not proximate to another free vertex with weight 1. To the weight
function ν of a weighted diagram D we associate a system of values, which is
another map ordν : D → Z, defined recursively as

ordν(P ) :=

{
ν(P ), if P is the root,
ν(P ) +

∑
P→Q

ordν(Q), otherwise.

For any consistent (D, ν) we define the Milnor number of (D, ν) by

µ((D, ν)) :=
∑
P∈D

ν(P )(ν(P ) − 1) + 1 − rD,

where rD :=
∑

P∈D rD(P ), rD(P ) :=
(
ν(P ) −

∑
Q→P ν(Q)

)
for every P ∈ D.

A subdiagram of an abstract Enriques diagram D is a subtree D0 ⊂ D with
the same proximity relation such that if Q ∈ D0 then its predecessor belongs to
D0.

In the class of weighted Enriques diagrams, we introduce equivalence relation.
We say that weighted diagrams (D, ν) and (D′, ν′) are equivalent if they differ
at most in free vertices of weight 1. The equivalence class of (D, ν) is denoted by
[(D, ν)] and called the type of (D, ν). Of course, the Milnor number is constant
in the class [(D, ν)].

A minimal Enriques diagram is a consistent Enriques diagram (D, ν) with:

(1) no free vertices of weight 0,
(2) no free vertices of weight 1 except for these such P ∈ D for which there

exists a satellite vertex Q ∈ D satisfying Q → P .
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It is easy to see ([Zak17], Theorem 2.12) that

Theorem 2.2. Let (D, ν) be a consistent weighted diagram. There exists exactly
one minimal diagram which belongs to [(D, ν)].

The theory of Enriques diagrams has its roots in the theory of plane curve
singularities. The embedded resolution of a plane curve singularity using blow-ups
can be explicitly presented as a complete Enriques diagram. A precise description
can be found in [CA00] Chapter 3.8 and Chapter 3.9. Two plane curve singularities
are topologically equivalent if and only if their Enriques diagrams are isomorphic
(as graphs). For the Enriques diagram (D, ν) of a plane curve singularity f0, the
weight function represents the orders of the consecutive proper transforms of f0
while the system of values – the orders of the total transforms. The number rD(P )
equals to the number of branches at P of a proper transform of f0 for which next
blow-up at P ”resolve” these branches. Hence, rD is the number of branches of f0.
Moreover (D, ν) is complete. We need only the next fact which easily follows from
these results.

Theorem 2.3 ([CA00] Theorem 3.8.6). There exists a bijection between minimal
Enriques diagrams and topological types of singularities.

In the paper [ACR05], M. Alberich-Carramiñana and J. Roé gave a necessary
and sufficient condition for two Enriques diagrams of singularities to be linear
adjacent. This is the key result we will use in the sequel. First we give definitions.

Definition 2.4. Let (D, ν) and (D′, ν′) be weighted Enriques diagrams, with
(D′, ν′) consistent. We will write (D′, ν′) ≥ (D, ν) when there exist isomorphic
subdiagrams D0 ⊂ D, D′

0 ⊂ D′ with an isomorphism (that preserves proximity
relations)

i : D0 → D′
0

such that the new weight function κ : D → Z for D, defined by

κ(P ) :=

{
ν′(i(P )), P ∈ D0

0, P /∈ D0

satisfies

ordν(P ) ≤ ordκ(P )

for any P ∈ D.

Definition 2.5. Let [(D, ν)] and [(D̃, ν̃)] be types of Enriques diagrams. [(D̃, ν̃)]
is linear adjacent to [(D, ν)] if there exists a consistent Enriques diagram

(D′, ν′) ∈ [(D̃, ν̃)] such that (D′, ν′) ≥ (Dmin, νmin), where (Dmin, νmin) is the
minimal diagram of type [(D, ν)].

Theorem 2.6 ([ACR05] Theorem 1.3 and Remark 1.4). Let [(D, ν)] and [(D̃, ν̃)]
be types of consistent Enriques diagrams. The following conditions are equivalent:

(1) [(D̃, ν̃)] is linear adjacent to [(D, ν)].
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(2) For every singularity f0 whose Enriques diagram belongs to [(D̃, ν̃)], there
exists a linear deformation (fs) of f0 such that the Enriques diagram of
a generic element fs belongs to [(D, ν)].

(3) There exists a singularity f0 whose Enriques diagram belongs to [(D̃, ν̃)]
and a linear deformation (fs) of f0 such that the Enriques diagram of
a generic element fs belongs to [(D, ν)].

This theorem was also formulated using prime divisors by J. Fernández de
Bobadilla, M. Pe Pereira and P. Popescu-Pampu in Theorem 3.25 ([dBPPP17]).

Theorems 2.3 and 2.6 imply the following corollary:

Corollary 2.7. λlin(f0) is a topological invariant.

3. Estimation of the jump of the Milnor number for linear
deformation

Let f0 : C2 → C be a singularity and (D, ν) its minimal Enriques diagram. The
jump of the Milnor number for linear deformation can be estimated as follows.

Theorem 3.1.

λlin(f0) ≤ min{l(P ) : P - a leaf in D},

where l(P) can be read from the table

ν(P )

vertex
P root free satellite

1 - - 1
2 1 1 2
≥ 3 ν(P ) − 2 ν(P ) − 1 ν(P )

Proof. Let DL = {L1, . . . , Lm} be a set of leaves of (D, ν). For each i =
1, . . . ,m we will define the diagram (Ei, λi) by a modification of (D, ν), for which
the difference of the Milnor number of (Ei, λi) and (D, ν) is equal to l(Li). If
ν(Li) = 1 we remove only the Li from (D, ν) and this will be (Ei, λi). If ν(Li) = 2
and Li is the root, then Ei will have only one vertex with weight 1. If ν(Li) = 2
and Li is not a root we change the weight of Li to 1 and add one additional satellite
vertex W with weight 1, so that W → Li (Figure 2(a)) and this will be (Ei, λi).

If ν(Li) ≥ 3 we change the weight of Li to ν(Li) − 1 and add new vertices
free U and satellite W1, . . . ,Wν(Li)−3 (if ν(Li) = 3 there is no Wj vertices), all
proximate to Li. The weight of new vertices are: λi(U) = 2, λi(Wj) = 1 (for
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(a)
•1Li

W 1

(b)
•ν(Li)−1
Li

•2U •1W1
•1Wν(Li)−3

Figure 2. The Enriques diagram (E, λ)

j = 1, . . . , ν(Li) − 3). The proximity relation between new vertices is

Wν(Li)−3 → Wν(Li)−4, Li

. . .

W2 → W1, Li

W1 → U,Li

U → Li,

see Figure 2(b).

It is easy to check that (Ei, λi) is a minimal (and hence consistent) diagram and
that (Ei, λi) /∈ [(D, ν)]. From the above detailed description of (Ei, λi) we easily
show that [(D, ν)] is linear adjacent to [(Ei, λi)].

Now we may compute the Milnor number of (Ei, λi). It is easy to notice that

rEi =


rD + 1, if ν(Li) = 1
rD − 1, if ν(Li) = 2, Li is a root
rD − 2 + wLi

, if ν(Li) = 2, Li is not a root
rD − d + 2 + wLi , if ν(Li) ≥ 3

,

where wLi
is a number of vertices to which Li is proximate to. Then we get

µ ((Ei, λi)) = µ ((D, ν)) − l(Li). Since this formula is true for every i = 1, . . . ,m
and from Theorem 2.6 we get λlin(f0) ≤ min

i=1,...,m
l(Li). □

Hence, we get a corollary for the general jump λ(f0).

Corollary 3.2.

λ(f0) ≤ min{l(P ) : P - a leaf in D}.

Remark 3.3. In Theorem 3.1 the estimation cannot be replace by an equality. Let
consider the singularity f0(x, y) = x8 + y5, its minimal Enriques diagram (D, ν)
is shown in Figure 3. It is easy to check that [(D, ν)] is linear adjacent to [(E, λ)]
shown in Figure 4. Since µ((D, ν))−µ((E, λ)) = 22−21 = 1, we have λlin(f0) = 1.
On the other hand from Theorem 3.1 we get only such an estimation λlin(f0) ≤
3 − 1 = 2.
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•5 •3

Figure 3. Minimal Enriques diagram of f0(x, y) = x8 + y5

•4 •4

Figure 4. Enrqiues diagram (E, λ)

4. Singularities with the Milnor number 1

In this Section we gave next sufficient conditions for plane curve singularities
f0 under which λ(f0) = 1. In [GZ93] Gusain-Zade proved that if for a singularity
f0 there exists a maximal exceptional divisor which intersects no more than three
other components of the total preimage of the curve f0 = 0, then λ(f0) = 1. In
terms of Enriques diagram this condition is equivalent to the first three conditions
of the next theorem. We add the next one condition.

Theorem 4.1. Let f0 : C2 → C be a singularity and (D, ν) its minimal diagram.
If one of below conditions is true:

(1) there exists a leaf P ∈ D such that P is satellite with weight 1,
(2) the diagram D contains only root with weight 2,
(3) there exists a leaf P ∈ D such that P is free with weight 2,
(4) ν(RD) ≥ 2 +

∑
P→RD

ν(P ) and there exists P ∈ D such that ν(P ) =

ν(RD) − 2,

then λ(f0) = λlin(f0) = 1.

Proof. If (D, ν) satisfies one of first three conditions then from Theorem 3.1 we
get immediately that λ(f0) = λlin(f0) = 1.

If (D, ν) satisfies the fourth condition we will construct (E, λ) such that, [(D, ν)]
is linear adjacent to [(E, λ)] and µ((E, λ)) = µ((D, ν))−1. Let {P1, . . . , Pm} will be
the set of vertices of the diagram D, where P1 is a root, and ν(P2) = ν(P1)−2. We

can assume that ν(P2) < ν(P̃2) where P̃2 is a predecessor of P2. Indeed, otherwise

(if their weights are the same) we take P̃2 instead of P2. We put E = D with
changed weights λ,

λ(Pi) =

 ν(P1) − 1, if i = 1
ν(P2) + 1, if i = 2
ν(Pi), if i ≥ 3

.

The diagram E is consistent and it is easy to check that [(D, ν)] is linear adjacent
to [(E, λ)]. Since rE = rD − 1, µ((E, λ)) = µ((D, ν)) − 1. □

Remark 4.2. The singularity f0 from Remark 3.3 is an example of a singularity
that does not meet the first three conditions and meets the last one.
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Remark 4.3. The above theorem seems to describe all Enriques diagrams of sin-
gularity such that λlin(f0) = 1.
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