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EFFECTIVE PROOF OF GUSEĬN-ZADE THEOREM
THAT BRANCHES MAY BE DEFORMED WITH JUMP ONE

ANDRZEJ LENARCIK AND MATEUSZ MASTERNAK

Abstract. Let f ∈ C{X,Y } be a reduced series which defines a singular
branch f = 0 in a neighbourhood of zero in C2. Let h ≥ 1 be the number
of characteristic exponets of a Puiseux root y(X) ∈ C{X}∗ of the equation
f = 0. For any k ∈ {1, . . . ,h} we define the series fk ∈ C{X,Y } generated
by all terms of the series y(X) with orders strictly smaller than the k-th
characteristic exponent. We consider a deformation Ft = f+tXω0fω1

1 . . . f
ωh
h

(t ̸= 0, small) where ω0, ω1, . . . , ωh are nonnegative integers. Using a version
of the Newton algorithm proposed by Cano we show how to choose exponents
ω0, ω1, . . . , ωh to obtain the Milnor number of the deformation Ft smaller
by one than the Milnor number of the branch f . We prove a version of
Kouchnirenko theorem which is useful in computation the Milnor number.

1. Introduction

Let f ∈ C{X,Y } be a reduced series which defines an isolated singularity in
the neighbourhood of 0 ∈ C2 and let F ∈ C{T,X, Y } be a series such that
F (0, X, Y ) = f(X,Y ) and Ft ∈ C{X,Y } are isolated singularities for small
t ∈ C. The series F is called a deformation of the singularity of f . For any series
g, h ∈ C{X,Y } the intersection multiplicity (g, h)0 is defined as the C codimension
of the ideal generated by g and h in C{X,Y }. We consider the Milnor number
µ(f) = (∂f/∂X, ∂f/∂Y )0. At Arnold’s seminar they asked what happened with
the Milnor number of the singularity after deformation ([1], e.g. 1975–15, 1982–
12). The semi-continuity of the Milnor number implies that µ(f) ≥ µ(Ft) (see:
e.g. [9]). A basic notion that can be studied in this context is the minimal jump
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of the Milnor number µ(f) − µ(Ft) where Ft runs over all deformations of singu-
larity. In [10] Gusĕın-Zade showed that there exist reducible singularities which
the minimal jump greater than one. Moreover, he proved that this jump equals
one for branches. The proofs of the above mentioned results are not effective. The
effective proof of the second result is the aim of this note. The effective proof of the
first type result was obtained by Brzostowski and Krasiński in [3]. Many results
concerning deformations of homogeneous singularities can be found in [4].

Bodin in [2] used the Kouchnirenko theorem [14] in order to obtain an effective
construction of the deformation. We recall the Kouchnirenko theorem in dimension
two. For any series f =

∑
cαβX

αY β we consider its Newton diagram ∆(f) which
is the convex hull of the union of the sets (α, β) + R2

+ where (α, β) runs over all
nonzero coefficients of f ; R+ = {x : x ≥ 0}. Assume that the Newton diagram has
the vertex (a, 0) on the horizontal axis and the vertex (0, b) on the vertical axis.
Note that if f is singular then a, b ≥ 2. Let P denotes the area of the polygon
bounded by the boundary of the diagram ∆(f) and by the coordinate axes. The
Kouchnirenko theorem states that µ(f) ≥ 2P − a− b+ 1.

In order to describe the equality case in the formula of Kouchnirenko we need
the notion of nondegeneracy. We consider the Newton polygon N (f) which is
the set of compact boundary faces (pairwise nonparallel) of the Newton diagram
∆(f). For any face (segment) S ∈ N (f) we define the initial form in(f, S) as
the sum of all monomials cαβX

αY β of f such that (α, β) ∈ S. We say that the
series f is nondegenerate on S if the initial form in(f, S) ∈ C[X,Y ] has only single
factors different from the powers of variables X or Y . We say that the series f is
nondegenrate (in Kouchnirenko sense) if it is nondegenerate on every segment of
the Newton polygon N (f). In the case of nondegeneracy we have the equality in
the formula of Kouchnirenko. The opposite implication is true in dimention two
(see e.g. [7]).

For any coprime integers p and q such that p > q ≥ 2 let us consider a non-
degenerate singularity f = Xp + Y q. In the mentioned paper, Bodin proposed
the deformation Ft = Xp + Y q + tX α̃Y β̃ . Using the elementary number theory it
is possible to choose (α̃, β̃) below the segment joining (0, q) and (p, 0) such that
0 < α̃ < p, 0 < β̃ < q and the area of the triangle with vertices (0, q), (α̃, β̃), (p, 0)
equals 1

2 . By Kouchnirenko Theorem we get µ(Ft) = µ(f)− 1 for t ̸= 0. This idea
was developed by Michalska and Walewska in [21]. They showed for the considered
singularity that every number from 1 to r(q − r) can be the jump of the Milnor
number of f where r is the remainder of division p by q.

The main result of our note (Theorem 1.1) may be treated as a generalization
of the mentioned above observation of Bodin. Before presenting the result let us
recall the ring of Puiseux sereis C{X}∗ =

⋃
N≥1 C{X1/N} [23, 22, 20, 18]. For any

positive integer number v0 we consider a series y ∈ C{X1/v0}. For nonzero y we
can write

(1) y = a1X
v1/v0 + a2X

v2/v0 + . . . , a1, a2, . . . ̸= 0 ,
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0 < v1 < v2 < . . . integers. We call (v0, v1, v2, . . . ) a sequence associated with y.
With y = 0 we associate the sequence (v0). The elements of every two sequences
associated with y ∈ C{X}∗ are proportional. Therefore, there exists exactly one
sequence associated with y for which the greatest common divisor of its elements
equals 1. Let G(v0) denotes the group of unity roots of degree v0. For every
τ ∈ G(v0) we define the action

(2) τ ∗ y = a1τ
v1Xv1/v0 + a2τ

v2Xv2/v0 + . . . .

Let τ be a primitive root of G(v0). The series τ0 ∗ y, τ1 ∗ y, . . . , τv0−1 ∗ y are called
the conjugations of y in C{X1/v0}. The conjugation of the zero series equals itself.
The number of different conjugations of y equals N = v0/GCD(v0, v1, . . . ) (see:
e.g. [20]). We obtain them for i = 0, 1, . . . , N − 1. The different conjugations form
the so-called cycle of series y. The number N and the cycle depend only on the
series y. We write N = N(y) for the number of elements and cycle(y) for the cycle.

By using Newton-Puiseux theorem (see e.g. [23], [18]) we conclude that for every
branch f coprime to X there exists a series y ∈ C{X1/v0} with N -elemental cycle
{τ0 ∗ y, τ1 ∗ y, . . . , τN−1 ∗ y}, N = v0/GCD(v0, v1, . . . ), τ ∈ G(v0) a primitive root,
such that the equality

(3) f(X,Y ) =

N−1∏
i=0

(Y − τ i ∗ y)

is satisfied up to a unit factor. An argument of Galois theory shows that fractional
powers do not appear on the right side of (3) [22]. We can assume this unit factor
to be one without loss of generality.

By definition, a characteristic exponent of the series y ∈ C{X}∗ is an exponent
which can appear as the order of difference between the series y and its conjugation
(e.g. [20]). The exponent vℓ/v0 (ℓ = 1, 2, . . . ) is characteristic if and only if

(4) GCD(v0, . . . , vℓ−1) > GCD(v0, . . . , vℓ) .

The number h = h(y) of characteristic exponents is less than or equal to N(y)− 1.
Moreover, h(y) = 0 ⇔ N(y) = 1 Let ℓ1 < · · · < ℓh denote the characteristic posi-
tions and let w∗ = w∗(y) = GCD(v0, v1, . . . ). We define the Puiseux characteristic
(b0, b1, . . . , bh) as b0 := v0/w

∗, b1 := vℓ1/w
∗, . . . , bh := vℓh/w

∗, the first sequence
of divisors ek := GCD(b0, b1, . . . , bk) (k = 0, 1, . . . ,h) and the second sequence of
divisors nk = ek−1/ek (k = 1, . . . ,h). We put N0 := 1 and Nk := n1 . . . nk for
k = 1, . . . ,h. We have Nk = b0/ek for k = 0, 1, . . . ,h. Classical characteristics of
branches are described in [25].

For every k ∈ {1, 2, . . . ,h} we define the series yk as the sum of all terms of y
of order strictly less then bk/b0. The cycle of yk has Nk−1 elements. We put

(5) fk(X,Y ) =

Nk−1−1∏
i=0

(Y − τ i ∗ yk) ∈ C[X,Y ]
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where τ ∈ G(v0) is a primitive root. The following theorem is the main result of
this paper.

Theorem 1.1. Let f ∈ C{X,Y } be a singular branch and let y ∈ C{X}∗ be
a Puiseux root of the equation f = 0. Let h = h(y) be the number of characteristic
exponents (h ≥ 1) and let f1, . . . , fh be the series generated from y by cutting below
the characteristic exponents. Then there exist nonnegative integers ω0, ω1, . . . , ωh

such that the Milnor number of the deformation Ft = f + tXω0fω1
1 . . . fωh

h (t ̸= 0,
small) equals µ(f)− 1.

In chapter 2 we present the Newton algorithm in version of Cano [5, 19]. In
chapter 3 we present a variant of the Kouchnirenko theorem adopted to the Newton
algorithm. In the last chapter of this note we prove Theorem 1.1.

2. The Newton Algorithm

Let us introduce some usefull notions. For any segment S of the Newton polygon
we consider its inclinaction which is a rational number |S|H/|S|V where |S|H (resp.
|S|V) is the lenght of the projection of S on the horizontal axis (resp. on the vertical
axis). For a nonzero series y ∈ C{X}∗ we define its initial form in y = aXθ (a ̸= 0)
as the term with the minimal order. By convention we put in 0 = 0 and ord 0 = +∞.
Let f ∈ C{X,Y } be a nonzero series and let y ∈ C{X}∗ be a series of a positive
order such that in y = aXθ. Isaac Newton (in the letter to Odenburg) presented
an observation that if y is a nonzero root of the series f (i.e. f(X, y(X)) = 0 in
C{X}∗) then there exists a segment S of the Newton polygon N (f) of inclination θ
such that the initial form in y = aXθ is a nonzero root of the initial form in(f, S) in
C{X}∗. Therefore, the Newton polygon gives us the information about the orders
of all nonzero solutions (of positive order). Moreover, we can read the number of
such solutions from the shape of N (f). We denote by δ(f) the distance between
the diagram ∆(f) and the horizontal axis. The zero solution y = 0 appears if and
only if δ(f) > 0.

The information of iniatial forms of solutions y ∈ C{X}∗ of the equation f = 0
may be expressed by using systems (see: notion of symmetric power [24]). For
elements a1, . . . , ap of a given set by the system A = ⟨a1, . . . , ap⟩ we mean the
sequence a1, . . . , ap treated as unordered. We put degA = p. Instead of

⟨a1, . . . , a1︸ ︷︷ ︸
m1 times

, . . . , ap, . . . , ap︸ ︷︷ ︸
mp times

⟩

we write ⟨a1 : m1, . . . , ap : mp⟩. For A = ⟨a1, . . . , ap⟩ and B = ⟨b1, . . . , bq⟩ we
have a natural addition A ⊕ B = ⟨a1, . . . , ap, b1, . . . , bq⟩ with the neutral element
⟨ ⟩ (empty system). By convention ⟨a : 0⟩ = ⟨ ⟩.

Let f ∈ C{X,Y } be a series such that p := (f,X)0 = ord f(0, Y ) ≥ 1. Let
us denote by Zer f the system ⟨y1, . . . , yp⟩ of solutions of the equation f = 0 in
C{X}∗. For S ∈ N (f) let in(f, S)◦ denotes the form in(f, S) divided by the
maximal possible powers of variables X and Y .



EFFECTIVE PROOF OF GUSEĬN-ZADE THEOREM... 99

Theorem 2.1. (Newton-Puiseux) Then

(i) ⟨ord y1, . . . , ord yp⟩ =
⊕

S∈N (f)

⟨|S|H/|S|V : |S|V⟩ ⊕ ⟨+∞ : δ(f)⟩,

(ii) ⟨in y1, . . . , in yp⟩ =
⊕

S∈N (f)

Zer in(f, S)◦ ⊕ ⟨0 : δ(f)⟩,

(iii) p = |N (f)|+ δ(f).

Now, let aXθ be a nozero root of an intial form in(f, S), S ∈ N (f). By Isaac
Newton observation aXθ is the first term of a Puiseux solution of f = 0 in C{X}∗.
In order to find the second term Cano [5] consider the substitution

(6) f̃ = f(X, aXθ + Y ) .

Observing the Newton diagram ∆f(X, aXθ+Y ) he look for the boundary segments
S ∈ N (f̃) with the inclination stricly greater then θ. Then he choose the second
term as a nonzero root of in(f̃ , S). He continue the process to construct all nonzero
terms of all nonzero solutions.

In order to deal with substitutions of the type (6) we apply the ring C{X∗, Y } =∑
N≥1 C{X1/N , Y } and we analogously define all neccessary notions. In compari-

son to the classical algorithm, Cano’s approche allows to analyze every step of the
algorithm in the same coordinate system. The Newton algorithm is closely related
to the Kuo-Lu tree technique (see [15]). The Newton diagram of the substitution
of the type f(X, z + Y ), f ∈ C{X,Y }, z ∈ C{X}∗ is analized in [13], [16]. The
first author of this note applied the Newton algorithm in Cano’s version to deter-
mine the so-called polar quotients with their multiplicities [19]. A survey of results
concerning polar invariants (quotients) is given in [12]. The more general are the
so-called jacobian quotients [17].

Now, let us introduce some definitions and facts similar to that from [19]. Let
us consider the ring of Pusiseux polynomials C[X]∗ =

⋃
N≥0 C[X1/N ]. For any

φ ∈ C[X]∗ we have degφ < +∞. We put deg 0 = 0. Since we consider only
polynomials of positive orders this convention does not lead to a contradiction. Let
f ∈ C{X,Y } be a reduced series such that the number p = ord f(0, Y ) = (f,X)0 is
finite and positive. We denote fφ := f(X,φ+Y ) ∈ C{X∗, Y }. For any polynomial
φ of positive order the diagram ∆f(X,φ + Y ) has the vertex (0, p) lying on the
horizontal axis.

We denote by N (f, φ) the subset of the polygon N (fφ) which consists segments
with inclinations strictly greater than degφ. We define the hight of the polygon
|N (f, φ)| as the sum of lengths of the projections of its segments on the vertical
axis. The number of solutions y ∈ Zer f of the form y = φ + . . . (equivalently
ord(y − φ) > degφ) equals |N (f, φ)|+ δ(fφ). If f is reduced then δ(fφ) ∈ {0, 1}.
Definition 2.2. We define the set T (f,X) of tracks of the Newton algorithm for
f as the minimal subset (in the sense of inclusion) of C[X]∗ such that the following
conditions are satisfied:
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(I) 0 ∈ T (f,X),
(II) for any φ ∈ T (f,X), if there exists S ∈ N (f, φ) then for every nonzero

root aXθ of the initial form in(fφ, S) we have φ+ aXθ ∈ T (f,X).

We have the following two equivalent characterizations of the set T (f,X). Let

T ′(f,X) = {φ ∈ C[X]∗ : ∃y ∈ Zer f such that ord(y − φ) > degφ}
and let

T ′′(f,X) = {φ ∈ C[X]∗ : |N (f, φ)|+ δ(fφ) > 0} .

Proposition 2.3. ([19], Proposition 3.11) T (f,X) = T ′(f,X) = T ′′(f,X).

The following notions are useful in the proof of main result in the last chapter.
Now, let us assume that f ∈ C{X,Y } is reduced and singular. Let φ ∈ T (f,X).
Let us introduce a symbol for the system of initial forms of solutions corresponding
to N (f, φ) and δ(fφ). For φ = 0 such system appears in Theorem 2.1 (ii). We put

(7) I(f, φ) =
⊕

S∈N (f,φ)

Zer in(fφ, S)◦ + ⟨0 : δ(fφ)⟩ .

Clearly deg I(f, φ) = |N (f, φ)|+ δ(fφ).

Definition 2.4. We say that a solution y ∈ Zer f is counted by a track φ ∈ T (f,X)
if all the conditions are satisfied:

(1) deg I(f, φ) ≥ 2,
(2) ord(y − φ) > degφ,
(3) in(y − φ) ∈ I(f, φ),
(4) in(y − φ) has the multiplicity one in I(f, φ).

The following property is important.

Property 2.5. Every y ∈ Zer f is counted by the unique φ ∈ T (f).

We denote this unique track by φ = φf (y).

Example 2.6. Let f = Y (Y −X)(Y −X −X2). We have Zer f = ⟨0, X,X +X2⟩
and φf (0) = 0, φf (X) = X, φf (X +X2) = X.

3. Version of Kouchnirenko theorem

In this chapter we compute the Milnor number by using the Newton algorithm
in Cano’s version. Our main reference is [19]. Analogous results were obtained by
Pi. Cassou-Noguès and Płoski in [6] (they applied the classical Newton algorithm)
and by Gwoździewicz [11] who used the toric modification technique.

Let ∆ be the Newton diagram of a nonzero series of C{X∗, Y } and let N = N (∆)
be the Newton polygon of this diagram. Let us denote by δ(∆) the distance between
∆ and the horizontal axis. We consider only diagrams touching the vertical axis
and with δ(∆) ≤ 1. With the above assumptions we have δ(∆) ∈ {0, 1}. For θ ≥ 0
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we define the stright line π with inclinaction θ that supports the diagram ∆. We
denote this line by π = π(∆, θ). Let V be the commont point of π with ∆ of
the minimal possible ordinate. We denote this point by V = V (∆, θ); V must be
a vertex of the diagram ∆.

P (∆, θ)

π = π(∆, θ)

α(∆, θ) ᾱ(∆, θ) α(∆)

V (∆, θ)

α

β

∆

N (∆, θ)

The line π(∆, θ) crosses the horizontal axis at the point with abscissa α(∆, θ) ≥ 0.
Let N = N (∆, θ) denotes the subset of these segments of the Newton polygon N
that have the inclinations strictly greater than θ. If the diagram ∆ touches the
horizontal axis (δ(∆) = 0) then we define α(∆) as the minimal possible abscissa of
the points of the diagram ∆ that lie on the horizontal axis. Clearly α(∆, θ) ≤ α(∆).
We put

ᾱ(∆, θ) = α(∆)− α(∆, θ) .

If ᾱ(∆, θ) > 0 then we define P (∆, θ) as the area of the polygon bounded by
the line π(∆, θ), the polygon N (∆, θ) and the horizontal axis. Otherwise, we put
P (∆, θ) = 0.

β = 1

Q(∆, θ)

π = π(∆, θ)

γ(∆, θ) γ̄(∆, θ) γ(∆)

V (∆, θ)

α

β

∆

N (∆, θ)

If the diagram ∆ does not touch the horizontal axis (δ(∆) = 1) then the line π(∆, θ)
crosses the line β = 1 at the point with abscissa γ(∆, θ) ≥ 0. We define γ(∆) to
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be the minimal abscissa of the points of the diagram ∆ lying on the line β = 1.
Clearly γ(∆, θ) ≤ γ(∆). We put

γ̄(∆, θ) = γ(∆)− γ(∆, θ) .

If γ̄(∆, θ) > 0 then we define Q(∆, θ) as the area of the polygon bounded by
the line π(∆, θ), the polygon N (∆, θ) and by the line β = 1. Otherwise, we put
Q(∆, θ) = 0. If δ(∆) = 0 then the numbers γ(∆), γ(∆, θ), γ̄(∆, θ) and Q(∆, θ)
can be also defined assuming that the ordinate of the vertex V (∆, θ) is greater or
equal to 1. Using the formula for area of triangle, we check that

2P (∆, θ)− ᾱ(∆, θ) = 2Q(∆, θ) + γ̄(∆, θ) .

Now, let us discuss the notions introduced above in the context of the Newton
algorithm. We assume that the series f ∈ C{X,Y } is reduced and that the number
p = (f,X)0 is finite and greater then one. We put

µ̂(f, φ) =

{
2P (∆fφ,degφ)− ᾱ(∆fφ,degφ) if δ(fφ) = 0 ,
2Q(∆fφ,degφ) + γ̄(∆fφ,degφ) if δ(fφ) = 1 .

Theorem 3.1. With the above assumptions on f

(a) for almost all φ ∈ T (f,X) the number µ̂(f, φ) equals zero,
(b) µ(f) = 1− p+

∑
φ∈T (f,X)

µ̂(f, φ).

Proof. Let us recall few notions [19]. For a series g ∈ C{X∗, Y } and for a segment
S of its Newton polygon we denote by t(g, S) the number of different roots of
initial form in(g, S) in C{X}∗. Let r1, . . . , rs denote the multiplicities of nonzero
roots among all these roots (t − 1 ≤ s ≤ t). Clearly r1 + · · · + rs = |S|V. We
put d(g, S) = (r1 − 1) + · · · + (rs − 1) and we call d(g, S) the degeneracy of g
on S. The condition d(g, S) = 0 means that every nonzero root is a single root
(nondegeneracy). We have

(8) t(g, S)− 1 + d(g, S) = |S|V + ε(S)

where ε(S) = −1 for a segment S touching the horizontal axis and ε(S) = 0
for segments that do not touch the horizontal axis. The number α(S) equals the
abscissa of point where the line containing segment S crosses the horizontal axis.

We apply the following fact.

Proposition 3.2. ([19], Proposition 3.9) Let us assume that φ ∈ C[X]∗ is a poly-
nomial such that the polygon N (f, φ) is nonempty. Let S ∈ N (f, φ) and let aXθ

be a nonzero root of the form in(fφ, S). Then

deg I(f, φ+ aXθ) = multiplicity of aXθ as a root of the form in(fφ, S) .

Proof of (a). We base on [19]. Let y = a1X
θ1 + a2X

θ2 + . . . (a1, a2, . . . nonzero,
0 < θ1 < θ2 < . . . ) be a Puiseux solution of the equation f = 0 in C{X}∗. Without
loss of generality it suffices to consider a solution with infinite number of terms.
We define tracks φ1 = 0 and φℓ = a1X

θ1 + · · · + aℓ−1X
θℓ−1 for ℓ = 2, 3, . . . . Let



EFFECTIVE PROOF OF GUSEĬN-ZADE THEOREM... 103

∆ℓ := ∆f(X,φℓ+Y ). Let us fix ℓ ∈ {1, 2, . . . }. According to the Newton algorithm
there exists a segment Sℓ of the polygon N (f, φℓ) such that aℓX

θℓ is a root of the
form in(fφℓ

, Sℓ). We denote hℓ = degY in(fφℓ
, Sℓ).

degϕℓ

α(∆ℓ,degϕℓ)

α

β

∆ℓ = ∆f(X,ϕℓ + Y )

deg I(f, ϕℓ)

hℓ

α(Sℓ)

Sℓ

Let rℓ be the multiplicity of the root. Obviously hℓ ≥ rℓ. By Proposition 3.2
rℓ = deg I(f, φℓ+aℓX

θℓ) = |N (f, φℓ+1)|+ δ(fφℓ+1
) ≥ degY in(fφℓ+1

, Sℓ+1) = hℓ+1.
This construction gives the infinite sequence of positive integers h1 ≥ r1 ≥ h2 ≥
r2 ≥ . . . that must stabilize. The stable value is the multiplicity of y as a root of f .
For the reduced series it equals one. Let us note that the equality hℓ = rℓ means
that the segment Sℓ touches the horizontal axis and that aℓX

θℓ is the unique root
of the initial form in(fφℓ

, Sℓ). Then t(fφℓ
, Sℓ) = 1 which will be important in the

proof of part (b). Moreover, from the step where stability is reached, we will have
|N (f, φℓ)| = 1. Then we get µ̂(f, φℓ) = 0 for such terms.
Proof of (b). Applying the Teissier Lemma (cited and proved e.g. in [6]) we have

(9) µ(f) = 1− p+

(
f,

∂f

∂Y

)
0

= 1− p+

p−1∑
j=1

ord f(X, zj(X))

where z1, . . . , zp−1 ∈ C{X}∗ is the sequence of solutions of the equation (∂f/∂Y ) =
0. The system

⟨ord f(X, z1(X)), . . . , ord f(X, zp−1(X))⟩
giving the so-called polar quotients was described in [19] (Theorem 2.1). Using this
result we can write the equality (9) as

(10) µ(f) = 1− p+
∑

φ∈T (f,X)

∑
S∈N (f,φ)

α(S)[t(fφ, S)− 1] .

In the proof of part (a) we checked that almost all components in the above sum
equal zero. Now, to finish the proof it suffices to show that (10) equals the right
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side in the statement (b) of the theorem. In order to simplify notation we hide the
dependence of f as in the following table.

new symbol instead of
Nφ N (f, φ)
µ̂φ µ̂(f, φ)
δφ δ(fφ)
πφ π(∆fφ,degφ)
Vφ V (∆fφ,degφ)
Pφ P (∆fφ,degφ)
Qφ Q(∆fφ,degφ)

Let nφ be the number of segments of polygon Nφ (nφ ≥ 0). We number the
segments of Nφ from up to down:

S
(1)
φ , . . . , S

(nφ)
φ .

For i = 1, . . . , nφ we put t
(i)
φ := t(fφ, S

(i)), d(i)φ := d(fφ, S
(i)), α(i)

φ := α(S(i)),
ε
(i)
φ := ε(S(i)). Moreover α

(0)
φ := α(∆fφ,degφ) and ᾱφ = α

(nφ)
φ − α

(0)
φ .

Applying (8) and denoting b
(i)
φ = |S(i)

φ |V (i = 1, . . . , nφ) we can write

(11) t(i)φ − 1 + d(i)φ = b(i)φ + ε(i)φ for i = 1, . . . , nφ .

The formula (10) can be rewritten as

(12) µ(f) = 1− p+
∑

φ∈T (f,X)

nφ∑
i=1

α(i)
φ (t(i)φ − 1) .

Let us fix φ ∈ T (f,X). We are going to prove that

(13)
nφ∑
i=1

α(i)
φ (t(i)φ − 1) = µ̂φ + α(0)

φ (|Nφ|+ δφ − 1)−
nφ∑
i=1

α(i)
φ d(i)φ .

First, we consider the case δφ = 0.

πϕ

α
(0)
ϕ

Vϕ

α

β

Nϕ

α
(1)
ϕ

. . .
α
(nϕ−1)
ϕ α

(nϕ)
ϕ

b
(1)
ϕ

b
(2)
ϕ

. . .

b
(nϕ)
ϕ

S
(1)
ϕ

S
(2)
ϕ

. . .

S
(nϕ)
ϕ
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We have

(14) 2Pφ =

nφ∑
i=1

(α(i)
φ − α(i−1)

φ )(b(i)φ + · · ·+ b(nφ)
φ ) = −α(0)

φ |Nφ|+
nφ∑
i=1

α(i)
φ b(i)φ .

By (11) and (14) we can write
nφ∑
i=1

α(i)
φ (t(i)φ − 1)=

nφ∑
i=1

α(i)
φ (b(i)φ + ε(i)φ − d(i)φ ) =

nφ∑
i=1

α(i)
φ (b(i)φ − d(i)φ )− α(nφ)

φ

=

nφ∑
i=1

α(i)
φ b(i)φ −

nφ∑
i=1

α(i)
φ d(i)φ − α(nφ)

φ

= µ̂φ + α(0)
φ (|Nφ| − 1)−

nφ∑
i=1

α(i)
φ d(i)φ

which gives (13).

Now, let us check the case δφ = 1. For i = 1, . . . , nφ we put γ
(i)
φ := γ(S(i)).

Moreover γ
(0)
φ = γ(∆fφ,degφ) and γ̄φ = γ

(nφ)
φ − γ

(0)
φ .

β = 1

πϕ

γ
(0)
ϕ

Vϕ

α

β

Nϕ

γ
(1)
ϕ

. . .
γ
(nϕ−1)
ϕ γ

(nϕ)
ϕ

b
(1)
ϕ

b
(2)
ϕ

. . .

b
(nϕ)
ϕ

S
(1)
ϕ

S
(2)
ϕ

. . .

S
(nϕ)
ϕ

Let us note that for i = 1, . . . , nφ (by the formula for area of triangle)

(γ(i)
φ −γ(i−1)

φ )(b(i)φ + · · ·+ b(nφ)
φ )+(γ(i)

φ −γ(i−1)
φ ) = (α(i)

φ −α(i−1)
φ )(b(i)φ + · · ·+ b(nφ)

φ ) .

By using the above observation we get

µ̂φ=2Qφ + γ̄φ =

nφ∑
i=1

(γ(i)
φ − γ(i−1)

φ )(b(i)φ + · · ·+ b(nφ)
φ ) +

nφ∑
i=1

(γ(i)
φ − γ(i−1)

φ )

=

nφ∑
i=1

(α(i)
φ − α(i−1)

φ )(b(i)φ + · · ·+ b(nφ)
φ ) = −α(0)

φ |Nφ|+
nφ∑
i=1

α(i)
φ b(i)φ .
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Now, we compute
nφ∑
i=1

α(i)
φ (t(i)φ − 1)=

nφ∑
i=1

α(i)
φ (b(i)φ − d(i)φ ) =

nφ∑
i=1

α(i)
φ b(i)φ −

nφ∑
i=1

α(i)
φ d(i)φ

= µ̂φ + α(0)
φ |Nφ| −

nφ∑
i=1

α(i)
φ d(i)φ ,

which also gives (13).
Applying (12) and by using (13) we get

µ(f)=1− p+
∑

φ∈T (f,X)

nφ∑
i=1

α(i)
φ (t(i)φ − 1)

=1− p+
∑

φ∈T (f,X)

µ̂φ +
∑

φ∈T (f,X)

α(0)
φ (|Nφ|+ δφ − 1)−

∑
φ∈T (f,X)

nφ∑
i=1

α(i)
φ d(i)φ .

Therefore, to the finish of the proof it suffices to show that

(15)
∑

φ∈T (f,X)

nφ∑
i=1

α(i)
φ d(i)φ =

∑
φ∈T (f,X)

α(0)
φ (|Nφ|+ δφ − 1) .

We denote by Tℓ(f,X) the set of all tracks with the lenght ℓ (ℓ = 0, 1, 2, . . . ).
These sets are finite. The set T0(f,X) contains only zero track. For φ = 0 we have
α
(0)
φ = 0. Hence, the component on the right side of the formula (15) corresponding

to zero track equals zero. Therefore, it is enough to show

(16)
∑

φ∈Tℓ(f,X)

nφ∑
i=1

α(i)
φ d(i)φ =

∑
φ∈Tℓ+1(f,X)

α(0)
φ (|Nφ|+ δφ − 1)

for ℓ = 0, 1, 2, . . . . Let us fix φ ∈ Tℓ(f,X). To this track we can assign the tracks
of the form φ + aXθ ∈ Tℓ+1(f,X) taking as aXθ all different nonzero roots of all
forms

in(fφ, S(1)
φ ), . . . , in(fφ, S(nφ)

φ ) .

We write these roots as aijX
θi (j = 1, . . . , s

(i)
φ , i = 1, . . . , nφ), remembering about

the dependence of coefficients and exponents on φ; s(i)φ := t
(i)
φ − 1− ε

(i)
φ stands for

the number of different nonzero roots of the form in(fφ, S
(i)
φ ). For φ ∈ Tℓ(f,X)

(ℓ ≥ 0) we can write

Tℓ+1(φ) = {φ+ aijX
θi : i = 1, . . . , nφ j = 1, . . . , s(i)φ } .

If Tℓ(f,X) = {φ1, . . . , φm} (m ≥ 1), then Tℓ+1(f,X) = Tℓ+1(φ1)∪ · · · ∪ Tℓ+1(φm).
Hence, it suffices to check (16) taking into consideration fixed track φ ∈ Tℓ(f,X)
on the left side, while on the right side the set Tℓ+1(φ). The appropriate formula
has the form
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(17)
nφ∑
i=1

α(i)
φ d(i)φ =

nφ∑
i=1

s(i)φ∑
j=1

α
(0)

φ+aijXθi
(|Nφ+aijXθi |+ δφ+aijXθi − 1) .

The property of the Newton algorithm implies that α
(i)
φ = α

(0)

φ+aijXθi
. Therefore

for the proof of the above equality it is enough to show that

(18) d(i)φ =

t(i)φ∑
j=1

(|Nφ+aijXθi |+ δφ+aijXθi − 1) .

Let r
(i,j)
φ be the multiplicity of aijXθj as a root of the form in(fφ, S

(i)
φ ). Then

d(i)φ =

s(i)φ∑
j=1

(r(i,j)φ − 1) .

Therefore, for the proof of (18) it suffices to know that

r(i,j)φ = |Nφ+aijXθi |+ δφ+aijXθi ,

but it follows directly from Proposition 3.2. □

4. Proof of Gusein-Zade Theorem

Let f ∈ C{X,Y } be a reduced and singular series. In analogy to the set T (f,X)
of tracks of the Newton algorithm discussed in Section 2 we define below a new
set T∗(f,X) ⊂ T (f,X) which is finite an can be applied to compute the Milnor
number by Theorem 3.1.

Definition 4.1. We define the set T∗(f,X) of multiple tracks of the Newton al-
gorithm for f as the minimal subset (in the sense of inclusion) of C[X]∗ such that
the following conditions are satisfied:

(I) 0 ∈ T∗(f,X),
(II) for any φ ∈ T∗(f,X), if there exists S ∈ N (f, φ) then for every nonzero

multiple root aXθ of the initial form in(fφ, S) we have φ+aXθ ∈ T∗(f,X).

In analogy to T (f,X) the set T∗(f,X) has also two equivalent characterizations.
Let

T ′
∗(f,X) = {φ ∈ C[X]∗ : ∃y(1) ̸= y(2) ∈ Zer f that ord(y(i) − φ) > degφ, i = 1, 2}

and let
T ′′
∗ (f,X) = {φ ∈ C[X]∗ : |N (f, φ)|+ δ(fφ) > 1} .

Proposition 4.2. T∗(f,X) = T ′
∗(f,X) = T ′′

∗ (f,X).



108 A. LENARCIK AND M. MASTERNAK

The proof is analogous to the proof of Proposition 2.3.

Proposition 4.3. Let φ ∈ T (f,X). Then φ ∈ T∗(f,X) if and only if µ̂(f, φ) > 0.

Below we present the steps of construction a deformation

(19) Ft = f + tXω0fω1
1 . . . fωh

h

where f has the form (3) and fk (k = 1, . . . ,h) are defined in (5). All what can
be controlled are nonegative integers ω0, ω1, . . . , ωh. Applying Treorem 3.1 and
Proposition 4.3 we can write

µ(f)=1− (f,X)0 +
∑

φ∈T∗(f,X)

µ̂(f, φ) ,(20)

µ(Ft)=1− (Ft, X)0 +
∑

φ∈T∗(Ft,X)

µ̂(Ft, φ) .(21)

Since we want µ(f) and µ(Ff ) to be close, the idea in choosing ω0, ω1, . . . , ωh

is to obtain many common elements in both (20) and (21). To have equality
(f,X)0 = (Ff , X)0 it suffices that ω0 > 0. Moreover, we want to have as many
common tracks as possible. For example, the equality holds T∗(f,X) = T∗(Ft, X) =
{0} in Bodin’s deformation from Introduction. In our construction we will obtain
T∗(Ft, X) ⊂ T∗(f,X). Unfortunately, the inclusion may be strict.

As in Introduction we apply that f is generated by a cycle of y ∈ C{X}∗ (1)
in the sense of (3). On the basis of y we can define tracks: φ1 := 0, φℓ :=
a1X

v1/v0+· · ·+aℓ−1X
vℓ−1/v0 (ℓ = 2, 3, . . . ). By Proposition 2.3 we have T (f,X) =

cycle(φ1)∪cycle(φ2)∪. . . . In order to determine T∗(f,X) let us recall a description
of the Newton polygon N (f, φℓ) from [19]. The notation is equivalent. We put
w∗ = GCD(v0, v1, . . . ).

Property 4.4. ([19], Property 5.1)

(i) Polygon N (f, φℓ) consists one segment Sℓ with inclination vℓ/v0 which
touches the horizontal axis,

(ii) degY in(fφℓ
, Sℓ) = GCD(v0, . . . , vℓ−1)/w

∗.
(iii) Every root of in(fφℓ

, Sℓ) has the multiplicity GCD(v0, . . . , vℓ)/w
∗,

(iv) t(fφℓ
, Sℓ) =

GCD(v0,...,vℓ−1)
GCD(v0,...,vℓ)

.

In addition to Property 4.4 we will need more precise information about the
initial form in(fφℓ

, Sℓ). Let wℓ = GCD(v0, . . . , vℓ), uℓ = wℓ−1/wℓ, θℓ = vℓ/v0.

Property 4.5. With the previous notation there exist c ̸= 0 and ζ ≥ 0 such that

in(fφℓ
, Sℓ) = cXζ(Y uℓ − auℓ

ℓ Xθℓuℓ)wℓ/w
∗
.

Proof. See (e.g. [20], Lemma 6.1).
Let us return to tracks. Since GCD(v0, . . . , vℓh)/w

∗ = eh = 1 then it follows
from Property 4.4 (iii) that every root of the corresponding initial form is a single
root. Therefore a track φℓh = yh ∈ T∗(f,X) cannot be extended in the sense of
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Definition 4.1. Hence T∗(f,X) = cycle(φ1) ∪ · · · ∪ cycle(φℓh). Our effort was to
obtain the equality T∗(Ft, X) = T∗(f,X). However, we finished with the following
two cases:

(I) T∗(Ft, X) = cycle(φ1) ∪ · · · ∪ cycle(φℓh),
(II) T∗(Ft, X) = cycle(φ1) ∪ · · · ∪ cycle(φℓh−1).

In both cases we want for ℓ < ℓh to have µ̂(Ft, φℓ) = µ̂(f, φℓ). When ℓ = ℓh we
want µ̂(Ft, φℓh) = µ̂(f, φℓh) − 1

Nh−1
in the first case and µ̂(f, φℓh) =

1
Nh−1

in the
second case. Since #cycle(φℓh) = Nh−1 this will give µ(Ft) = µ(f) − 1 in both
cases.

In order to describe the diagrams ∆f(X,φℓ + Y ) and ∆Ft(X,φℓ + Y ) we need
the shapes of the diagrams ∆f(X,φℓ + Y ) for ℓ = 1, . . . , ℓh and ∆fk(X,φℓ + Y )
for k = 1, . . . ,h and ℓ = 1, . . . , ℓh. To this end let us recall facts from [13]. The
contact exponent between the branch f and an arbitrary Puiseux series z ∈ C{X}∗
is defined as

(22) of (z) = max{ord(z − τ0 ∗ y), . . . , ord(z − τN−1 ∗ y)} .

Below, we describe the shapes of the diagrams by using the so-called Teissier no-
tation. For A,B ⊂ R2

+ A+B = {a+ b : a ∈ A, b ∈ B},
{

a

b

}
= the convex hull of

{(a, 0), (0, b)} + R2
+. Moreover { 1

∞} = (1, 0) + R2
+ and {∞

1
} = (0, 1) + R2

+ (
{

0

0

}
is

the identity). By convention the sum over the empty set equals {0
0
}.

Property 4.6. (Properties 3.1 and 3.2 in [13])
Let (b0, b1, . . . , bh) be the characteristic sequence of the branch.

(I) If there exists the smallest integer k such that of (z) ≤ bk/b0 then

∆f(X, z + Y ) =

k−1∑
j=1

{
(bj/b0)(ej−1 − ej)

ej−1 − ej

}
+

{
of (z) ek−1

ek−1

}
.

(II) If bh/b0 < of (z) then

∆f(X, z + Y ) =

h∑
k=1

{
(bk/b0)(ek−1 − ek)

ek−1 − ek

}
+

{
of (z)

1

}
.

Corollary 4.7. (for f and φℓ) We have of (φℓ) = vℓ/v0. Therefore:

(I) if there exists the smallest integer k such that ℓ ≤ ℓk then

∆f(X,φℓ + Y ) =

k−1∑
j=1

{
(bj/b0)(ej−1 − ej)

ej−1 − ej

}
+

{
(vℓ/v0) ek−1

ek−1

}
,

(II) if ℓh < ℓ then

∆f(X,φℓ + Y ) =

h∑
k=1

{
(bk/b0)(ek−1 − ek)

ek−1 − ek

}
+

{
vℓ/v0
1

}
.
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We can also describe ∆fk(X,φℓ+Y ) (k = 1, . . . ,h). The characteristic sequence
of fk has the form: (b0/ek−1, b1/ek−1, . . . , bk−1/ek−1) with the first sequence of
divisors: (e0/ek−1, e1/ek−1, . . . , ek−1/ek−1). Let us observe that

(23) ofk(φℓ) =

{
vℓ/v0 for ℓ < ℓk
+∞ for ℓ = ℓk
bk/b0 for ℓk < ℓ

.

Corollary 4.8. (for fk and φℓ)

(I) If ℓ < ℓk then there exists the smallest integer j ∈ {1, . . . , k} such that
ℓ ≤ ℓj . Then

∆fk(X,φℓ + Y ) =

j−1∑
i=1

{
(bi/b0)(ei−1/ek−1 − ei/ek−1)

ei−1/ek−1 − ei/ek−1

}
+

{
(vℓ/v0) ej−1/ek−1

ej−1/ek−1

}
.

(II) If ℓ = ℓk then

∆fk(X,φℓk + Y ) =

k−1∑
j=1

{
(bj/b0)(ej−1/ek−1 − ej/ek−1)

ej−1/ek−1 − ej/ek−1

}
+

{∞
1

}
.

(III) If ℓk < ℓ then

∆fk(X,φℓ + Y ) =

k−1∑
j=1

{
(bj/b0)(ej−1/ek−1 − ej/ek−1)

ej−1/ek−1 − ej/ek−1

}
+

{
bk/b0
1

}
.

Below we apply the semigroup technique from [8]. Now, our aim is to construct
ω0, . . . , ωh (h ≥ 1) by using the longest track yh = φℓh in T∗(f,X). We will apply
the semigroup generators b̄0, b̄1, . . . , b̄h which satisfy relations b̄0 = b0, b̄1 = b1,
b̄k+1 = nk b̄k + bk+1 − bk for k = 1, . . . ,h − 1. It follows from the above relation
that nk b̄k < b̄k+1 for k = 1, . . . ,h− 1 (God given inequality).

The following proposition follows from Corollaries 4.7 and 4.8.

Proposition 4.9.

(i) For k = 1, . . . ,h − 1 the diagram ∆fk(X, yh + Y ) has the vertex on the
horizontal axis with abscissa b̄k/b0.

(ii) The diagram ∆fh(X, yh + Y ) does not touch the horizontal axis and its
lower vertex (with ordinate one) has the abscissa (nh−1b̄h−1 − bh−1)/b0.

(iii) The last segment Sh of the diagram ∆f(X, yh + Y ) has the inclination
|Sh|H/|Sh|V = bh/b0 and touches the horizontal axis at the point with
abscissa nhb̄h/b0. The length of vertical projection is |Sh|V = nh.

(iv) The straight line πh−1 determined by the penultimate segment of the dia-
gram ∆f(X,φh+Y ) (the line and the segment have the inclination bh−1/b0)
crosses the horizontal axis at the point with abscissa nhnh−1b̄h−1/b0.

Let us notice that all the series f1(X,φh+Y ), . . . , fh(X,φh+Y ), f(X,φh+Y )
are in the ring C{X1/Nh−1 , Y } where Nh−1 = n1 . . . nh−1. Hence, all the points
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corresponding to nonzero coefficients have the form

(24)
(

i

n1 . . . nh−1
, β

)
for nonegative integers i, β. Now, let us consider nonegative integer numbers
ω0, ω1, . . . , ωh. Let us denote

(25) H = Xω0fω1
1 . . . fωh

h .

The polynomial H depends on ω0, ω1, . . . , ωh what is not explicitly written.

Lemma 4.10. Let B(α, β) be a point of the form (24) lying over the straight line
πh−1 or on this line in the belt 0 ≤ β < nh. Then the numbers ω0, ω1, . . . , ωh

may be chosen with condition 0 ≤ ωk < nk (k = 1, . . . ,h) and such that the lowest
vertex of the diagram ∆H(X,φh + Y ) equals B.

Proof. From the fact that the diagram of the product equals the sum of diagrams
of factors follows that the lowest vertex of the diagram ∆H(X,φh + Y ) is a linear
combination of the lowest vertices of the diagrams ∆X = {∞

1
}, ∆f1(X,φh + Y ),

. . . , ∆fh(X,φh + Y ) with coefficients ω0, ω1, . . . , ωh, respectively. From Proposi-
tion 4.9 (i) and (ii) it follows that the abscissa of the lowest vertex of the diagram
∆H(X,φh + Y ) equals

(26) ω0 + ω1
b̄1
b0

+ · · ·+ ωh−1
b̄h−1

b0
+ ωh

(
nh−1b̄h−1 − bh−1

b0

)
.

The ordinate equals ωh hence we put ωh = β. We want to choose ω0, ω1, . . . , ωh−1

in order to have

(27) ω0 + ω1
b̄1
b0

+ · · ·+ ωh−1
b̄h−1

b0
+ β

(
nh−1b̄h−1 − bh−1

b0

)
= α .

Then

(28) ω0b̄0 + ω1b̄1 + · · ·+ ωh−1b̄h−1 = αb0 − β(nh−1b̄h−1 − bh−1) .

Notice that αb0 is an integer divisible by nh. The value of the right side is fixed.
There are unknowns ω0, . . . , ωh−1 on the left side. We can apply the semigroup
theory (e.g. [8]). Let us recall the notion of the conductor

(29) ck = (n1 − 1)b̄1 + · · ·+ (nk − 1)b̄k − b̄0 + ek, (k = 1, . . . ,h)

with the property that for every integer c ≥ ck such that c ≡ 0(mod ek) there exists
the unique sequence ω0, ω1, . . . , ωk such that ω0 ≥ 0, 0 ≤ ω1 < n1, . . . , 0 ≤ ωk < nk

satisfying c = ω0b̄0 + ω1b̄1 + · · · + ωk b̄k. Hence, it suffices to show that the right
side R of (28) is greater than or equal to ch−1. Let us notice that the right side is
divisible by eh−1 = nh. It follows from the inequality β ≤ nh − 1 that

(30) R = αb0 − βnh−1b̄h−1 + βbh−1 ≥ αb0 − (nh − 1)nh−1b̄h−1 + βbh−1 .

Therefore

(31) R ≥ (αnh − nhnh−1b̄h−1 + βbh−1) + nh−1b̄h−1 .
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The number in parantheses in nonnegative. It follows from the fact that the chosen
point B of the form (24) lies over the straight line πh−1 or on this line (Proposi-
tion 4.9 (iv)). Hence

(32) R ≥ nh−1b̄h−1 .

In order to show that R ≥ ch−1 we study the difference R− ch−1. The first h− 1
components in the formula on ch−1 are written below in the opposite order:

R− ch−1≥nh−1b̄h−1 − (nh−1 − 1)b̄h−1 − (nh−2 − 1)b̄h−2 − · · · − (n1 − 1)b̄1 + b̄0 − eh−1

≥nh−1b̄h−1 − nh−1b̄h−1 + (b̄h−1 − nh−2b̄h−2) + · · ·+ (b̄2 − n1b̄1) + b̄1 + b̄0 − eh−1 .

Since the numbers in parantheses are positive (God given inequality) we obtain

(33) R− ch−1 > b̄1 + b̄0 − eh−1 ≥ 0

which finish the proof of the lemma. □

Main construction
Lemma 2 gives us some freedom to chose B. However, during the construction of
the deformation Ft = f+tH the point B is unique (in the fixed coordinate system).
Every characteristic exponent may be written in the form

(34)
bk
b0

=
mk

n1 . . . nk
, GCD(nk,mk) = 1 , k = 1, . . . ,h .

The pairs (n1,m1), . . . , (nh,mh) are called the characteristic Puiseux pairs. Ap-
plying the Euclid algorithm to the last characteristic pair we choose the unique
integers i, j such that

(35)

{
mhj − nhi = 1
0 < i < mh
0 < j < nh

.

Then we put

(36) α̃ :=
b̄h − bh + i

Nh−1
, β̃ := nh − j .

We choose by Lemma 4.10 ω0, ω1, . . . , ωh = β̃ such that the lower vertex of the
diagram ∆H(X, yh + Y ) (25) equals B(α̃, β̃). Recall that

(37) 0 ≤ ω1 < n1 , . . . , 0 ≤ ωh < nh .

Now, we want to finish the proof. In the begining of this section we discussed two
cases that allows to compare T∗(f,X) and T∗(Ft, X). Without loss of generality
we assume that b0 = v0.
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Proposition 4.11. (first case) If one of the following conditions holds:

(a) ℓh = 1,
(b) ℓh ≥ 2 and (bh − vℓh−1)(nh − β̃) > 1,
(c) ℓh ≥ 2 and (bh − vℓh−1)(nh − β̃) = 1 but nh ≥ 3

then

(i) T∗(Ft, X) = T∗(f,X) = cycle(φ1) ∪ · · · ∪ cycle(φℓh).
(ii) If ℓ < ℓh then µ̂(Ft, φℓ) = µ̂(f, φℓ).
(iii) µ̂(Ft, φℓh) = µ̂(f, φℓh)− 1

Nh−1
.

Proposition 4.12. (second case)
If ℓh ≥ 2 and (bh − vℓh−1)(nh − β) = 1 and nh = 2 then

(i) T∗(Ft, X) = cycle(φ1) ∪ · · · ∪ cycle(φℓh−1).
(ii) If ℓ < ℓh then µ̂(Ft, φℓ) = µ̂(f, φℓ).
(iii) µ̂(f, φℓh) =

1
Nh−1

.

To finish the proof it suffices to verify propositions. Before this we should study
relation of the Newton polygons of the diagrams ∆f(X, yh+Y ) and ∆H(X, yh+Y ).
It follows from Corollary 4.7 that the Newton polygon of the first diagram has h
segments S(1), . . . , S(h) with respective inclinations b1

b0
, . . . , bh

b0
. Let V0, V1, . . . Vh be

succesive vertices of the first diagram (ordered from up to down). We have Sk =
Vk−1Vk (k = 1, . . . ,h); we use bar to denote segment. From Corollary 4.8 and from
(25) we conclude that the Newton polygon of the second diagram has h−1 segments
T (1), . . . , T (h−1) with respective inclinations b1

b0
, . . . , bh−1

b0
. Let W0,W1, . . .Wh−1 be

succesive vertices of the second diagram. We have Tk = Vk−1Vk (k = 1, . . . ,h− 1).
Recall that Wh−1 = B(α̃, β̃) from the construction in Lemma 4.10 For a point
(vertex) V we will write α(V ) (resp. β(V )) to denote its abscissa (resp. ordinate).

Proposition 4.13.

(I) For two above Newton polygons we consider the sets of first h−1 segments
N = {S(1), . . . , S(h−1)} and N ′ = {T (1), . . . , T (h−1)}. We claim that N ′

lies over N in the weak sense: only the last segment of N ′ and the last
segment of N may lay on the same straigh line.

(II) The inclination of straight line determined by Vh−1 and Wh−1 equals

α(Wh−1)− α(Vh−1)

β(Vh−1)− β(Wh−1)
=

bh
b0

− 1

b0(nh − β̃)
.

Proof. (I). The vertices Vh−2 and Vh−1 determines the straight line πh−1. From
the construction of Wh−1 = B we have β(Wh−1) < β(Vh−1) = nh and Wh−1 lies
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over the line πh−1 or on this line.

α

β

V0

V1

Vh−2

Vh−1

W0

W1

Wh−2

Wh−1 = B

S(1)

S(h−1)

T (1)

T (h−1)

. . .

. . .

πh−1

β = β(Vh−1)

N N ′

Taking into consideration a geometrical argument to finish the proof if suffices to
show that

(38) |T (k)| ≤ ek−1 − ek = |S(k)| for k = 1, . . . ,h− 1 .

By Corollaries 4.8 and 4.7 to each diagram ∆f1(X, yh + Y ), . . . ,∆fh(X, yh + Y ),
∆f(X, yh + Y ) we assign the succesive inclinations that appear in their Newton
polygons. We write ∞ if a diagram does not touch the horizontal axis. We write
the multiplicities in the meaning of Theorem 2.1 (i) under the values.

∆f1(X, yh + Y ) (b1/b0)︸ ︷︷ ︸
1

∆f2(X, yh + Y ) (b1/b0)︸ ︷︷ ︸
(n1−1)

(b2/b0)︸ ︷︷ ︸
1

∆f3(X, yh + Y ) (b1/b0)︸ ︷︷ ︸
(n1−1)n2

(b2/b0)︸ ︷︷ ︸
(n2−1)

(b3/b0)︸ ︷︷ ︸
1

. . . . . . . . . . . . . . .

∆fh(X, yh + Y ) (b1/b0)︸ ︷︷ ︸
(n1−1)n2...nh

(b2/b0)︸ ︷︷ ︸
(n2−1)n3...nh

(b3/b0)︸ ︷︷ ︸
(n3−1)n4...nh

. . . (bh−1/b0)︸ ︷︷ ︸
(nh−1−1)

∞︸︷︷︸
1

∆f(X, yh + Y ) (b1/b0)︸ ︷︷ ︸
e0−e1

(b2/b0)︸ ︷︷ ︸
e1−e2

(b3/b0)︸ ︷︷ ︸
e2−e3

. . . (bh−1/b0)︸ ︷︷ ︸
eh−2−eh−1

(bh/b0)︸ ︷︷ ︸
eh−1=nh
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Applying (37) we can estimate

|T (1)|V=1 · ω1 + (n1 − 1) · ω2 + (n1 − 1)n2 · ω3 + · · ·+ (n1 − 1)n2 . . . nh−1 · ωh

≤ (n1 − 1) + (n1 − 1)(n2 − 1) + (n1 − 1)n2(n3 − 1) + · · ·+ (n1 − 1)n2 . . . nh−1(nh − 1)

=(n1 − 1)n2 . . . nh = e0 − e1 = |S(1)|V
We reason analogously for other segments and we finish the proof of (I).

Now, we prove (II). From Proposition 4.9 (iii) we obtain the equation of the
straight line πh that contains the segment Sh = Vh−1Vh:

(39) αb0 + βbh = b̄hnh .

From (35) and (36) we obtain that the coordinates of the point Wh−1 = B satisfy:

(40) α̃b0 + β̃bh = b̄hnh − 1 .

Substituting β = nh to (39) we obtain

(41) α(Vh−1) =
nh(b̄h − bh)

b0
.

By (40) we have

(42)
α(Wh−1)− α(Vh−1)

β(Vh−1)− β(Wh−1)
=

α̃b0 − nhb̄h + nhbh

(nh − β̃)b0
=

bh
b0

− 1

b0(nh − β̃)
.

This finishes the proof. □

In the next proposition we study relations between the diagrams ∆f(X,φℓ+Y )
and ∆H(X,φℓ + Y ) for ℓ < ℓh. By using the Teissier notation of the diagram

(43) ∆ =

n∑
i=1

{
ai
bi

}
, ai, bi > 0, at least one of ai, bi is finite , i = 1, . . . , n ,

we can assign inclinations directly to the diagram. To {ai

bi
} we assign ai

bi
with

convetion ai

∞ = 0 and ∞
bi

= ∞ (i = 1, . . . , n). For a rational θ > 0 we define
the transformation [∆]θ of the diagram ∆ which replace the components with
inclination strictly geater then θ by the respective components with inclination θ.
We write

(44) [∆]θ =
∑
ai
bi

≤θ

{
ai
bi

}
+

∑
ai
bi

>θ

{
θbi
bi

}
.

Clearly

(45) if ∆ ⊂ ∆′ then [∆]θ ⊂ [∆′]θ .

Recall that θℓ = vℓ/v0 (1). Clearly, θℓ = of (φℓ) (22).
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Proposition 4.14. Let ℓ < ℓh. Then

(a) ∆f(X,φℓ + Y ) = [∆f(X, yh + Y )]θℓ ,
(b) ∆H(X,φℓ + Y ) ⊂ [∆H(X, yh + Y )]θℓ .

Proof. We use methods of Lemma 7.1 from [20]. □

We can consider the diagrams generated by points V1, . . . , Vn in R2
+. By

∆{V1, . . . , Vn} we mean the convex hull of the union V1 + R2
+ ∪ · · · ∪ Vn + R2

+.
Recall that Ft = f + tH.

Proposition 4.15. Let ℓ < ℓh. Then

(i) ∆f(X,φℓ + Y ) = ∆Ft(X,φℓ + Y ),
(ii) cycle(φℓ) ⊂ T∗(Ft, X).
(iii) µ̂(f, φℓ) = µ̂(Ft, φℓ).

Proof. (i) The line ρℓ with inclination θℓ supporting ∆f(X, yh + Y ) crosses the
horizontal axis at the point Aℓ. We have

(46) [∆f(X, yh + Y )]θℓ = ∆{V0, . . . , Vk−1, Aℓ}
with the smallest k such that θℓ ≤ bk

b0
. Analogously, the line ρ′ℓ with the same

inclination supporting ∆H(X, yh + Y ) meets the horizontal axis at Bℓ. We have

(47) [∆H(X, yh + Y )]θℓ = ∆{W0, . . . ,Wk−1, Bℓ}
where k is the smallest with θℓ ≤ bk

b0
. Both parts of Proposition 4.13 give

(48) ∆{W0, . . . ,Wk−1, Bℓ} ⊂ ∆{V0, . . . , Vk−1, Aℓ} .

Hence [∆H(X, yh + Y )]θℓ ⊂ [∆f(X, yh + Y )]θℓ . From Proposition 4.14 we obtain
∆H(X,φℓ + Y ) ⊂ ∆f(X,φℓ + Y ). This gives (i) for sufficiently small t ̸= 0. Both
parts (ii) and (iii) follow from (i). □

Below, we proof a useful lemma. Let us recall a classical fact.

Property 4.16. Nonzero polynomials f, g ∈ C[X] have a common root if and only
if there exist nonzero polynomials a, b ∈ C[X], deg a < deg g, deg b < deg f such
that af − bg = 0 in C[X].

Lemma 4.17. Let f, g ∈ C[X] be polynomials without common roots. Then for
small t ̸= 0 f + tg ∈ C[X] has only single roots.

Proof. Let h = fg′ − f ′g ∈ C[X]. From property we conclude that h is nonzero
polynomial. Let

(49) Z =

{
−f(c)

g(c)
: h(c) = 0 and g(c) ̸= 0

}
.

Clearly, Z is finite (may be empty). We will show that for

(50) t ∈ C \ (Z ∪ {0})
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the polynomial Ft has only single roots. For the contrary let us assume that
Ft(c) = F ′

t (c) = 0. Hence

(51)
{

f(c) + t g(c) = 0
f ′(c) + t g′(c) = 0

.

Since the system has nonzero solution (1, t), the determinant must be zero. Hence
h(c) = 0. It must be g(c) ̸= 0. From the first equation we obtain t = − f(c)

g(c) which
contadicts (50). □

Remark 4.18. (e.g.[20]) It is covenient to apply the initial form defined by the pair
of positive weights (a, b). For f =

∑
cαβX

αY β ∈ C{X∗, Y } we put ord(a,b)f =

min{aα + bβ : cα,β ̸= 0}, in(a,b)f =
∑

cαβX
αY β where (α, β) correspond to

nonzero coefficients and aα + bβ = ordvf . We put ordv0 = ∞ and inv0 = 0. For
f, g ∈ C{X∗, Y } we have ordv(fg) = ordvf + ordvg and inv(fg) = (invf)(invg).

Verification of Propositions 4.11 and 4.12
Below, we will check both propositions.

Proof. Case (I) (a). The equality ℓh = 1 means that the series y has one character-
istic pair and that the first exponent v1

v0
= b1

b0
= m1

n1
is characteristic. In this case

∆f(X,Y ) has one segment S which joins (0, n1) and (m1, 0). By Properties 4.4
and 4.5 we have (up to a nonzero constant)

in(f, S) = Y n1 − an1
1 Xm1 .

We put Ft = f+tX α̃Y β̃ and we reason as in the Bodin’s case. We have T∗(f,X) =
T∗(Ff , X) = {0} and µ̂(Ft, 0) = µ̂(f, 0)− 1.
Case (I) (b). Now, we assume that ℓh ≥ 2 and (bh − vℓh−1)(nh − β) > 1. For
simplicity we write ℓ = ℓh. We have degφℓ = θℓ−1. Since |N (Ft, φℓ)| > 1 then
φℓ ∈ T∗(Ft, X).

Vh−1

Vh

B

Aℓ−1

θℓ−1

nh

Hence cycle(φ1) ∪ · · · ∪ cycle(φℓh) ⊂ T∗(Ft, X). We obtain the opposite inclusion
from the equality (f,X)0 = (Ft, X)0 (which follows from Proposition 4.13) and by
counting solutions of Ft = 0. Part (ii) follows from Proposition 4.15 (iii). As the
case of Bodin we check that µ̂(Ft, φℓ) = µ̂(f, φℓ)− 1

Nh−1
.

Case (I) (c) and Case (II). Let us assume that ℓh ≥ 2 and (bh−vℓh−1)(nh−β) = 1.
As earlier we write ℓ = ℓh. By using notation of Proposition 4.13 and from the
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proof of Proposition 4.15 the segments Vh−1Aℓ−1 and Wh−1Bℓ−1 lay on the same
straigh line with the inclination θℓ−1 (Wh−1 = B and Aℓ−1 = Bℓ−1).

Vh−1

Vh

B

Aℓ−1

θℓ−1

Aℓ−2

θℓ−2

β̃

ζ ηβ̃

θℓ−1 is noncharacteristic
Vh−2

Vh−1

Vh

B

Aℓ−1

θℓ−1

Aℓ−2

θℓ−2

ζ

nh

nh−1nh

θℓ−1 is characteristic

We study Ft(X,φℓ−1 + Y ). We have degφℓ−1 = θℓ−2 (we put θ0 = 0). Applying
Property 4.5 we compute

in(1,θℓ−1)Ft(X,φℓ−1 + Y ) = in(1,θℓ−1)f(X,φℓ−1 + Y ) + t in(1,θℓ−1)H(X,φℓ−1 + Y ) .

Let us denote this form by I. For nonzero c, d and nonnegative ζ, η we have

I=cXζ
(
Y uℓ−1 − a

uℓ−1

ℓ−1 Xθℓ−1uℓ−1

)nh

+ t dβ̃Xηβ̃
(
Y uℓ−1 − a

uℓ−1

ℓ−1 Xθℓ−1uℓ−1

)β̃

=cXζ
(
Y uℓ−1 − a

uℓ−1

ℓ−1 Xθℓ−1uℓ−1

)β̃
[(

Y uℓ−1 − a
uℓ−1

ℓ−1 Xθℓ−1uℓ−1

)nh−β̃

+
tdβ̃

c
Xζ−ηβ̃

]
.

The right factor is nodegenerate by Lemma 4.17. If β̃ > 1 (case (I) c) then
aℓ−1X

θℓ−1 is a multiple root of in(1,θℓ−1)Ft. Hence

(52) φℓ = φℓ−1 + aℓ−1X
θℓ−1 ∈ T∗(Ft, X) .

To obtain (ii) we reason as in the previous case. We have

µ̂(f, φℓ)=2Area(Vh−1Aℓ−1Vh)− |Aℓ−1Vh| ,
µ̂(Ft, φℓ)=2Area(BAℓ−1Vh)− |Aℓ−1Vh|

where | . . . | stands for the length of a segment. Clearly µ̂(Ft, φℓ) = µ̂(f, φℓ)− 1
Nh

.

When β̃ = 1 (equivalently nh = 2, case (II)) the form I is nondegenerate. Hence
T∗(f,X) = cycle(φ1) ∪ · · · ∪ cycle(φℓh−1). We obtain µ̂(f, φℓ) =

1
Nh

. This finishes
the proof of Propositions 4.11 and 4.12 and the proof of Theorem 1.1 □
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