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LEFSCHETZ NUMBERS AND ASYMPTOTIC PERIODS

KAROL GRYSZKA

Streszczenie. In this note we prove several results linking Lefschetz numbers
with asymptotic behaviour of the orbit in flows. With the aid of the Lefschetz
fixed point theorem and the presence of a non-trivial limit set we prove the
existence of asymptotically non-periodic orbits.

1. Introduction

The study of dynamical systems is divided into the variety of categories. In this
article we want to utilize classic topological methods, going back to Lefschetz [8]
and his well–known fixed point theorem.

The Lefschetz fixed point theorem has many applications in mathematics [2, 4],
especially in the fixed point theory, but also, surprisingly, in digital topology [3].
The Lefschetz formula and the Euler characteristic are another tolls that have
a wide application in algebraic topology and dynamical systems.

In this article, we link the Lefschetz numbers with the so called G-asymptotic
period. In Section 3 we, among others, prove that if the limit set of some po-
int x has non-zero Euler characteristic, then x cannot be G-asymptotically pe-
riodic. We also provide several examples of flows that justify the assumptions of
our results.
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2. Preliminaries

Let us start by introducing fundamental definitions used in the entire paper.

2.1. Dynamical systems. Let (X, d) be a metric space. A dynamical system
(a flow) φ is a continuous mapping φ : R × X → X such that φ(0, x) = x and
for any x, s and t we have φ(t, φ(s, x)) = φ(t + s, x). We call X a phase space of
φ. A motion through x is the mapping t 7→ φ(t, x). We will identify properties of
the motion through x with properties of x. Given dynamical system φ and x ∈ X,
the set o(x) = φ(R, x) is the orbit of x and o+(x) = φ([0,+∞), x) is the positive
orbit of x. A point x is stationary if x = φ(t, x) for any t ∈ R. If for some T > 0
we have x = φ(T, x) and x is not stationary, then x is periodic. If T > 0 is the
smallest such that x = φ(T, x), then we say that x is T -periodic and we call T
the period of x. The ω-limit set ω(x) consists of all points y ∈ X such that there
exists a strictly increasing and diverging to +∞ sequence (tn)n∈N of times with the
property: φ(tn, x) → y. For more definitions and properties related to dynamical
systems see [1, 13].

The following notion is a generalization of periodicity and it relies on the asymp-
totic behaviour of the orbit outside of a small neighbourhood of a point belonging
to the positive orbit of x. This idea was introduced in [5]. We briefly introduce the
necessary notation.

Let φ be a flow on X. Fix x ∈ X and ε > 0, and define

A(x, ε) := {t  0 | d(φ(t, x), x) > ε}.

This set is the union of at most countably many pairwise disjoint and open intervals
denoted by (qi, ri). Define

wx,ε(t) :=
{

0, t 6∈ A(x, ε),
diam(qi, ri), t ∈ (qi, ri).

The set Wx,ε := {wx,ε(t) | t  0} contains at most countably many different non-
negative real numbers, including +∞ if necessary. We call the elements of that
sequence return times. Set

W (x, ε) := lim sup
t→+∞

wx,ε(t).

Definition 2.1. The G-asymptotic period of x (of the orbit of x) is defined as

G-AP(x) := lim
ε→0

lim sup
t→+∞

W (φ(t, x), ε).

If G-AP(x) = 0, then x is called G-asymptotically fixed. If x has a finite asymptotic
period, then it is called G-asymptotically periodic. If G-AP(x) = +∞, then x is
called G-asymptotically non-periodic.

See also [5, 6, 7] for more properties of G-asymptotically periodic orbits.
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2.2. Homotopies and ENRs. Let X be a topological space. For any mapping
f : X → X, we say that f has the fixed point property if f has a fixed point, i.e.,
there exists x0 ∈ X such that f(x0) = x0. Define the set

Fix(f) = {x ∈ X | f(x) = x}.

Suppose f : X → X and g : X → X are continuous functions. We say that f
is homotopic to g and we denote this relation by f ∼ g, if there is a continuous
mapping h : [0, 1]×X → X such that h(0, ·) = f and h(1, ·) = g.

We say that X has the weak fixed point property if for any f : X → X which is
homotopic to IdX (the identity function on X) we have Fix(f) 6= ∅.

We call the space X euclidean neighborhood retract (ENR) if there exists an
open set V ⊂ Rn and continuous functions r : V → X and s : X → V such that
r ◦ s = IdX .

2.3. Lefschetz numbers. Let X be a compact ENR and let f : X → X be conti-
nuous. Let H denote the singular homology functor with rational coefficients. Let
H(f) : H(X)→ H(X) be the induced homomorphism.

Definition 2.2. The number

L(f) =
∑
n∈Z

(−1)ntrHn(f) ∈ Z

is called the Lefschetz number of f . Here, trHn(f) is the trace of the endomorphism
Hn(f) : Hn(X)→ Hn(X).

If f = IdX , then χ(X) = L(IdX) is called the Euler characteristic of X. It can
also be defined as

χ(X) =
+∞∑
n=0

(−1)n dimHn(X).

The above definitions are well-defined since it is well-known that compact ENRs
have only finitely many non-zero homologies Hn(f) and they are all of finite di-
mension. It is also well-known, that if f ∼ g, then L(f) = L(g). See [2] for more
information related to the topic.

3. Main results

We shall use the following lemma. It is a variation of Proposition III 4.8 in [2].
See also [12].

Lemma 3.1. If φ is a flow on a compact metric space (X, d) and X has the weak
fixed point property, then φ has a stationary point.

Dowód. For each t ∈ R we let φt denote the map X 3 x 7→ φ(t, x) ∈ X. Then
φt ∼ IdX ; the homotopy is defined via relation

h(s, x) = φ(st, x).
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Each φt has a fixed point by the weak fixed point property. We define the sets

An = {x ∈ X | φ(2−n, x) = x}.
Each of the sets An is not empty, closed and therefore compact. Furthermore, since

x = φ(2−(n+1), x) = φ(2−(n+1), φ(2−(n+1), x)) = φ(2−n, x)

for any x ∈ An+1, we have

A0 ⊃ A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · · .
Since X is compact and the family {An}n∈N has a finite intersection property, we
can take the set

A =
⋂
n∈N

An 6= ∅.

Take any z ∈ A. Then φ(2−n, z) = z for all n. We claim that for all n and all
integers m we also have

φ(m · 2−n, z) = z.

Since z ∈ A0, we have for any natural number k,

φ(k, z) = φ(k − 1, φ(1, z)) = φ(k − 1, z) = · · · = φ(1, z) = z,

φ(−k, z) = φ(−k, φ(1, z)) = φ(−k + 1, z) = · · · = φ(−k + k, z) = φ(0, z) = z,

thus for any m ∈ Z,

φ(m · 2−n, z) = φ(m · 2−n mod 1, z)

and it is enough to prove the claim in the case 0 < m · 2−n < 1.

Suppose 0 < m · 2−n < 1 and let m =
∑M
i=0mi · 2i be the binary representation

of m. Then i− n ¬ 0 for each i = 0, . . . ,M . Note that z ∈ An and φ(2−n, z) = z,
hence

φ(m · 2−n, z) = φ
( M∑
i=0

mi · 2i−n, z
)

= φ
( M∑
i=1

mi · 2i−n, φ(m0 · 2−n, z)
)

= φ
( M∑
i=1

mi · 2i−n, z
)

(if m0 = 0, then φ(0, z) = z, otherwise φ(m0 · 2−n, z) = φ(2−n, z) = z). The
claim now follows from the induction on i (note that the induction terminates after
finitely many steps for any m).

Since the set {m2−n | m ∈ Z, n ∈ N} is dense in R and φ is continuous, this
implies that φ(t, z) = z for all t ∈ R. �

A great example of a space with the weak fixed point property is a connected
polyhedron.

Lemma 3.2 (See Proposition III 4.6 in [2]). Any connected polyhedron K with
χ(K) 6= 0 has the weak fixed point property. Any flow on such polyhedron has
a stationary point.
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The following lemma shows that if the limit set of the orbit has a stationary
point and at least one other point, then the G-asymptotic period need to be infinite.
Recall that a metric space is proper if all closed balls are compact sets.

Lemma 3.3 (see also [5]). Assume that (X, d) is a proper metric space and φ is
a flow on X. If x ∈ X has #ω(x) > 1 and ω(x) contains a stationary point, then
G-AP(x) = +∞.

Dowód. Suppose y ∈ ω(x) is stationary. It is sufficient to show that the return
times of x to B(y, ε) cannot be bounded, and hence G-AP(x) = +∞. Indeed, if
that were the case, then take ε′ < ε and t′ such that B(φ(t′, x), ε′) ⊂ B(y, ε). Then
since the return times in the former case are not bounded, they are not bounded
in the latter case, thus implying G-AP(x) = +∞.

Suppose the opposite is true and let K be the bound. Pick z ∈ ω(x) \ {y} and
ε > 0 so that d(y, z) > ε. There is a sequence (tn)n∈N such that φ(tn, x) → y and
d(φ(tn, x), y) < ε for all n.

Let t′n be the infimum of all u > 0 such that φ(tn + u, x) /∈ B(y, ε). Such an
u exists since z is an element of ω(x) and d(y, z) > ε. Let sn be the infimum of
all v > t′n such that φ(tn + v, x) ∈ B(y, ε) (see Figure 1). The sequence sn is
bounded by K. We can assume without loos of generality that it is convergent.
Let s = limn→+∞ sn. Then, since the space is proper, φ(tn + sn, x) → w for some
w ∈ X and w /∈ B(y, ε) On the other hand,

φ(tn + sn, x) = φ(sn, φ(tn, x))→ φ(s, y) = y

which is a contradiction. �

x

ω(x)
o(x)

y

z

ε
φ(tn, x)

φ(tn + t′n, x)

φ(tn + sn, x)

Rysunek 1. Sketch of the proof of Lemma 3.3.
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With the aid of the above lemmas, we can formulate the following theorem.

Theorem 3.4. Suppose φ is a flow on a proper metric space (X, d). Let x ∈ X
be such that ω(x) = S is a compact ENR with the weak fixed point property. If
#S > 1, then G-AP(x) = +∞.

Dowód. The set S is compact, therefore by Lemma 3.1 there is a stationary point
in S. Then, by Lemma 3.3 we have G-AP(x) = +∞. �

The assumption that the limit set S is an ENR is actually not needed for the
proof, however it was added since the later results require the set to be an ENR.

Recall the famous Lefschetz fixed point theorem [8, 9, 10, 11].

Theorem 3.5. Suppose X is a compact ENR and f : X → X is continuous. If
L(f) 6= 0, then Fix(f) 6= ∅.

We have the immediate.

Corollary 3.6. If X is a compact ENR with χ(X) 6= 0, then any flow φ on X has
a stationary point.

Dowód. Indeed, since the Lefschetz numbers are homotopy invariant,

χ(X) = L(IdX) = L(φ(t, ·))
for any t. Thus by Lefschetz fixed point theorem, each map x 7→ φ(t, x) has a fixed
point. The rest follows from the proof of Lemma 3.1. �

Example 3.7. Consider n-dimensional spheres. Then

χ(S2k) = 2, χ(S2k+1) = 0.

It is now clear that any flow on S2k must have a stationary point. On the other
hand, each odd-dimensional sphere S2k+1 admits a flow with no stationary points.

Indeed, let z = (z1, . . . , zk+1) ∈ S2k+1 with zi ∈ C. Then the function

φ(t, z) = zeit = (z1eit, . . . , zk+1eit)

defines a flow on S2k+1 with no stationary point.

A variation of Theorem 3.4 is presented below.

Theorem 3.8. Suppose φ is a flow on a proper metric space (X, d) and ω(x) = S
is a compact ENR (or a connected polyhedron) for some x ∈ X. If #S > 1 and
χ(S) 6= 0, then G-AP(x) = +∞.

Example 3.9. If we take S = S2k in Theorem 3.8, then G-AP(x) = +∞. In
particular, even-dimensional sphere cannot be a limit set of G-asymptotically pe-
riodic point. On the other hand, the unit circle S1 is the limit set of all points in
R2 \ {(0, 0)} of the flow in R2 generated by the equations{

r′ = r(1− r),
t′ = 1.
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This in turn implies that the assumption about the Euler characteristic cannot be
relaxed.

Finally, in view of Theorem 3.8, by constructing a flow which has ω(x) = T (the
two-dimensional surface of the torus - one such construction was provided in [5]),
we can show that the condition G-AP(x) = +∞ does not imply χ(S) 6= 0,
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