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Disturbances in primary dental 
enamel in polish autistic children
Marta Kurek1*, Beata Borowska1, Beata Lubowiedzka‑Gontarek2, iwona Rosset1 & 
Elżbieta Żądzińska1,3

Dental enamel is a structure that is formed as a result of the regular functioning of ameloblasts. the 
knowledge of the patterns of enamel secretion allows an analysis of their disruptions manifested 
in pronounced additional accentuated lines. these lines represent a physiological response to 
stress experienced during enamel development. the aim of this study was to assess the occurrence 
of accentuated lines in the tooth enamel of autistic boys. the width of the neonatal line and the 
periodicity of the striae of Retzius were also assessed. the study material consisted of longitudinal 
ground sections of 56 primary teeth (incisors and molars): 22 teeth from autistic children and 34 teeth 
from the control group. the Mann–Whitney U test indicates that the accentuated lines were found 
significantly more often in autistic children (Z = 3.03; p = 0.002). No differentiation in the rate of enamel 
formation and in the rate of regaining homeostasis after childbirth were found. the obtained results 
may indicate a higher sensitivity of autistic children to stress factors, manifested in more frequent 
disturbances in the functioning of ameloblasts or may be a reflection of differences in the occurrence 
of stress factors in the first years of life in both analyzed groups.

Autistic patients are characterized by developmental disorders and specific age-dependent  effects1. Although 
autism spectrum disorders (ASDs) are genetic in origin, it is known that a variety of environmental precon-
ceptions and prenatal influences also plays a critical role in their emergence and in their subsequent  course2,3. 
There is a lack of publications dealing with dental disturbances in autistic children. However, previous research 
has shown that in cognitive and motor delayed children with ASD-related gene mutation (activity-dependent 
neuroprotective protein gene—ADNP), premature primary tooth eruption is  observed4. In this study, 44 out of 
54 ADNP-mutated children (81%) have almost fully erupted teeth, including molars, by 1 year of age.

Dental enamel is a structure that is formed as a result of the regular secretion by ameloblasts, visible in the 
form of cross-striations reflecting the circadian rhythm of the functioning of ameloblasts and of lines or bands 
(striae of Retzius) following an approximately weekly  rhythm5–9. Knowledge of enamel secretion patterns of the 
various tooth  types10–15 allows an analysis of their disruptions manifested in pronounced additional accentuated 
 lines7,15. These lines are indicative of mineralization disturbances and of a slower rate of enamel formation by the 
ameloblasts present in the enamel-forming front at a given time, and they represent a physiological response to 
the stress experienced during enamel  development16–19. In the case of primary teeth, enamel formation begins 
on average 189 or 176 days before birth and ends about 396 days after  birth20–22. This constitutes a record of 
stressful events experienced by an individual up to approx. 1.2 years of life.

According to the literature, the factors which may give rise to accentuated lines include: maternal infections 
during  pregnancy15, childhood  diseases23, immunization/vaccination in the first year of  life15, resource season-
ality and periods of drought in the case of non-human  primates24,25, as well as undernourishment or dietary 
transitions, such as  weaning26. A higher number of accentuated lines in the enamel of primary second molars 
has also been observed in children with developmental disturbances caused by genetic defects, such as familial 
dysautonomia syndrome (hereditary sensory and autonomic neuropathy)27.

A specific kind of an accentuated line is the neonatal line (NNL). It is observed in all deciduous teeth and is 
formed during the perinatal period. It separates the enamel formed prenatally from that formed postnatally, and 
its width is connected with perinatal factors, including the duration of delivery and the type of delivery, with the 
intake of certain medicines by the mother or with the child’s season of  birth10,28–30.
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The exact causes of autism are not fully understood. Numerous studies into the etiology of ASD, largely moti-
vated by its increasing incidence in Europe and in the USA, point both to genetic  defects31 and to environmental 
factors, such as viral infections, metabolic imbalances, and exposure to noxious chemicals during  pregnancy32. 
It also appears that some children are born with a susceptibility to autism, but researchers have not yet identi-
fied a single trigger that causes autism to develop. Autism tends to occur more frequently than expected among 
individuals who have certain medical conditions, including fragile X  syndrome33, tuberous  sclerosis34, congenital 
 rubella35, and untreated  phenylketonuria36. Some harmful substances, such as ethanol, valproic acid, and mis-
oprostol ingested during pregnancy have also been associated with an increased risk of  autism37.

Thus, it may be assumed that early ontogenetic disruptions in autistic children are also reflected in additional, 
irregular accentuated lines in dental enamel.

The aim of this study was to assess the occurrence of accentuated lines in the primary teeth of Polish autistic 
children. To the best of our knowledge, this is the first paper dealing with this issue.

Material and methods
Material. The study material consisted of primary teeth free from any developmental defects or dental car-
ies. A total of 56 teeth were analyzed: 22 primary teeth from autistic boys (17 incisors including 15  i1, 2  i2 and 5 
molars including 3  m1, 1  m1, 1  m2) and 34 teeth from the control group of boys (25 incisors including 15  i1, 7  i2, 
3  i2 and 9 molars including 2  m1, 1  m2, 2  m1, 4  m2). In the study, one tooth came from one child. In the case of 
the control subjects, teeth were sampled from children aged 5 to 10 years attending kindergartens and primary 
schools in Łódź (a city in central Poland with approximately 700,000 inhabitants) and from volunteers in a 
program called “tooth fairy”. Odontological material from autistic children was obtained at the Institute of Den-
tistry, Central Teaching Hospital of the Medical University in Łódź. All extractions were performed for ortho-
dontic reasons (when deciduous teeth that could disturb the process of dentition were still present in the oral 
cavity, although permanent teeth were already erupting) or during routine dental check-ups, when a deciduous 
tooth that would be shed in a moment was gently removed with the parents’ consent. The teeth from the autistic 
children were also collected in kindergartens and in primary schools in Łódź for children with disabilities. All 
the autistic children were diagnosed with autism spectrum disorders. All procedures were carried out in accord-
ance with the relevant regulations including obtaining informed consent from the parents of the children whose 
teeth were collected for enamel analysis. All experimental protocols were approved by the Ethical Commission 
at the University of Łódź (No. KBBN-UL/II/9/2010).

All the children were born between the  37th and the  42nd week of gestation (full-term). The average birth 
parameters fell into the range typical of full-term newborns in Łódź38 and were as follows: for the control chil-
dren: mean body weight = 3,374.7 g, SD = 393.0 g, and mean body length = 54.6 cm, SD = 2.6 cm; for the autistic 
children: mean body weight = 3,485.9 g, SD = 571.5 g, and mean body length = 55.2 cm, SD = 2.6 cm. There was 
no statistically significant difference in body weight (Z = 0.64; p = 0.52) and in body length (Z = 0.87; p = 0.38) 
between the healthy and the autistic children whose teeth were analyzed.

Each tooth was cleaned in a bath containing 70% alcohol for 24 h and dried with compressed oil-free air. Sec-
tions of the sampled teeth were made using a 0.5 mm diamond-wafering blade (Buehler IsoMet 1,000), followed 
by specimen embedding in epoxy resin (Biodur). The teeth were sectioned along the long axis in the labiolingual 
plane. The sections passed through the tips of the dentine horns and the tips of the enamel cusps. In order to 
secure an “ideal plane” of the section coinciding most precisely with the long axis of the tooth (a strictly radial 
plane), the cut made with the diamond saw was slightly shifted in the distal or medial direction. Subsequently, 
excess material was removed using abrasive paper (grades 600, 1,000, and 2,400). This procedure minimized the 
obliquity of the sectioned  specimens20,21.

For each section, series of photomicrographs were taken with a Delta Optical HDCE—50B camera attached 
to a light microscope (Delta Optical Evolution 300) with an apochromatic objective lens 10 × /0.65 ∞/0.17. The 
images were used for an assessment of the number of accentuated lines. During the analysis of the images, the 
procedure described in the studies  by8,25,26 was used, according to which clearly marked lines standing out in the 
structure of the enamel and visible through 75% of their length from the EDJ to the surface of the tooth were 
recognized as accentuated lines.

The width of the neonatal line was estimated for all the examined teeth. The measurement was performed 
in two places on the crown of the tooth on the labial surface, along the course of the enamel prisms. In the case 
of the incisors, the measurements were performed in the central part of the crown and in the proximity of the 
dentine horn. In the case of the molars, the places of measurement were located in the proximity of the dentine 
horn of both cusps and in the area between them.

The distances between the striae of Retzius were assessed in the above-mentioned parts of the crown. The 
values concerning the rate of enamel formation were obtained on the basis of measurements between three pairs 
of adjacent striae of Retzius. The assessment was performed in the central part of the postnatal enamel, along 
the course of the enamel prisms, from the edge of the Retzius line closest to the enamel-dentin junction to the 
edge of the next line. The measurements were subsequently used in the regression formula proposed  by15. The 
method proposed by these authors allows determining the mean time of enamel formation in days by using data 
about the length of the enamel prisms. It also served to estimate the time of formation of accentuated lines in 
the enamel of the analyzed teeth. Measurements were performed of the distance from the neonatal line to the 
individual accentuated lines visible in the enamel, and the obtained values were substituted into the formula.

All the above-mentioned measurements were performed twice in order to minimize the measurement error, 
and on their basis, mean values were calculated.
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Statistical analysis. The Mann–Whitney U test was used to examine differences between the mean num-
bers of disruptions in deciduous enamel, the average width of the neonatal line, and the periodicity of Retzius 
lines observed in autistic and in healthy boys.

All statistical analyses were performed using STATISTICA 12.0 software.

Results
Accentuated lines in dental enamel were found significantly more often in autistic children (Z = 3.03; p = 0.002) 
(Table 1). Figure 1 shows the enamel of incisor with one accentuated line. The enamel of the maxillary first molar 
of a healthy boy with three visible accentuated lines is presented in Fig. 2.

The largest number of accentuated lines (3 and 4) was observed in 3 autistic children born at term (in the 
39th, the 40th and the 41st week of gestation) with body weight from 3,300 g to 4,450 g and with body length 

Table 1.  Characteristics of the birth parameters and of the examined deciduous teeth of the boys aged 
5–10 years (N = 56). In the study, one tooth came from one child. *The Mann–Whitney U test.

Total of boys n = 56 Autistic boys n = 22 Healthy boys n = 34
Difference between autistic and healthy 
boys*

Birth parameters Median

Gestational age (weeks) 39 39.5 39 Z = 0.42; p = 0.675

Birth weight (g) 3,400 3,430 3,400 Z = 0.64; p = 0.523

Body length (cm) 55 55 55 Z = 0.88; p = 0.378

Primary teeth n (%)

Incisors 42 (75.0) 17 (77.3) 25 (73.5)

Molars 14 (25.0) 5 (22.7) 9 (26.5)

Number of accentuated lines n (%)

0 34 (60.7) 7 (31.8) 27 (79.4)

1 8 (14.3) 6 (27.3) 2 (5.9)

2 8 (14.3) 4 (18.2) 4 (11.8)

3 4 (7.1) 3 (13.6) 1 (2.9)

4 2 (3.6) 2 (9.1) 0 (0.0)

Mean (SD) 0.79 (1.16) 1.41 (1.33) 0.38 (0.82)

Median 0 1 0 Z = 3.03; p = 0.002

Neonatal line (µm)

n 56 22 34

Mean (SD) 14.13 (3.77) 13.98 (3.33) 14.24 (4.07)

Median 13.64 13.80 13.40 Z = 0.05; p = 0.960

Periodicity of striae of Retzius (days)

n 21 9 12

Mean (SD) 10.23 (1.27) 9.75 (1.13) 10.59 (1.29)

Median 9.64 10.15 10.91 Z = 1.35; p = 0.177

Figure 1.  The enamel of maxillary second deciduous incisor of autistic boy with visible neonatal line (NNL) 
and one accentuated line (ACL) (magnification 4x).
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from 52 to 59 cm). In the control group, 79.4% of the subjects did not exhibit any accentuated lines, and only 
one child (2.9%) had 3 lines. In contrast, in the autistic group, the absence of accentuated lines was found for 
31.8% of the subjects, while two and more lines were identified in 9 children, which accounts for over 40% of 
this group (Fig. 3).

All the observed accentuated lines both in the autistic children and in the control group were found in 
postnatal enamel.

The analysis of the width of the neonatal line (NNL) demonstrated a lack of differentiation of this trait between 
autistic children and healthy children (Z = 0.05; p = 0.96) (Table 1). In the case of the boys in the control group, 
the values of the width of the NNL fluctuated between 9.12 µm and 27.0 µm, with a mean value of 14.13 µm. In 
the case of the boys diagnosed with autism, the values equaled 9.66 µm, 22.90 µm and 13.98 µm, respectively.

In the case of the control group, the distances between adjacent incremental lines could be assessed for ten 
medial incisors and for two mandibular first molars. In the case of the autistic boys, measurements were per-
formed for six medial incisors, two maxillary first molars and one mandibular first molar. The analysis of the 
number of days between adjacent striae of Retzius did not demonstrate any differences between autistic children 
and healthy children (Z = 1.35; p = 0.177) (Table 1). Detailed characteristics of the number of accentuated lines, of 
the width of the NNL and of the periodicity of the striae of Retzius depending on the tooth type in both groups 
of children is presented in Table 2. Retzius lines visible in molar cusp are presented in Fig. 4.

Table 3 presents all the boys in whom accentuated lines were observed in the tooth enamel together with the 
calculated approximate time (number of days of life) of occurrence of the factor that caused the disturbance in the 
tooth enamel. A further analysis of the associations of the time of occurrence of disturbances in different tooth 
types is not possible due to the small size of the sample. An accentuated line nearby NNL is presented in Fig. 5.

Figure 2.  Accentuated lines in enamel of healthy children (ACL—accentuated lines, NNL—neonatal line, E—
enamel, D—dentin) (magnification 40x).

Figure 3.  Number of individuals with visible accentuated lines in enamel of primary teeth.
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Table 2.  Characteristics of the number of accentuated lines, of the width of the neonatal line (NNL) and of the 
periodicity of the striae of Retzius depending on the tooth type.

Number of 
accentuated lines NNL (µm)

Periodicity of striae 
of Retzius (days)

n mean SD n mean SD n mean SD

Total 56 0.79 1.16 56 14.13 3.77 21 10.23 1.26

incisors 42 0.71 1.17 42 14.49 3.95 16 10.27 1.37

i1 30 0.83 1.26 30 13.55 3.21 16 10.27 1.37

i2 7 0.00 0.00 7 16.48 5.67 – – –

i2 5 1.00 1.22 5 17.34 3.69 – – –

molars 14 1.00 1.11 14 13.06 3.01 5 10.09 1.00

m1 5 0.80 1.30 5 13.22 2.72 2 9.76 0.54

m2 1 2.00 – 1 12.00 – – – –

m1 3 1.33 1.15 3 11.71 1.86 3 10.31 1.30

m2 5 0.80 1.10 5 13.91 4.21 – – –

Autistic boys 22 1.41 1.33 22 13.98 3.33 9 9.75 1.13

incisors 17 1.65 1.37 17 14.17 3.54 6 9.89 1.34

i1 15 1.67 1.35 15 13.94 3.59 6 9.89 1.34

i2 – – – – – – – – –

i2 2 1.50 2.12 2 15.95 3.61 – – –

molars 5 0.60 0.89 5 13.30 2.71 3

m1 3 0.33 0.58 3 14.43 2.71 2 9.77 0.54

m2 – – – – – – – – –

m1 1 2.00 – 1 10.00 – 1 8.87 –

m2 1 0.00 – 1 13.20 – – – –

Healthy boys 34 0.38 0.82 34 14.24 4.07 12 10.59 1.29

incisors 25 0.08 0.28 25 14.71 4.27 10 10.50 1.39

i1 15 0.00 0.00 15 13.17 2.85 10 10.50 1.39

i2 7 0.00 0.00 7 16.48 5.67 – – –

i2 3 0.67 0.58 3 18.27 4.19 – – –

molars 9 1.22 1.20 9 12.92 3.31 2 11.03 0.54

m1 2 1.50 2.12 2 11.41 1.97 – – –

m2 1 2.00 – 1 12.00 – – – –

m1 2 1.00 1.41 2 12.56 1.60 2 11.03 0.54

m2 4 1.00 1.15 4 14.09 4.84 – – –

Figure 4.  The Retzius lines (white arrows) in cusp of molar (magnification 40x).
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Discussion
Accentuated lines are distinct structures that appear in a developing tooth. They can be observed both in the 
enamel and in the dentin, and they are connected with a stress factor that caused a metabolic disturbance. The 
term “accentuated lines” covers both regularly spaced “striae of Retzius exhibiting abnormal prism bending 
and absence of distortion of prism structure”, also known as “Wilson bands” or “cluster bands”39, and marked, 
accentuated lines which can be superimposed over the rhythmic  pattern7. Among stress factors which also leave 
a trace in the form of accentuated lines are mentioned: the mother’s diseases during pregnancy, immunization/
vaccination in the first year of  life15, low birth weight and preterm  birth40–42 or resource seasonality or periods 
of drought observed in the case of other  primates24,26, as well as undernourishment or dietary transitions such as 
weaning  stress25. The study  by23 provides strong evidence that there is an association between physiological stress 
and the above-mentioned lines. In the study, medical data were used concerning the incidence of such conditions 
as infections and colds or a treatment with antibiotics in childhood in 19 children. The analysis demonstrated that 

Table 3.  Mean approximate time (number of days of life) of occurrence of the factor that caused the 
disturbance in the tooth enamel.

Tooth type Accentuated line

Autistic boys n = 15 Healthy boys n = 7

n Mean SD n Mean SD

i1

1 12 38.5 19.5 – – –

2 7 60.3 17.8 – – –

3 4 79.0 7.3 – – –

4 2 90.0 12.7 – – –

i2

1 1 54.0 – 2 72.0 9.9

2 1 69.0 – – – –

3 1 83.0 – – – –

4 1 100.0 – – – –

m1

1 1 107.0 – 1 43.0 –

2 – – – 1 69.0 –

3 – – – 1 120.0 –

4 – – – – – –

m2

1 – – – 1 51.0 –

2 – – – 1 105.0 –

3 – – – – – –

4 – – – – – –

m1

1 1 59.0 – 1 36.0 –

2 1 90.0 – 1 87.0 –

3 – – – – – –

4 – – – – – –

m2

1 – – – 2 61.0 5.7

2 – – – 2 132.0 17.0

3 – – – – – –

4 – – – – – –

Figure 5.  Accentuated lines (white arrows) in enamel of incisor. Note the neonatal line nearby (black arrow) 
(magnification 40x).
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in the case of a lack of data about an illness, 9 out of 10 children did not have any accentuated lines. In the case 
of children who had at least one accentuated line, in 8 out of 9 children, conditions or incidents were observed 
that could indicate the effect of physiological stress.

This study shows that accentuated lines occur in the primary enamel of autistic children significantly more 
often than in that of healthy children. More accentuated lines in the enamel of primary teeth may indicate a 
larger number of stressful events experienced by these children or their higher susceptibility to stress factors in 
the most vulnerable period of life.

Similar results have been reported from studies on the occurrence of accentuated lines in the primary den-
tal enamel of children with Down syndrome, who are also characterized by developmental disturbances and 
by greater ecosensitivity in the early stages of  ontogenesis43. Statistically significant differences in the number 
of accentuated lines in the enamel of primary second molars were also observed in children suffering from 
developmental disturbances caused by genetic defects—familial dysautonomia syndrome (hereditary sensory 
and autonomic neuropathy)27. All the observed sick children were characterized by the presence of postnatal 
traumatic lines in the tooth enamel as compared with only 11% in the controls, and the number of the observed 
disturbances was also significantly larger (3–10 lines in the case of the sick children as compared with a single 
line in the group of the healthy children).

What can also point to stress factors as a basis for the larger number of accentuated lines in autistic children 
is the fact that both groups of children do not differ with respect to the parameters of the other lines in the tooth 
enamel: the neonatal line emerging in the perinatal period and the periodicity of the striae of Retzius attesting 
the physiological rate of enamel development. The obtained results concerning the width of the NNL in both 
analyzed groups do not differ from those obtained  by29 with a mean value of 14.8 μm and  by30 with a mean value 
of 10.35 μm. The approximate number of days between adjacent striae of Retzius is also consistent with the period 
of 6 to 12 days presented in the  literature44–46.

Research into autism suggests a multifactorial etiology linked to genetic defects and environmental factors 
affecting the development of the central nervous system, and especially the  brain47–49. In studies, the issue is also 
raised that autistic children are characterized by immune dysfunction, which makes them more susceptible to 
pathogens causing  fevers50,51.  Indeed52, reported that autistic children more often contract infections. Viral and 
bacterial diseases have also been closely associated with developmental defects of tooth enamel. Cytomegalo-
virus may adversely affect amelogenin and enamelin proteins, cell proliferation and the secretory function of 
ameloblasts leading to enamel hypoplasia and  agenesis53. Diseases such as chickenpox, measles, mumps, scarlet 
fever, and pneumonia may also increase the frequency of enamel  hypoplasia54. High temperature during an ill-
ness may also cause disruptions in enamel development, manifested in the presence of accentuated  lines55,56. A 
study conducted on mice and rats confirmed a significant effect of elevated temperature on the functioning of 
ameloblasts, leading to decreased crown height and enamel  hypomineralization57,58. Chickenpox and fever are 
considered factors causing enamel  hypomineralization59,60.

Researchers increasingly point often to the role of oxidative stress in increasing the risk and clinical manifesta-
tions of  autism61. It has been shown that autistic children exhibit lower levels of glutathione and higher levels of 
oxidized  glutathione62, which has been associated with neuronal susceptibility to oxidative  stress63. Glutathione is 
the most critical endogenous antioxidant and detoxifier that contributes to reducing environment influence on a 
variety of cellular  processes64. Some authors have drawn attention to the relationship between maternal exposure 
to stress during pregnancy and the risk of autism. For  instance65  and66, found that the mothers of children with 
this condition experienced significantly more stressful life events than the mothers of healthy offspring. In their 
study of women exposed to hurricanes and severe tropical  storms67, identified a strong correlation between those 
factors and the incidence of autism. In the case of storm exposure, the risk of autism was additionally intensified 
during gestation months 5–6 and 9–10 as compared with the other months.

Prenatal stress can produce broad effects in postnatal life. Studies on rats show a relationship between 
such stress and behaviors characteristic of autism, which are probably attributable to disturbances in brain 
 development68. Prenatal stress has been found to result in elevated sensitivity and abnormal development of 
the dopaminergic system, as well as a variety of behavioral abnormalities involving attention, learning, and 
 language69–72. Maternal exposure to a prolonged period of stress or repeated stressful episodes may give rise to 
lifelong hyperactivation of the hypothalamic–pituitary–adrenal (HPA) axis and elevated stress hormone  levels73,74 
reported hypersecretion of cortisol during the day.  Also75 found that children with autism are characterized by 
higher levels of salivary cortisol in novel non-social situations, in contrast with the control group. Cortisol is 
responsible for mechanisms of adaptation of the organism to stress and of maintaining homeostasis,it has an 
anti-inflammatory and immune suppressive effect, and it also inhibits bone formation and delays  healing76.

Importantly, cortisol could also lead to disruption in dental development, as it increases the level of calcium 
ions in the blood, making them less available for enamel mineralization. Thus, the administration of corticos-
teroids to rats resulted in accentuated surface perikymata and increased the spacing of incremental  lines2677, 
suggested that accentuated lines in wild baboons may be caused by the stress of their mothers, which may modify 
cortisol levels in maternal  milk78.

All the accentuated lines were observed in postnatal enamel, which may be connected with the stability of 
children’s intrauterine development. It is pointed out in the literature that traces of disturbances caused by stress 
factors seldom originate in the prenatal  period79.

Different tooth types are characterized by different periods of enamel formation and mineralization, which 
allows registering disturbances even up to a year after birth. At birth, incisors are formed in 55–60% depending 
on their type. In the case of medial incisors, enamel formation ends around the  96th day after birth. In the case 
of lateral incisors, the period is similar and lasts approximately until the 113th day after birth. The beginning 
of enamel secretion in molars occurs in a similar period as in the case of incisors, but the secretion lasts much 
longer—approximately until the 190th day after birth in the case of first molars and approximately until the 389th 



8

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:12751  | https://doi.org/10.1038/s41598-020-69642-3

www.nature.com/scientificreports/

day after birth in the case of second  molars15. Similar values were presented  by21 for deciduous mandibular teeth. 
In the studies, no significant differences were demonstrated in the frequency of occurrence of accentuated lines 
depending on the tooth type. In the case of maxillary medial incisors, the first accentuated line was formed on 
average about 40 days after birth. It is difficult to determine the possible source of the stress factor disturbing 
enamel formation in this period, because the children’s medical records are not accessible. One possibility is the 
occurrence of vaccine adverse events (fever and inflammation) after mandatory vaccinations (DPT, Hib, Hep B, 
pneumococcal vaccine), which are administered in Poland about the  6th–8th week of life. According  to15 immuni-
zation/vaccination in the first year of life is one of the stress factors leaving accentuated lines in the tooth enamel. 
It is not the first vaccination of a child—immediately after birth, a vaccine against tuberculosis and hepatitis B 
is administered—however, during this procedure, as many as 4 preparations are administered, which can strain 
a child’s immune system. According to statistical data, in the years 2003–2012, fever was most often observed 
after vaccination against diphtheria, tetanus and whooping cough—DTP. It is one of the vaccines administered 
in the above-mentioned  period80.

About a month after childbirth, breastfeeding women often experience lactation problems, which may result 
in a discontinuation of this way of feeding the infant and in a transition to modified milk. Studies of children 
living in Łódź indicate that more than 18% of women who start breastfeeding after giving birth continue to 
breastfeed for a period shorter than 2 months81. Dietary transitions may be connected with stress, which can 
result in disturbances in the functioning of ameloblasts in a child, although studies confirming the association 
of a dietary transition with accentuated lines in the tooth enamel were only conducted on  primates27.

To the best of our knowledge, there are no literature reports concerning the development of primary dental 
enamel in autistic children. Most studies focus on assessing the levels of the organic chemicals relevant to autism 
etiology detected in primary teeth, and also of such metals as mercury, lead, manganese, zinc and  copper82–86. 
However, there are many publications analyzing the relationship between enamel structure and prenatal and 
perinatal factors, e.g.17,22,27,29,30,87 as well  as88, who stated after a precise meta-analysis that teeth are potential new 
tools to measure early-life biological stress and subsequent mental health risk.

The present study has identified a higher frequency of accentuated lines in the enamel of primary teeth of 
autistic children, which may be a sign of stress factors in the first years of life or may indicate a higher suscep-
tibility of children with this disorder to environmental factors. Further analyses should be conducted on more 
extensive odontological material from different populations including an analysis of medical history concerning 
pregnancy and the first years of the child’s life.
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