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SEQUENT CALCULI FOR ORTHOLOGIC
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Abstract

In this study, new sequent calculi for a minimal quantum logic (MQL) are dis-

cussed that involve an implication. The sequent calculus GO for MQL was estab-

lished by Nishimura, and it is complete with respect to ortho-models (O-models).

As GO does not contain implications, this study adopts the strict implication and

constructs two new sequent calculi GOI1 and GOI2 as the expansions of GO.

Both GOI1 and GOI2 are complete with respect to the O-models. In this study,

the completeness and decidability theorems for these new systems are proven.

Furthermore, some details pertaining to new rules and the strict implication are

discussed.

Keywords: Quantum logic, sequent calculus, completeness theorem, implication,

orthologic.

1. Introduction

Quantum logic (QL) has been introduced in order to manage strange propo-
sitions of quantum physics, such as uncertainty principle. Many structures
have been studied to represent and analyze such propositions. In partic-
ular, Orthomodular lattices describe the propositional spaces of quantum
physics and have been studied as the main structure of QL in the work by
Birkhoff and Von Neumann [3]. An orthomodular lattice is based on closed
subspaces of a Hilbert space, which is a state space of particles in quantum
physics. Instead of these lattices, the Kripke model of QL, the orthomod-
ular model (OM-model), can be used, which also describes a state space
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of quantum particles [12]. Ortholattices, which are conceptually simpler
than orthomodular lattices, have also been studied. The logic based on
ortholattices is a minimal QL (MQL) or orthologic. Moreover, the Kripke
model for MQL, i.e., ortho-model (O-model), also exists [12].

As it is usually studied, QL does not contain logical implications and
includes only negations, conjunctions, and disjunctions. Several implica-
tions in QL have been suggested; however, they all have difficulties for
varying reasons [12, 14]. Therefore, the deduction systems, such as the
Hilbert style axiomatization or sequent calculi that include implications,
are not well developed. This problem also holds for MQL. In MQL, the
number of appropriate implications is even smaller than that in QL. There-
fore, as a part of research to address these problems, this study constructs
two new sequent calculi for MQL that include rules for specific implication
and provides the completeness theorems with respect to O-models.

When the implications are added to QL or MQL, some problems are
encountered. In classical logic, the implication A → B and ¬A ∨ B can
be identified. However, in QL, if ¬A ∨ B is adopted as an implication,
critical properties for the implication, such as modus ponens, do not hold.
Therefore, in QL, many other implications have been considered. Among
them, polynomial implications that can be defined in terms of connectives
¬, ∧ and ∨, have been predominantly studied. The polynomial implication
Sasaki arrow ¬A∨ (A∧B) has attracted the most attention in QL. In ad-
dition to the Sasaki arrow, the contrapositive Sasaki arrow ¬(A ∨ B) ∨ B,
the relevance arrow (A∧B)∨ (¬A∧B)∨ (¬A∧¬B), and two other arrows
have been explored [12, 13, 14]. These implications are the only polyno-
mial implications that have suitable properties in terms of the orthomod-
ular lattice and have been studied from both physical and mathematical
standpoints [21].

These implications have been investigated in many ways because of their
strangeness. The meaning and properties of these implications in quantum
physics are associated with the notion of projections [12, 22]. For example,
the Sasaki arrow ¬A ∨ (A ∧B) can be translated as “after a measurement
of A, if the state is projected to a state which A is true, then B is true.”
By utilizing this property and embedding the projection relationship in
the model, various properties of the Hilbert space can be analyzed using
the Kripke model [22]. Recently, these implications have been used in the
context of quantum set theory, achieving results in the analysis of observed
values in quantum mechanics [29]. The algebraic features of these impli-
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cations have been widely studied in the case of orthomodular lattices and
ortholattices [1, 6, 4, 8, 17]. These studies focus on the logical aspects of
orthomodular lattices using implications. Furthermore, concepts regard-
ing orthomodular lattices, such as semilattices, have been analyzed, where
implications occupy a principal position [10, 9, 11]. Among them, implica-
tion algebras have been discussed as implication studies that exclude other
logical operators [1, 7, 13, 15, 16]. In this field, the properties of ortho-
modular lattices have been elucidated by analyzing algebraic axioms and
conditions for implications. This algebraic research is a purely mathemat-
ical study rather than a research related to quantum physics. Few studies
on QL have employed binary relational models compared with the num-
ber of studied on such algebraic studies. Models using binary relations
can express the dynamic relations of quantum physics, and some dynamic
concepts are closely related to implications. Therefore, research using the
Kripke model, such as that proposed in this study, should be conducted.

However, in ortholattices, polynomial implications do not satisfy modus
ponens. In this study, the notion of strict implication proposed in the lit-
erature [12] is adopted for MQL, as the strict implication exhibits good
mathematical properties, particularly in the Kripke models, and has physi-
cally significant meanings. In an ortholattice L, strict implication is defined
with some restrictions as follows [12]:

a→ b =
⊔
{c ∈ L | c 6= 0 ∧ ∀d((d 6= 0 ∧ c � d′ ∧ d ≤ a)⇒ d ≤ b)}

where ≤ is the order in L, t is the join, and 0 is the least element. Although
this definition seems complicated at the first glance, the definition in the
Kripke model corresponding to this definition is clear. This is one reason
for adopting the Kripke model in the present study. Intuitively, from a
quantum physics viewpoint, the strict implication A→ B can be translated
as “after the measurement of any physical quantity, if A is true, then B is
true.”

Some advantages of the strict implication should be noticed.

• In ortholattices, the Sasaki arrow does not satisfy modus ponens.
However, the strict implication satisfies modus ponens in both lat-
tices. Therefore, when MQL is considered, the strict implication is
more suitable than the Sasaki arrow.
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• All material implications are abbreviations of formulas constructed
using conjunctions, disjunctions, and negations. However, the strict
implication cannot be (finitely) constructed by means of these sym-
bols [12]. Therefore, when the strict implication is added to MQL,
the descriptive ability of the logic increases.

• The definition of the strict implication in O-models is similar to that
of the implication in intuitionistic logic. The deduction rules of the
strict implication are similar to those in the sequent calculus LBP
for the basic propositional logic (BPL) [20, 31]. Therefore, we can
analyze the relationship between QL and other logics using this im-
plication.

Although a sequent calculus for MQL with the strict implication exists,
a sequent is a labeled type sequent [23]. From the logic viewpoint, it is
important to construct and discuss a simple type of sequent calculus for
logic. Furthermore, some deduction systems for QL or MQL that involve
implications are studied; however, they are either not sequent calculi or the
implication used in these systems is not a strict implication [5, 28]. Sequent
calculi GO [25] and GMQL [26, 27] have been studied as foundational
sequent calculi for MQL which only includes ¬, ∧ and ∨. The present
study adopts GO for technical reasons, which is presented in Section 6.
The rules for the strict implication are added to GO, and new calculi
GOI1 and GOI2 are constructed. This study proves the completeness
theorem for these new systems.

Some formulas valid with general implications in other logics are invalid
with the strict implication in O-models. For example, p → (q → p) is
invalid. Therefore, general rules for implications, for example, such as
those for the implication in classical logic, cannot be used. As mentioned
earlier, this study uses a modified version of the rule for the implication
of LBP reported in the literature [20]. The implication of BPL also does
not satisfy some ordinary natures of implication. The semantics of this
implication in a Kripke model is the same as that of the strict implication.
In other words, x |= A → B is regarded as “for all y, such that xRy, if
y |= A, then y |= B.”

In Sections 2 and 3, some basics and the sequent calculus of MQL are
presented. In Sections 4 and 5, the new sequent calculi GOI1 and GOI2
are constructed and some related theorems are proven. The deduction
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ability of GOI1 and GOI2 is intrinsically the same; however, the rules for
the strict implication are different and each has pros and cons. In Section 6,
some details regarding the strict implication and rules are discussed.

2. Basics

This study uses language that has a denumerable infinite set of proposi-
tional variables, the propositional constant ⊥, the unary connective ¬, and
binary connectives ∧ and →. Formulas are constructed in the usual way.
We denote propositional variables by p, q, . . ., formulas by A,B,C, . . ., and
finite sets of formulas by Γ ,∆,Σ,Π, . . .. We use A∨B as the abbreviation
of ¬(¬A ∧ ¬B).

An O-frame is a pair (W,⊥), where W is a nonempty set, and ⊥ is an
irreflexive and symmetric binary relation on W . For traditional reasons, we
use the symbol ⊥ in two ways; one as a relation, the other as a formula. The
relation symbol ⊥ came from the orthogonal relation in the Hilbert space,
and the formula symbol ⊥ denotes the bottom. They can be distinguished
by the context.

We write x 6⊥ y if not x⊥y. We write x⊥X if, for all y ∈ X, x⊥y,
where x ∈ W and X ⊆ W . Given X ⊆ W , we define the set X⊥ =
{x ∈W |x⊥X}. We say that X is ⊥-closed if X⊥⊥ = X.

An O-model is a triple (W, ⊥, V ), where (W, ⊥) is an O-frame and V 
is a function assigning each propositional variable p to a ⊥-closed subset 
of W .

We define the set ‖A‖ by induction on the composition of A as follows.

‖p‖ = V (p)

‖A ∧B‖ = ‖A‖ ∩ ‖B‖

‖¬A‖ = ‖A‖⊥

‖A→ B‖ = {x ∈W | for all y ∈W , if x 6⊥ y and y ∈ ‖A‖, y ∈ ‖B‖ }

‖⊥‖ = ∅

A is true at x if x ∈ ‖A‖ and write x |= A. It is easy to evaluate that
‖¬A‖ = ‖A → ⊥‖ is fulfilled in this definition. Therefore, we regard ¬A
as the abbreviation of A→ ⊥.
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Lemma 2.1. For all ‖A‖, ‖A‖ is ⊥-closed.

Proof: In the cases of ‖p‖, ‖A∧B‖ and ‖¬A‖, see [25]. For all x ∈ ‖A→
B‖, x⊥{y ∈W | y |= A and y 2 B}. Then, {y ∈W | y |= A and y 2 B} ∈
‖A→ B‖⊥. Therefore, if z ∈ ‖A→ B‖⊥⊥

then z⊥{y ∈ W | y |= A and
y 2 B}. It means z ∈ ‖A→ B‖. That is, there is no point z which satisfies

z /∈ ‖A→ B‖ and z ∈ ‖A→ B‖⊥⊥
. Therefore, ‖A→ B‖ is ⊥-closed.

3. Sequent calculus GO

GO is defined below [25].

Axiom: A⇒ A
Rules:

Γ ⇒ ∆,A A,Π ⇒ Σ

Γ,Π ⇒ ∆,Σ
(cut) Γ ⇒ ∆

Π,Γ ⇒ ∆,Σ
(weakening)

A,Γ ⇒ ∆

A∧B,Γ ⇒ ∆
(∧L)

B,Γ ⇒ ∆

A∧B,Γ ⇒ ∆
(∧L)

Γ ⇒ ∆,A Γ ⇒ ∆,B

Γ ⇒ ∆,A∧B (∧R)

Γ ⇒ ∆,A

¬A,Γ ⇒ ∆
(¬L) A⇒ ∆

¬∆⇒ ¬A (¬R)

A,Γ ⇒ ∆

¬¬A,Γ ⇒ ∆
(¬¬L)

Γ ⇒ ∆,A

Γ ⇒ ∆,¬¬A (¬¬R)

In [25], Γ ,∆,Π and Σ are defined as probable infinite sets. We restrict
these to finite sets because infinite sets are not essential here.

Consider an O-model (W,⊥, V ). Sequent Γ ⇒ ∆ is false at x ∈ W if
for all formulas A ∈ Γ , x |= A, and, for all formulas B ∈ ∆, x 2 B. If
Γ ⇒ ∆ is not false at x, then it is true at x. Sequent Γ ⇒ ∆ is falsifiable
if there exists an O-model (W,⊥, V ) and x ∈W , and Γ ⇒ ∆ is false at x.
If Γ ⇒ ∆ is unfalsifiable, we say Γ ⇒ ∆ is valid.

Theorem 3.1. The soundness and completeness theorem for GO. Γ ⇒ ∆
is provable in GO if, and only if, (iff) Γ ⇒ ∆ is valid.

Proof: See [25].
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4. Sequent calculus GOI1

In this section, a sequent calculus including the strict implication is es-
tablished. The sequent calculus GOI1 is defined as an expansion of GO. 
The rule (→ R) and axiom ⊥ ⇒ are added to GO. The rule (→ R) is the 
transformation of the rule (→) in [20]. Because this rule (→ R) is com-
plex, using GOI2 in the next chapter for the main calculus of MQL 
with the strict implication would be better. However, (→ R) is useful 
to prove the completeness theorem. Therefore, first the details of GOI1 
are shown. The definitions of truth, falsity, and validity of a sequent are 
identical to that in GO.

⊥ ⇒ (⊥)

Γ 1, A⇒ B,∆1, Σ Γ 2, A⇒ B,∆2, Σ . . . Γ 2n , A⇒ B,∆2n , Σ

C1 → D1, C2 → D2, . . . , Cn → Dn, Π ⇒ A→ B,Λ
(→R)

where, 0 ≤ n, Γ i = {Dj |j ∈ γ(i)}, ∆i = {Cj |j ∈ δ(i)}, 〈δ(i), γ(i)〉 is the
i-th element of all partitions of {1, . . . , n}. Π and Λ are formula sets. Σ
is a set of all formulas of the shape E → F such that E is included in the
premise of the lower sequent and F is included in the conclusion of the
lower sequent or ⊥. Therefore, Σ = {E → F |E ∈ {C1 → D1, . . . , Cn →
Dn, Π}, F ∈ {A→ B,Λ,⊥}}.

For example, suppose Π = {I}, Λ = {J,K}, then (→R) is as below in
the case of n = 0, n = 1, and n = 2.

A⇒ B, I → (A→ B), I → J, I → K, I → ⊥
I ⇒ A→ B, J,K

A⇒ B,C1, Σ D1, A⇒ B,Σ

C1 → D1, I ⇒ A→ B, J,K

where Σ is {(C1 → D1) → (A → B), (C1 → D1) → J, (C1 → D1) →
K, (C1 → D1)→ ⊥, I → (A→ B), I → J, I → K, I → ⊥}.

A⇒ B,C1, C2, Σ D1, A⇒ B,C2, Σ D2, A⇒ B,C1, Σ D1, D2, A⇒ B,Σ

C1 → D1, C2 → D2, I ⇒ A→ B, J,K
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where Σ is {(C1 → D1) → (A → B), (C1 → D1) → J, (C1 → D1) →
K, (C1 → D1) → ⊥, (C2 → D2) → (A → B), (C2 → D2) → J, (C2 →
D2)→ K, (C2 → D2)→ ⊥, I → (A→ B), I → J, I → K, I → ⊥}.

In GOI1, the rule (→ L) is admissible.

Γ 1,⇒ ∆1, A B, Γ 2 ⇒ ∆2

Γ 1, Γ 2, A→ B ⇒ ∆1, ∆2
(→L)

We will prove this lemma in Section 5.

Theorem 4.1. The soundness theorem for GOI1. If Γ ⇒ ∆ is provable
in GOI1, Γ ⇒ ∆ is valid.

Proof: Proven by induction on the construction of a proof. For rules in
GO, the proof is the same as the proof in [25]. For (→R), we only evaluate
n = 2. The other cases are similar. For contradiction, suppose all premises
of the rule are valid, and there exists O-model (W,⊥, V ) and x ∈W , such
that the conclusion of the rule is false at x. Then, as A→ B is false at x,
there exists y ∈W , satisfying x 6⊥ y, y |= A and y 2 B. Because we assume
that y |= A and all premises are valid, from the first premise, B or C1 or
C2 or one of the formulas in Σ is true at y; however, B is false at y. Now,
suppose E → F ∈ Σ. We have x |= E and x 2 F by assumption and the
definition of (→R). If y |= E → F , from y 6⊥ x and x |= E, x |= F , which
is a contradiction. Therefore, for all E → F ∈ Σ, y 2 E → F . Therefore,
C1 or C2 is true at y. In the former case, from x |= C1 → D1 and y |= C1,
y |= D1. From the second premise, B or C2 or one of the formulas in Σ
is true at y. Similarly, the only possibility is C2; therefore, C2 is true at
y. To continue this method to the end of premises, B or Σ is the only
possibility, which is a contradiction. The latter case and cases of the other
possibilities are similar to this method.

To prove the completeness theorem, we define the set Ω as follows.
Ω(Γ ⇒ ∆) = { All subformulas in Γ ∪ ∆} ∪ { ¬p | p appear in some
formulas in Γ ∪ ∆} ∪ {⊥}. For example, Ω(¬(p → q) ⇒ r ∧ q) =
{⊥, p, q, r,¬p,¬q,¬r, p→ q, r ∧ q,¬(p→ q)}. For each unprovable sequent
Γ ⇒ ∆, we define a canonical O-model (Wc,⊥c, Vc) of Γ ⇒ ∆ as follows.

Wc: {Γ 1 ⇒ ∆1|Γ 1 ⇒ ∆1 is unprovable in GOI1 and Γ 1 ∪∆1 = Ω(Γ ⇒
∆)}
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⊥c: (Γ 1 ⇒ ∆1)⊥(Γ 2 ⇒ ∆2) iff for some A and B, at least one of (1) (2)
is true. (1) A → B ∈ Γ 1, A ∈ Γ 2 and B ∈ ∆2. (2) A → B ∈ Γ 2,
A ∈ Γ 1 and B ∈ ∆1.

Vc: assigns p to the set {Γ 1 ⇒ ∆1|p /∈ ∆1}.

Lemma 4.2. (Wc,⊥c) is an O-frame. Vc(p) is ⊥-closed. Therefore, (Wc,⊥c,
Vc) is an O-model.

Proof: If (Γ 1 ⇒ ∆1)⊥(Γ 1 ⇒ ∆1), there is A and B that A ∈ Γ 1, A →
B ∈ Γ 1 and B ∈ ∆1. But A,A→ B ⇒ B is proven using (→L); therefore,
Γ 1 ⇒ ∆1 can be proven, which is a contradiction. Therefore, for every
Γ 1 ⇒ ∆1 ∈ WC , (Γ 1 ⇒ ∆1) 6⊥ (Γ 1 ⇒ ∆1). Symmetry is obvious from
the definition. If p /∈ Ω(Γ ⇒ ∆), Vc(p) = Wc. This is clearly ⊥-closed.
If p ∈ Ω(Γ ⇒ ∆), for every Γ 1 ⇒ ∆1 ∈ Wc, p ∈ Γ 1 or p ∈ ∆1. Then,
(Γ 1 ⇒ ∆1) |= p iff p ∈ Γ 1. Therefore, if we can prove the next statement,
we can prove this lemma.

For all (Γ 1 ⇒ ∆1) ∈ Wc, if p ∈ ∆1, there exists (Γ 2 ⇒ ∆2) ∈ WC ,
satisfying ¬p ∈ Γ 2 and (Γ 1 ⇒ ∆1) 6⊥ (Γ 2 ⇒ ∆2).

For convenience, we prove this statement after the next lemma.

Lemma 4.3. For all canonical O-models and all formulas A ∈ Ω, A is true
at (Γ 1 ⇒ ∆1) if A ∈ Γ 1 and A is false at (Γ 1 ⇒ ∆1) if A ∈ ∆1.

Proof: Proven by induction on the composition of A.
For A = p, the proof is obvious from the definition of a canonical O-

model.
For A = B ∧ C, the proof is the same as in [25].
For A = ¬B, the proof is included in A = B → C.
For A = B → C, suppose B → C ∈ Γ 1. Then, for all (Γ 2 ⇒ ∆2)

satisfying B ∈ Γ 2 and C ∈ ∆2, (Γ 1 ⇒ ∆1)⊥(Γ 2 ⇒ ∆2) by the definition of
the canonical O-model. Then, by definition of→ and induction hypothesis,
B → C is true at (Γ 1 ⇒ ∆1).

Suppose B → C ∈ ∆1. Because Γ 1 ⇒ ∆1 cannot be proven, when we
regard this sequent as the lower sequent of the rule (→R), an unprovable
sequent Γ 2, B ⇒ C,∆2 exists, which is of the shape of a sequent in the
upper sequent of (→R). Then, Γ 2 and ∆2 distribute all formulas of the
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shape of E → F in Γ 1, regarded as a Ci → Di. If there are formulas
in Γ 2, B ⇒ C,∆2 that are excluded in Ω(Γ ⇒ ∆), we delete them from
Γ 2, B ⇒ C,∆2 and make a new sequent Γ 3, B ⇒ C,∆3. Then, Γ 3 ∪
{B,C}∪∆3 ⊆ Ω(Γ ⇒ ∆) and this sequent is still unprovable. This sequent
can be expanded to the sequent Γ 4 ⇒ ∆4 ∈Wc because for all formulas G,
at least one Γ 3, B ⇒ C,∆3, G or G,Γ 3, B ⇒ C,∆3 is unprovable because
of the rule (cut) and because Γ 3, B ⇒ C,∆3 is unprovable. Furthermore,
(Γ 1 ⇒ ∆1) 6⊥ (Γ 4 ⇒ ∆4) is satisfied because we delete all probability of
holding the relation⊥ when we construct Γ 2, B ⇒ C,∆2. Therefore, by the
definition of → and induction hypothesis, B → C is false at Γ 1 ⇒ ∆1.

Now we can prove the statement in Lemma 4.2 using the method of
the proof of Lemma 4.3. If Γ 1 ⇒ ∆1, p (∈ Wc) is unprovable, Γ 1 ⇒
∆1, p,¬¬p is also unprovable. We regard (p → ⊥) → ⊥ as B → C in
Lemma 4.3. The same argument for B → C ∈ ∆1 in Lemma 4.3 can
be applied. That is, we can find (Γ 4 ⇒ ∆4) ∈ Wc, satisfying ¬p ∈ Γ 4,
⊥ ∈ ∆4, and (Γ 1 ⇒ ∆1, p) 6⊥ (Γ 4 ⇒ ∆4). If ¬¬p is included in Ω(Γ ⇒ ∆),
Γ 1 ⇒ ∆1, p,¬¬p is the same as Γ 1 ⇒ ∆1, p and is included in Wc. If ¬¬p
is excluded in Ω(Γ ⇒ ∆), sequent Γ 4 ⇒ ∆4 (¬p ∈ Γ 4), constructed from
Γ 1 ⇒ ∆1, p,¬¬p is included in Wc, even if Γ 1 ⇒ ∆1, p,¬¬p is excluded
in Wc. That is, when we make Γ 3,¬p ⇒ ⊥, ∆3 from Γ 1 ⇒ ∆1, p,¬¬p,
we eliminate all formulas that are excluded in Ω(Γ ⇒ ∆). Furthermore,
it satisfies (Γ 1 ⇒ ∆1, p) 6⊥ (Γ 4 ⇒ ∆4) because Γ 1 ⇒ ∆1, p is a part of
Γ 1 ⇒ ∆1, p,¬¬p.
Theorem 4.4. The completeness theorem for GOI1. If Γ ⇒ ∆ is valid,
Γ ⇒ ∆ is provable in GOI1.

Proof: Suppose Γ ⇒ ∆ is unprovable. We can make a canonical O-
model of Γ ⇒ ∆. Because (cut) is included in GOI1, there exists (Γ ′ ⇒
∆′) ∈ Wc, an expansion of Γ ⇒ ∆. By Lemma 4.3, Γ ⇒ ∆ is false at
(Γ ′ ⇒ ∆′).

5. Sequent calculus GOI2

We define the sequent calculus GOI2 as an expansion of GO. We add the
axioms (→ ⊥) and (⊥) and the rule (→ R)’ to GO. The rule (→ R)’ is
similar to the rule (→) in [20], but there are no contexts in this rule.
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A⇒ (A→ B)→ ⊥, B (→ ⊥)

Γ 1, A⇒ B,∆1 Γ 2, A⇒ B,∆2 ... Γ 2n , A⇒ B,∆2n

C1 → D1, C2 → D2, ..., Cn → Dn ⇒ A→ B
(→R)’

where 0 ≤ n, Γ i = {Dj |j ∈ γ(i)}, ∆i = {Cj |j ∈ δ(i)}, 〈δ(i), γ(i)〉 is the
i-th element of all partitions of {1, ..., n}.

The rule (→ R)’ is a natural expansion of the rule (¬R) in GO. That
is, if all Dj and B in (→ R)’ are ⊥, it is the same as (¬R) in GO because
of A→ ⊥ ≡ ¬A.

Theorem 5.1. The soundness and completeness theorem for GOI2. Γ ⇒
∆ is provable in GOI2 iff Γ ⇒ ∆ is valid.

Proof: We can prove that all rules of GOI1 are derivable in GOI2, and
vice versa. The proof of (→ ⊥) in GOI1 and (→R) in GOI2 is explained
below. The other cases are obvious.

A→ B ⇒ A→ B
A→ B ⇒ ⊥, A→ B,A→ ((A→ B)→ ⊥), A→ ⊥

(weakening)

A⇒ (A→ B)→ ⊥, B
(→R)

Suppose all sequents of upper sequents in (→R) are provable. For ex-
ample, suppose n = 2. Then,

A⇒ B,C1, C2, Σ
D1, A⇒ B,C2, Σ
D2, A⇒ B,C1, Σ
D1, D2, A⇒ B,Σ

are all provable. Now we regard all formulas in Σ as a Ci (n < i). For ex-
ample, if Σ has three elements, we regard Σ as {C3, C4, C5}. Furthermore,
we define all Di (n < i) as Di = ⊥. Then,

A⇒ B,C1, C2, C3, C4, C5

D1, A⇒ B,C2, C3, C4, C5

...
D1, D2, D3, D4, D5, A⇒ B

are all provable because, if all formulas in Σ = {C3, C4, C5} are on the
right-hand side, it is obvious from the assumption. If one of a {D3, D4, D5}

⊥ ⇒ (⊥)
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can use all these sequents and use (→R)’. Then, because E ⇒ (E → F )→
⊥, F is provable using (→ ⊥), use (cut), and prove the lower sequent of
(→R).

Theorem 5.2. In GOI1 and GOI2, the rule (→ L) is admissible.

Proof: By using (cut) and because A,A → B ⇒ B is provable in these
systems,

A→ B ⇒ A→ B
A→ B,⇒ ((A→ B)→ ⊥)→ ⊥

A⇒ (A→ B)→ ⊥, B
A, ((A→ B)→ ⊥)→ ⊥⇒ B

A,A→ B ⇒ B

Because the canonical model (Wc,⊥c, Vc) finite, we can prove the fol-
lowing theorem using the usual method as in GO.

Theorem 5.3. GOI1 and GOI2 are decidable. That is, an effective pro-
cedure determines whether a sequent Γ ⇒ ∆ is provable in GOI1 and
GOI2.

Proof: From the construction method of the canonical model (Wc,⊥c, Vc),
built from a sequent Γ ⇒ ∆, we obtain a finite model for any Γ ⇒ ∆, and
the model’s complexity can be bounded by the complexity of formulas and
the number of propositional letters in Γ and ∆. Therefore, by evaluating
all finite models up to the bound, whether sequent Γ ⇒ ∆ is valid can be
determined. From the soundness and completeness theorem, this method
can determine whether Γ ⇒ ∆ is provable in GOI1 and GOI2.

6. Conclusion and remarks

This study introduced two sequent calculi for MQL that involve the strict
implication. The rule for the implication in GOI1 is complicated. On the
contrary, the rule for the implication in GOI2 is less complicated and it
is a natural expansion of the rule (¬R). However, the axiom (→ ⊥) must
be included in GOI2. In both the calculi, the cut-elimination theorem
does not hold. In actuality, p, q ⇒ ¬(r ∧ ¬(p ∧ q)) cannot be proven
without (cut), as in GO [25]. In other words, based on the rules for

is on the left-hand side and because all are ⊥, this sequent is provable. We
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GOI1 and GOI2, in the proof of p, q ⇒ ¬(r ∧ ¬(p ∧ q)), we can only
use (weakening), (cut), or (→R) to deduce p, q ⇒ ¬(r ∧ ¬(p ∧ q)). How-
ever, it is easy to confirm that (weakening) does not work. Additionally,
r ∧ ¬(p ∧ q) ⇒ ⊥,¬p,¬q, p → ¬(r ∧ ¬(p ∧ q)), q → ¬(r ∧ ¬(p ∧ q)) can be
checked for invalidity. Moreover, it is challenging to construct a sequent
calculus for QL and MQL that satisfies the cut-elimination theorem using
an ordinary method. The situation is similar to that in the modal logic
S5. Both S5 and QL exhibit a symmetric frame. If an attempt is made
to construct a canonical model of the S5-frame in a stepwise manner, the
procedure cannot be stopped because of the symmetry. An effective tool
for addressing this problem is an extension of the sequent calculus. Various
extensions of sequence calculus for S5 have been constructed and analyzed
[2, 18, 19, 24, 30]. As one of them, labeled sequent calculi or tree sequent
calculi have been studied. A labeled sequent calculus for MQL with the
strict implication has been established and is cut-free [23]. It is still an
open question whether a normal sequent calculus for MQL that satisfies
the cut-elimination theorem exists.

In BPL, the law of modus ponens does not hold [20]. Modus ponens
A,A → B ⇒ B represents the reflexive condition of relations in frames
which is not the nature of frames of BPL. Therefore, the rule (→ L) is not
sound in LBP. (→ L) cannot be constructed if only (→ R)’ exists for the
implication. In GOI1 and GOI2, because other rules or axioms for the
implication are included, (→ L) can be constructed.

Another sequent calculus for MQL called GMQL [26, 27] is also com-
plete with respect to O-models and exclude implications, similar to GO. In
GO, based on the definition of the truth of a sequent, Γ ⇒ ∆,A,B cannot
be regarded as Γ ⇒ ∆,A ∨ B because commas on the right side of the
sequent indicate a union of sets. ‖A‖ ∪ ‖B‖ and ‖A∨B‖ are different sets
in O-models, and ‖A‖∪‖B‖ is not always ⊥-closed. For example,⇒ A,¬A
cannot be proven in GO; however, ⇒ A∨¬A (= ⇒ ¬(¬A∧¬¬A)) can be
proven. In GMQL, Γ ⇒ ∆,A,B represent Γ ⇒ ∆,A ∨ B. Because the
rules in GMQL are close to the notion of a lattice, the rules for ∧ and ∨
in GMQL are symmetric because ∧ and ∨ are symmetric in ortholattices.
In the case of GO, that excludes an implication, this notion of a union of
sets is inessential because of the following theorem [20].
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Theorem 6.1. If Γ ⇒ ∆ is provable in GO and ∆ is nonempty, then
there exists A ∈ ∆ such that Γ ⇒ A is provable and all sequents in that
proof have at most one formula on the right side.

When considering the rules for implications, GMQL is unsuitable be-
cause in the rules for strict implication, the notion of a union of sets on
the right side of a sequent is used rather than ∨. In the case of GOI1
and GOI2, the notion of a union of sets is essential and Theorem 6.1 does
not hold in these calculi. This finding can be confirmed by considering
the axiom (→ ⊥) and the completeness theorem. In other words, both
A⇒ (A→ B)→ ⊥ and A⇒ B are invalid.

In a sense, the axiom (→ ⊥) represents the symmetry of the relation in
frames. If GOI2 includes only (→R)’ for the strict implication, the sym-
metry cannot be handled because (→R)’ is a part of the sequent calculus
reported in the literature [20] which is sound and complete with respect
to the frames that do not need to be symmetrical. Assume that in an O-
model (W,⊥, V ), x |= A and x 6|= B, then for all y ∈ W such that x 6⊥ y,
y 6|= A → B attributed is the symmetry of 6⊥. If B = ⊥, then the axiom
(→ ⊥) is A ⇒ ¬¬A. When the translation in the literature [12] which
translate a formula of QL to a formula of modal logic is applied, this se-
quent corresponds to A⇒ �3A, representing the symmetry in the modal
logic.

In the rule (→) in LBP, in every left side of the sequent, contexts can
be used. Therefore, p → (q → p) can be proven in a sequent calculus for
LBP using n = 0 of (→), which cannot be proven in GOI1.

Γ ,A⇒ B

Γ ⇒ A→ B
(n = 0 of (→) in LBP)

p⇒ p
q, p⇒ p
p⇒ q → p

⇒ p→ (q → p)
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the anonymous reviewers for helpful comments on earlier version of this
paper.

This work was supported by JSPS KAKENHI Grant Number
JP20K19740.



Sequent Calculi for Orthologic with Strict Implication 87

References

[1] J. C. Abbott, Orthoimplication Algebras, Studia Logica, vol. 35(2) (1976),

pp. 173–177, DOI: https://doi.org/10.1007/BF02120879.

[2] K. Bednarska, A. Indrzejczak, Hypersequent Calculi for S5 – The Methods

of Cut-elimination, Logic and Logical Philosophy, vol. 24(3) (2015),

pp. 277–311, DOI: https://doi.org/10.12775/LLP.2015.018.

[3] G. Birkhoff, J. V. Neumann, The Logic of Quantum Mechanics, Annals

of Mathematics, vol. 37(4) (1936), pp. 823–843, DOI: https://doi.org/10.

2307/1968621.

[4] I. Chajda, The axioms for implication in orthologic, Czechoslovak Math-

ematical Journal, vol. 58(1) (2008), pp. 735–744, DOI: https://doi.org/

10.1007/s10587-008-0002-2.

[5] I. Chajda, J. Cirulis, An Implicational Logic for Orthomodular Lattices,

Acta Scientiarum Mathematicarum, vol. 82(34) (2016), pp. 383–394,

DOI: https://doi.org/10.14232/actasm-015-813-6.
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