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Abstract
For a Riemannian G-structure, we compute the divergence of the vector field induced by the
intrinsic torsion. Applying the Stokes theorem, we obtain the integral formula on a closed
oriented Riemannian manifold, which we interpret in certain cases. We focus on almost
Hermitian and almost contact metric structures.
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1 Introduction

Equipping an n-dimensional manifold M with a Riemannian metric g is equivalent to the
reduction of a frame bundle L(M) to the orthogonal frame bundle O(M), i.e., to action of
a structure group O(n). Assuming moreover that M is oriented, we can consider the bundle
SO(M) of oriented orthonormal frames. Existence of additional geometric structure can be
considered as a reduction of a structure group SO(n) to a certain subgroup G. For example,
almost Hermitian structure gives U ( n2 )-structure, almost contact metric structure is just a
U ( n−1

2 ) × 1-structure, etc.
If ∇ is the Levi–Civita connection of (M, g), we may measure the defect of ∇ to be a

G-connection. This leads to the notion of an intrinsic torsion. If this (1, 2)-tensor vanishes (in
such case, we say that a G-structure is integrable), then ∇ is a G-connection, which implies
that the holonomy group is contained in G. We may classify non-integrable geometries by
finding the decomposition of the space of all possible intrinsic torsions into irreducible G-
modules. This approach was initiated by Gray and Hervella for U ( n2 )-structures [14] and
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later considered for other structures by many authors [7,8,11,20,21]. Each, so-called, Gray–
Hervella class, gives some restrictions on the curvature.

One possible approach to curvature restrictions on compact G-structures can be achieved
by obtaining integral formulas relating considered objects. This has been firstly done, in a
general case, by Bor andHernández Lamoneda [5]. They use Bochner-type formula for forms
being stabilizers of each considered subgroup in SO(n). They obtained integral formulas for
G = U ( n2 ), SU ( n2 ),G2 and Spin7 and continued this approach for Sp(n)Sp(1) in [6]. The
case G = U ( n−1

2 ) × 1 has been studied later in [12] by other authors.
In this article, we show how mentioned formulas can be obtained in a different way. The

nice feature of our approach is that the main integral formula

1

2

∫
M
sg⊥ − salt

g⊥ volM =
∫
M

|χ |2 + |ξ alt|2 − |ξ sym|2 volM .

is valid for any G-structure on closed M for compact G ⊂ SO(n). Let us roughly describe
the approach and all used objects in this formula.We consider, so-called, characteristic vector
field χ = ∑

i ξei ei induced by the intrinsic torsion ξ and calculate its divergence. ξ alt and
ξ sym denote the skew-symmetric and symmetric components of ξ , ξ altX Y = 1

2 (ξXY − ξY X),
ξ
sym
X Y = 1

2 (ξXY + ξY X), whereas sg⊥ and salt
g⊥ are, in a sense, g⊥ components of a scalar

curvature (see the following sections for more details). For some Gray–Hervella classes, the
characteristic vector field vanishes, and then we get point-wise formula relating an intrinsic
torsion to a curvature.

We concentrate on almost Hermitian and almost contact metric structures. In the way
described above, we recover many well-known relations. Let us state some of the conse-
quences of the main integral formula (the objects used in these statements will be defined in
appropriate sections):

1. Assume (M, g, J ) is closed Hermitian manifold of Gray–Hervella type W4 such that
s = s∗, where s is a scalar curvature and s∗ is a ∗-scalar curvature. Then, M is Kähler
(compare [22]).

2. On a closed SU (n)-structure of type W1 ⊕ W5, we have
∫
M s = 5

∫
M s∗.

3. Let (M, g, ϕ, η, ζ ) be an almost contactmetric structurewith the intrinsic torsion ξ ∈ D2.
Then,

div(∇ζ ζ ) = 1

2
salt
u(n)⊥ + 1

2
Ric(ζ, ζ ) − 1

4
(s − s∗),

where s is a scalar curvature and s∗ is an associated ∗-scalar curvature.
In the end, we consider some examples focusing on (reductive) homogeneous spaces. We

show, which is an immediate consequence of the formula for the Levi–Civita connection,
that in these examples the characteristic vector field vanishes. Hence, the main divergence
formula is point-wise.

2 Intrinsic torsion

Let (M, g) be an oriented Riemannian manifold. Denote by SO(M) the bundle of oriented
frames overM . Let∇ be the Levi–Civita connection of g, and letω be the induced connection
form. Let G ⊂ SO(n), where n = dim M , be a closed subgroup. Then, on the level of Lie
algebras, we have the following decomposition:

so(n) = g ⊕ g⊥, ad(G)g⊥ ⊂ g⊥,
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where the orthogonal complement is taken with respect to the Killing form. Hence,ω decom-
poses as

ω = ωg ⊕ ωg⊥ ,

where ωg is a connection form in the G-reduction P ⊂ SO(M), if such exists, and therefore
defines a Riemannian connection ∇G on M . The difference

ξXY = ∇G
X Y − ∇XY , X , Y ∈ T M,

defines a (1, 2)-tensor called the intrinsic torsion of a G-structure. ξ satisfies some skew-
symmetry conditions by the fact that ξX ∈ g⊥(T M) ⊂ so(T M) where g⊥(T M) is the
associated bundle of the form P ×ad(G) g

⊥. In particular,

g(ξXY , Z) = −g(Y , ξX Z), X , Y , Z ∈ T M .

By a definition, the intrinsic torsion measures the defect of the Levi–Civita connection to
be aG-connection. In particular, if ξ vanishes, then the holonomy of∇ is contained inG. The
study of the intrinsic torsion and its decomposition into irreducible summands was initiated
by Gray and Hervella in the case of G = U ( n2 ) [14]. Since then, other possible cases, mainly
coming from the Berger classification of non-symmetric irreducible holonomy groups, have
been considered (see, for example, [7,8,11,20,21]).

3 An integral formula

Let (M, g) be an oriented Riemannian manifold with the Levi–Civita connection∇. Assume
M is a G-structure, with G ⊂ SO(n), and let ξ be the associated intrinsic torsion. Define a
vector field χ = χG by

χ =
∑
i

ξei ei , (1)

where (ei ) is any orthonormal basis. We call χ the characteristic vector field of a G-structure
M . Notice that if ξ is skew-symmetric with respect to X and Y , then χ vanishes. This is the
case, for example, for nearly Kähler manifolds (see the following sections). Additionally,

g(χ, X) = −
∑
i

g(ei , ξei X) = divX − divG X . (2)

Thus, vanishing of the characteristic vector field is equivalent to the fact that divergences
with respect to ∇ and ∇G coincide. Moreover, put

ξ altX Y = 1

2
(ξXY − ξY X) and ξ

sym
X Y = 1

2
(ξXY + ξY X). (3)

In this section, we compute the divergence of χ with respect to ∇. First, let us recall
well-known curvature identities involving the intrinsic torsion [12]:

R(X , Y )g = RG(X , Y ) + [ξX , ξY ]g,

R(X , Y )g⊥ = −(∇X ξ)Y + (∇Y ξ)X − 2[ξX , ξY ] + [ξX , ξY ]g⊥ ,
(4)

where R and RG are the curvature tensors of ∇ and ∇G , respectively. We use the following
convention for the curvature R(X , Y ) = [∇X ,∇Y ] − ∇[X ,Y ]. Thus,

RG(X , Y ) = R(X , Y ) + (∇X ξ)Y − (∇Y ξ)X + [ξX , ξY ]. (5)
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Denote by s and sG the scalar curvatures of R and RG , respectively.

Proposition 1 On an oriented G-structure M, we have

2divχ = sG − s + |χ |2 + |ξ alt|2 − |ξ sym|2. (6)

Proof By (5), we have

sG = s +
∑
i, j

g((∇ei ξ)e j e j , ei ) −
∑
i, j

g((∇e j ξ)ei e j , ei ) +
∑
i, j

g([ξei , ξe j ]e j , ei ). (7)

Notice that (∇X ξ)Y is skew-symmetric, since ξX is skew-symmetric,

g((∇X ξ)Y Z ,W ) = g(∇X ξY Z ,W ) − g(ξ∇XY Z ,W ) − g(ξY∇X Z ,W )

= −X(Z , ξYW ) − g(ξY Z ,∇XW ) + g(Z , ξ∇XYW ) + (∇X Z , ξYW )

= −g(Z ,∇X ξYW ) + g(Z , ξY∇XW ) + g(Z , ξ∇XYW )

= −g(Z , (∇X ξ)YW ).

Thus, the first sum and second sum on the right-hand side of (7) are opposite. Moreover,

divχ =
∑
i, j

g(∇ei ξe j e j , ei ) =
∑
i, j

g((∇ei ξ)e j e j , ei ), (8)

since
∑
i, j

(g(ξ∇ei e j
e j , ei ) + g(ξe j ∇ei e j , ei ))

=
∑
i, j,k

g(∇ei e j , ek)g(ξek e j , ei ) +
∑
i, j

g(ξe j ∇ei e j , ei )

= −
∑
i, j,k

g(e j ,∇ei ek)g(ξek e j , ei ) +
∑
i, j

g(ξe j ∇ei e j , ei )

= 0.

Let us compute the last term in (7),
∑
i, j

g([ξei , ξe j ]e j , ei ) =
∑
i, j

g(ξei ξe j e j , ei ) − g(ξe j ξei e j , ei )

= −|χ |2 +
∑
i, j

g(ξe j ei , ξei e j )

= −|χ |2 + |ξ sym|2 − |ξ alt|2.

(9)

Substituting (8) and (9) into (7), we get (6). �	

Wewill improve the above divergence formula a little bit, by getting rid of the component
sG and replacing it by g⊥-component of s and some additional term, which vanishes in some
cases. Namely, denote by salt

g⊥ the following quantity:

salt
g⊥ =

∑
i, j

g([ξei , ξe j ]g⊥e j , ei ).
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Proposition 2 On an oriented G-structure M, we have

divχ = 1

2
salt
g⊥ − 1

2
sg⊥ + |χ |2 + |ξ alt|2 − |ξ sym|2. (10)

If M is, additionally, closed, then the following integral formula holds

1

2

∫
M
sg⊥ − salt

g⊥ vol =
∫
M

|χ |2 + |ξ alt|2 − |ξ sym|2 vol. (11)

Proof By (4) and (9), we have

sg = sG +
∑
i, j

g([ξei , ξe j ]e j , ei ) −
∑
i, j

g([ξei , ξe j ]g⊥e j , ei )

= sG − |χ |2 − |ξ alt|2 + |ξ sym|2 −
∑
i, j

g([ξei , ξe j ]g⊥e j , ei ).

Since s = sg + sg⊥ , (6) can be rewritten in form (10). �	

Remark 1 Notice that elements

|χ |2, |ξ alt|2, |ξ sym|2

are quadratic invariants of the representation of SO(n) in the space of (1, 2)-tensors with the
symmetries of the intrinsic torsion, i.e., the space T ∗M⊗so(T M) [14]. This implies that |ξ |2
and |ξ alt|2−|ξ sym|2 are also quadratic invariants. Thus, for an irreducible submoduleU of the
representation T ∗M⊗so(T M), since the space of its quadratic invariants is one-dimensional
[4], then the number

EU = |χU |2 + |ξU,alt|2 − |ξU,sym|2

is a constant multiple of |ξU |2. Here, ξU denotes the U-component of ξ with respect to
decomposition into irreducible summands. This approach is also valid for any irreducible
module G-module in the space of possible intrinsic torsions. This kind of approach was used
in [5] to get integral formulas for many G-structures.

We have an immediate consequence of the formula (10).

Corollary 1 Assume M is an oriented G-structure, where G = U ( n2 ), n even, or G =
SO(m) × SO(n − m). If the characteristic vector field vanishes, then

1

2
sg⊥ = |ξ alt|2 − |ξ sym|2.

In particular, if the intrinsic torsion is totally skew-symmetric, then

sg⊥ = 2|ξ |2 ≥ 0

with the equality if and only if the G-structure M is integrable (i.e., ξ = 0).

Proof For the listed choices of G, we have [g⊥, g⊥] ⊂ g; thus, salt
g⊥ vanishes. �	

The consequences of the integral formula will be presented in the following section for
certain choices of G.
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4 Applications to certain RiemannianG-structures

In this section, we rewrite formulas (10) and (11) for certain G-structures. We also give some
applications of these relations. We will show that obtained formulas are consistent with the
Bochner-type formulas obtained, using representation theory, in [5].

4.1 Almost product structures

We show that the divergence and integral formulas obtained in the previous section agree
with the Walczak formulas [23]. Since this integral formula has found many applications,
we will only concentrate on deriving it from (11) and state its one corollary, which will be
needed later.

Let (M, g) be an oriented Riemannian manifold, with two complementary orthogonal
oriented distributionsD andD⊥, i.e., T M = D⊕D⊥. Thus, the bundle of oriented orthonor-
mal frames SO(M) has a reduction to a subgroup SO(m) × SO(n − m) ⊂ SO(n), where
m = dimD. On the level of Lie algebras

so(n) = (so(m) ⊕ so(n − m)) ⊕ m,

where

m = (so(m) ⊕ so(n − m))⊥ =
{(

0 A
−A� 0

)}

and A ism× (n−m) matrix. Let∇ be the Levi–Civita connection of g. Since the orthogonal
projection tom is just a restriction to non-diagonal blocks, it follows that the intrinsic torsion
equals

ξXY = −(∇XY
�)⊥ − (∇XY

⊥)�,

where Y� and Y⊥ denote the components of Y in D and D⊥. Notice that ξ is made of
shape operators and fundamental forms of distributions D and D⊥. Recall that the second
fundamental form, for example, of D is a (1, 2)-symmetric tensor B = BD of the form

B(X , Y ) = 1

2
(∇XY + ∇Y X)⊥, X , Y ∈ D.

Additionally, we will use integrability tensor T = TD being just

T (X , Y ) = 1

2
[X , Y ]⊥, X , Y ∈ D.

Notice that B(X , Y ) + T (X , Y ) = (∇XY )⊥; hence, B and T are symmetrization and alter-
nation of (a minus of) a part of the intrinsic torsion reduced to D.

For an orthonormal basis (ei ) adapted to the decompositionD⊕D⊥, denote by eA elements
of (ei ) in D and by eα elements of (ei ) in D⊥. The characteristic vector field χ equals

χ = −
∑
A

(∇eAeA)⊥ −
∑
α

(eαeα)� = −H − H⊥, (12)

where H and H⊥ are mean curvature vectors of D and D⊥, respectively.
We may now state and show that the Walczak formula [23] is an integral formula (11) for

G = SO(m) × SO(n − m).
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Proposition 3 ([23]) On a closed Riemannian manifold equipped with a pair of complemen-
tary orthogonal and oriented distributions, the following Walczak integral formula holds∫

M
smix =

∫
M

|H |2 + |H⊥|2 + |T |2 + |T⊥|2 − |B|2 − |B⊥|2, (13)

where smix is a mixed scalar curvature defined by

smix =
∑
A,α

g(R(eA, eα)eα, eA)

Proof Since∑
A,α

|(∇eαeA)⊥|2 =
∑
A,α,β

g(∇eαeA, eβ)2 =
∑
A,α,β

g(∇eαeβ, eA)2 =
∑
α,β

|(∇eαeβ)�|2

and analogously interchanging eα with eA, then

|ξ alt|2 = |T |2 + |T⊥|2 + 1

4

∑
A,B

|(∇eAeB)⊥|2 + 1

4

∑
α,β

|(∇eαeβ)�|2

and

|ξ sym|2 = |B|2 + |B⊥|2 + 1

4

∑
α,β

|(∇eαeβ)�|2.

Moreover,

sm =
∑
i, j

g(R(ei , e j )me j , ei ) = 2
∑
A,α

g(R(eA, eα)eα, eA) = 2smix.

Putting all these facts together (10) implies Walczak divergence formula [23]

− div(H + H⊥) = −smix + |H |2 + |H⊥|2 + |T |2 + |T⊥|2 − |B|2 − |B⊥|2. (14)

Assuming M is closed, the Walczak integral formula holds. �	
Formula (13) has found many applications. Let us only state one of its consequences for

D of codimension 1, since it will be used in one of forthcoming subsections. In this case,
clearly, T⊥ = 0 and B⊥ = H⊥. Denoting the unit positively oriented vector field orthogonal
to D by ζ , we have χ = (divζ )ζ − ∇ζ ζ . Moreover,

smix =
∑
A

g(R(eA, ζ )ζ, eA) = Ric(ζ, ζ ).

Therefore, (14) and (13) can be rewritten in the following well-known way.

Proposition 4 On a Riemannian manifold with an orientable codimension one distribution
D, we have the following divergence formula:

div(−(divζ )ζ + ∇ζ ζ ) = Ric(ζ, ζ ) − (divζ )2 − |T |2 + |B|2

and, assuming M is closed, the following integral formula∫
Ric(ζ, ζ ) volM =

∫
M

(divζ )2 + |T |2 − |B|2 volM . (15)
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4.2 Almost Hermitian structures

Assume (M, g, J ) is an oriented Riemannian manifold with an almost complex structure
J , i.e., J 2 = −idT M , which is Hermitian, i.e., g(J X , JY ) = g(X , Y ) for X , Y ∈ T M .
Then, (M, g, J ) is of even dimension 2n and induces an U (n)-structure. On the level of Lie
algebras, we have

so(2n) = u(n) ⊕ u(n)⊥,

where

u(n) = {A ∈ so(n) | AJ = J A}, u(n)⊥ = {A ∈ so(n) | AJ = −J A}.
In particular, [u(n)⊥, u(n)⊥] ⊂ u(n), thus salt

u(n)⊥ = 0. The orthogonal projection from so(n)

to u(n)⊥ equals A 
→ 1
2 (A + J AJ ). Thus, the u(n)-component of R is given by

R(X , Y )u(n) = 1

2
(R(X , Y ) + J ◦ R(X , Y ) ◦ J ) . (16)

Moreover, the intrinsic torsion, being informally the projection of −∇ to u(n)⊥, is given by
the formula

ξXY = −1

2
J (∇X J )Y . (17)

Hence, the characteristic vector field χ is the following

χ = −1

2
J (divJ ). (18)

Let us describe the intrinsic torsion with the use of the Nijenhuis tensor N and the Kähler
form Ω . Recall that

N (X , Y ) = [J X , JY ] − J [X , JY ] − J [J X , Y ] − [X , Y ]
= (∇X J )JY − (∇Y J )J X + (∇J X J )Y − (∇JY J )X

and

Ω(X , Y ) = g(X , JY ).

It is a famous theorem by Newlander and Nirenberg that vanishing of the Nijenhuis tensor is
equivalent to integrability of J , i.e., existence of complex coordinates adapted to J . In can
be shown [2] that

4g(ξXY , Z) = dΩ(X , Y , J Z) + dΩ(X , JY , Z) − g(N (Y , Z), X). (19)

Unfortunately, this shows that ξ has no particular symmetries and using (19), it is hard to give
nice interpretations for the symmetrized and skew-symmetrized intrinsic torsion ξ sym and
ξ alt , respectively. Therefore, it is convenient to consider some restrictions or decomposition
of the intrinsic torsion. The space of all possible intrinsic torsions is, in this case, T ∗M ⊗
u(n)⊥(T M). Decomposing this space into irreducible modules with respect to U (n)-action,
we get so-called Gray–Hervella classes [14]

T ∗M ⊗ u(n)⊥(T M) = W1 ⊕ W2 ⊕ W3 ⊕ W4, (20)
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where each class can be characterized as follows:

W1 : ξXY = −ξY X , in particular, χ = 0.

W2 : g(ξXY , Z) + g(ξZ X , Y ) + g(ξY Z , X) = 0. Then χ = 0.

W3 : ξXY = ξJ X (JY ) and χ = 0,

W4 : − 4ξXY = θ(Y )X + θ(JY )J X − g(X , Y )θ� − g(X , JY )Jθ�, θ ∈ Γ (T ∗M).

In the characterization of W4, θ is a one-form often called the Lee form.
The following proposition contains well-known and useful properties of almost Hermitian

W1, . . . ,W4 classes.

Proposition 5 ([14])We have the following characterization of Gray–Hervalla classes:

W1 ⊕ W2 = {ξ ∈ T ∗M ⊗ u(n)⊥(T M) | ξJ X JY = −ξXY }
W2 ⊕ W4 = {ξ ∈ T ∗M ⊗ u(n)⊥(T M) | ξJ X JY = ξXY }.

Moreover,

W1 ⊕ W2 ⊕ W3 = {ξ ∈ T ∗M ⊗ u(n)⊥(T M) | χ = 0}.
By the above proposition, if ξ ∈ W1 ⊕ W2 ⊕ W3, then formula (10) is a point-wise

formula for the u(n)⊥-component of the scalar curvature

1

2
su(n)⊥ = |ξ alt|2 − |ξ sym|2. (21)

The left-hand side has a nice interpretation, which is valid for all Gray–Hervella classes.
Define Ricci and ∗-Ricci tensors by

Ric(X , Y ) =
∑
i

g(R(X , ei )ei , Y ), Ric∗(X , Y ) = g(R(X , ei )Jei , JY ).

These induce, taking traces, scalar curvatures

s =
∑
i

Ric(ei , ei ), s∗ =
∑
i

Ric∗(ei , ei ).

Then, by (16)

su(n)⊥ =
∑
i, j

g(R(e j , ei )u(n)⊥ei , e j )

= 1

2

∑
i, j

g(R(e j , ei )ei , e j ) + g(J R(e j , ei )Jei , e j )

= 1

2
(s − s∗).

(22)

Now, we will discus relations between elements in the divergence formula (10) in each
pure class Wi separately. We will proceed by studying quadratic invariants of the U (n)-
representation on the space of intrinsic torsions T ∗M ⊗ u(n)⊥(T M) [14]:

i1 =
∑
i, j,k

α(ei , e j , ek)
2 i2 =

∑
i, j,k

α(ei , e j , ek)α(e j , ei , ek)

i3 =
∑
i, j,k

α(ei , e j , ek)α(Jei , Je j , ek) i4 =
∑
i, j,k

α(ei , ei , ek)α(e j , e j , ek),

123



176 Annals of Global Analysis and Geometry (2019) 56:167–192

Table 1 Quadratic invariants for
Gray–Hervella classes Wk W1 i (1)4 = 0, i (1)3 = −i (1)1 , i (1)2 = −i (1)1

W2 i (2)4 = 0, i (2)3 = −i (2)1 , i (2)2 = 1
2 i

(2)
1

W3 i (3)4 = 0, i (3)3 = i (3)1 , i (3)2 = 0

W4 i (4)4 = 1
2 (n − 1)i (4)1 , i (4)3 = i (4)1 , i (4)2 = 0

where α(X , Y , Z) = g(ξXY , Z). Notice that

i1 = |ξ |2, i2 = |ξ sym|2 − |ξ alt|2, i4 = |χ |2.
Thus, the divergence formula (10) may be rewritten, using these invariants and formula (22)
as follows:

divχ = −1

4
(s − s∗) − i2 + i4. (23)

It is not hard to see by definitions of each pure classWi and Proposition 5 that the following
fact holds.

Proposition 6 Quadratic invariants characterize pure Gray–Hervella classes Wi as listed
in Table 1. In a table, i (k)j denotes an invariant i j considered for a class Wk .

Using Proposition 6 and relation (23), we can derive some useful relations for each pure
class. These relations are well known. (See the references listed in the proposition below.) Let
us enlarge on this. In analogy to Gray [15], we consider the following curvature condition:

SC : s = s∗.

Notice that the classSC containsGray classG1,which by definition, denotes almostHermitian
structures for which the curvature tensor satisfies

G1 : R(X , Y , Z ,W ) = R(X , Y , J Z , JW ).

Proposition 7 The following relations hold.

1. (compare [10,13]) For a W1 structure s − s∗ = |∇ J |2. In particular, there is no nearly
Kähler non-Kähler structure satisfying SC condition.

2. (compare [10,19]) For a W2 structure 2(s − s∗) = −|∇ J |2. In particular, there is no
almost Kähler non-Kähler structure satisfying SC condition.

3. Any W3 structure satisfies SC condition.
4. (compare [9,10,22]) For a W4 structure with a Lee form θ

(n − 1)divθ� = −(s − s∗) + (n − 1)2|θ |2.
In particular, there is no locally conformally Kähler non-Kahler structure defined on a
closed manifold which satisfies SC condition.

Proof It suffices to apply (10), Proposition 6 and use the fact that |ξ |2 = 1
4 |∇ J |2. For a W4

case, notice that

χ = n − 1

2
θ�, i (4)4 = (n − 1)2

4
|θ |2.

�	
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Now,we show that themain integral formula (11) in an almostHermitian case is equivalent
to a Bor–Lamoneda formula [5]. Decompose ξ and χ with respect to the Gray–Hervella
classes as follows:

ξ = ξ1 + ξ2 + ξ3 + ξ4, χ = χ1 + χ2 + χ3 + χ4,

i.e., χk = ∑
i ξ

k
ei ei , and let

Ek = |χk |2 + |ξ k,alt|2 − |ξ k,sym|2 = −i (k)2 + i (k)4 .

It can be shown that

i j =
∑
k

i (k)j , j = 1, 2, 3, 4.

Thus, by above considerations (see also Remark 1), we have

E1 = |ξ1|2, E2 = −1

2
|ξ2|2, E3 = 0, E4 = 1

2
(n − 1)|ξ4|2.

Hence,

divχ = |ξ1|2 − 1

2
|ξ2|2 + n − 1

2
|ξ4|2 − 1

4
(s − s∗), (24)

which implies the integral formula by Bor and Hernández Lamoneda [5] (assuming M is
closed)

∫
M

(2|ξ1|2 − |ξ2|2 + (n − 1)|ξ4|2) volM = 1

2

∫
M
s − s∗ volM . (25)

4.3 Special almost Hermitian structures

Assume (M, g, J ) is an almost Hermitian manifold equipped with a complex volume form
Ψ = ψ+ + iψ− such that 〈Ψ , Ψ 〉C = 1, where the inner product is a natural extension of
an inner product for real-valued forms. This structure defines reduction of a structure group
to special unitary group SU (n), hence a SU (n)-structure. On the level of Lie algebras, we
have

so(2n) = su(n) ⊕ (u(n)⊥ ⊕ R),

since u(n) = su(n) ⊕ R. For an element A ∈ u(n), let

A =
(
A0 −A1

A1 A0

)
∈ so(2n).

Then, A ∈ su(n) if and only if A ∈ u(n) and trA1 = 0. Notice that

trA1 = 1

2

∑
i

g(Aei , Jei ) = −1

2
tr(AJ ).

Thus, the orthogonal projection from so(2n) to su(n)⊥ = u(n)⊥ ⊕ R equals

A 
→ 1

2
(A + J AJ ) − 1

2n
(trAJ )J .
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The intrinsic torsion ξ equals ξ = ξU (n) + η [5,8,20], where ξU (n) is the intrinsic torsion of
related U (n)-structure and

ηXY = − 1

2n

∑
i

g(ξX Jei , ei )JY .

Define a one-form η by the relation ηXY = η(J X)JY . This convention will appear to be
useful. Denote the class in the space of all possible intrinsic torsions induced by η by W5.

Split ssu(n)⊥ into su(n)⊥ and sR with respect to the decomposition su(n)⊥ = u(n)⊥ ⊕ R.

Proposition 8 On a closed SU (n)-structure (M, g, J ) with the W5-component induced by
the 1-form η, we have the following integral formula:

8
∫
M

η(χU (n)) volM =
∫
M
sR − salt

su(n)⊥ volM . (26)

In particular, if (M, g, J ) is ofGray–Hervella classW1⊕W2⊕W3 treated asU (n)-structure,
then

∫
M sR = ∫

M salt
su(n)⊥ .

Proof

χ = χU (n) +
∑
i

η(Jei )Jei = χU (n) + η�

and ∑
i, j

g(ξei e j , ξe j ei ) =
∑
i, j

g(ξU (n)
ei e j , ξ

U (n)
e j ei ) + 2

∑
i, j

g(ξU (n)
ei e j , η(Je j )Jei )

+
∑
i, j

η(Jei )η(Je j )g(Je j , Jei )

=
∑
i, j

g(ξU (n)
ei e j , ξ

U (n)
e j ei ) − 2η(χU (n)) + |η�|2.

Thus,

divχ = −1

2
ssu(n)⊥ + 1

2
salt
su(n)⊥ + |χ |2 −

∑
i, j

g(ξei e j , ξe j ei )

= −1

2
ssu(n)⊥ + 1

2
salt
su(n)⊥ + |χU (n)|2 + 2η(χU (n)) + |η�|2

−
∑
i, j

g(ξU (n)
ei e j , ξ

U (n)
e j ei ) + 2η(χU (n)) − |η�|2

= divχU (n) + 1

2
salt
su(n)⊥ − 1

2
ssu(n)⊥ + 1

2
su(n)⊥ + 4η(χU (n)).

Hence,

divη� = −1

2
sR + 1

2
salt
su(n)⊥ + 4η(χU (n)). (27)

Assuming M is closed and applying the Stokes theorem, we get (26). �	
The values of sR and salt

su(n)⊥ can be computed explicitly, which gives an alternative

version of formula (26). Firstly, introduce two components of the intrinsic torsion, ξU (n),12 ∈
W1 ⊕ W2 and ξU (n),34 ∈ W3 ⊕ W4.
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Corollary 2 On a closed SU (n)-structure (M, g, J ) with the W5-component induced by the
1-form η, we have the following integral formula∫

M
s∗ volM =

∫
M

(|ξU (n),12|2 − |ξU (n),34|2) volM + 4n
∫
M

η(χU (n)) volM .

In particular, if ξU (n) ∈ W1 ⊕ W2 ⊕ W3 ⊕ W5, then∫
M
s∗ volM =

∫
M

|ξU (n),1|2 + |ξU (n),2|2 − |ξU (n),3|2 volM .

Proof We have

sR =
∑
i, j

g(R(ei , e j )Re j , ei )

= − 1

2n

∑
i, j

tr(R(ei , e j )J )g(Je j , ei )

= − 1

2n

∑
i, j

g(R(Je j , e j )Jei , ei )

= 1

2n

∑
i, j

(g(R(Jei , Je j )e j , ei ) + g(R(e j , Jei )Je j , ei ))

= 1

n
s∗.

To compute salt
su(n)⊥ , it is convenient to determine the component [su(n)⊥, su(n)⊥]su(n)⊥ . For

A = A0 + λJ and B = B0 + μJ , where A0, B0 ∈ u(n)⊥, by the relation [u(n)⊥, u(n)⊥] ⊂
u(n), we have

[A, B]su(n)⊥ = [A0, B0]R + λ[J , B0] + μ[A0, J ]
= −1

n
tr(A0B0 J )J + 2(μA0 − λB0)J .

Hence,

salt
su(n)⊥ =

∑
i, j

(
−1

n
tr(ξei ξe j J )g(Je j , ei ) + 2g(η(Je j )ξei J e j − η(Jei )ξe j J e j , ei )

)

= −1

n

∑
i, j

g(ξJe j ξe j J ei , ei ) + 2
∑
i, j

(
η(Je j )g(ξei J e j , ei ) − η(Jei )g(ξe j J e j , ei )

)

= 1

n

∑
i, j

g(ξe j J ei , ξJe j ei ) − 4η(χU (n))

= −1

n

∑
i, j

g(ξe j ei , ξJe j J ei ) − 4η(χU (n)).

By Proposition 5, we get
∑
i, j

g(ξe j ei , ξJe j J ei ) = −|ξU (n),12|2 + |ξU (n),34|2.

Now, it suffices to apply (26). �	
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Remark 2 The above integral formula, however formulated in a different way, can be found
in [5]. Let us be more precise. In [5], authors state some consequences of their formula for
almost Hermitian structures with vanishing first Chern class c1(M). Let us derive the first
Chern class in our setting. It is known [13] that the first Chern form γ is given by

8πγ = −ϕ + 2ψ,

where

ϕ(X , Y ) = tr((∇X J )(∇Y J )), ψ(X , Y ) = tr(R(X , Y ) ◦ J ).

It is not hard to see that

ϕ(X , Y ) = 4
∑
i

g(ξX Jei , ξY ei ), ψ(X , Y ) = −2Ric∗(X , JY ).

Thus, using the same arguments as before Corollary 2, we get

2π tr∗γ = |ξU (n),34|2 − |ξU (n),12|2 + s∗,

where tr∗γ = ∑
i γ (ei , Jei ). Notice that vanishing of the first Chern class, i.e., γ = dα for

some 1-form, is equivalent to the fact that
∫
M tr∗γ = 0. Thus, by Corollary 2, c1(M) = 0 if

and only if
∫
M η(χU (n)) = 0. Finally, note that by (2), we have

∫
M

η(χU (n)) volM = −
∫
M
divGη� volM .

Corollary 3 Consider an SU (n)-structure (M, g, J ) which is of type W1 ⊕ W5. Then,∫
M
s volM = 5

∫
M
s∗ volM .

Proof By Corollary 2, we have
∫
M
s∗ =

∫
M

|ξU (n)|2.

It suffices to notice that by (22) and (21), we have 1
4 (s − s∗) = |ξU (n)|2. �	

4.4 Almost contact metric structures

Let (M, g) be a (2n + 1)-dimensional manifold together with a 1-form η (and its dual unit
vector field ζ ) and ϕ ∈ End(T M) such that

ϕ2X = −X + η(X)ζ, g(ϕX , ϕY ) = g(X , Y ) − η(X)η(Y ). (28)

Notice that ϕ defines almost complex structure which is g-orthogonal on the distribution
kerη. Thus, we get U (n) × 1-structure. On the level of Lie algebras, we have

so(2n + 1) = u(n) ⊕ u(n)⊥,

where u(n)⊥ is isomorphic to the space of block matrices of the form
(

B a
−a� 0

)
, B ∈ u(n)⊥ ⊂ so(2n), a ∈ R

2n . (29)
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Since here ζ = e2n+1, ϕ is a natural complex structure on R2n and zero on ζ , it is easy to see
that the orthogonal projection from so(2n + 1) onto u(n)⊥ equals

A 
→ 1

2
(A + ϕAϕ + ζ�A ⊗ ζ + ζ� ⊗ Aζ ). (30)

Rewriting this formula with the use of the one-form η(≡ ζ�), the intrinsic torsion satisfies
the following relation:

ξXY = ϕ(ξXϕY ) + η(ξXY )ζ + η(Y )ξX ζ. (31)

This, moreover, implies the formula for the intrinsic torsion [12]

ξXY = 1

2
(∇Xϕ)ϕY + 1

2
(∇Xη)Y · ζ − η(Y )∇X ζ. (32)

By (28), it follows that

ϕ(∇Xϕ)Y = −(∇Xϕ)ϕY + (∇Xη)Y · ζ + η(Y )∇X ζ.

Thus, we may write the intrinsic torsion in an alternative way [12]

ξXY = −1

2
ϕ(∇Xϕ)Y + (∇Xη)Y · ζ − 1

2
η(Y )∇Xη. (33)

Hence, the characteristic vector field in this case equals

χ = −1

2
ϕ(divϕ) + (divζ )ζ − 1

2
∇ζ ζ. (34)

The condition ξ ∈ T ∗M ⊗ u(n)⊥(T M) is equivalent to relation (31). Decomposing the
space T ∗M ⊗u(n)⊥(T M) into irreducibleU (n)×1-modules, we get 12 classes C1, . . . , C12
[7]. First four are isomorphic to Gray–Hervella classes W1, . . . ,W4.

Remark 3 Note that in [7] types of almost contact metric structures, i.e., irreducible modules
of T ∗M ⊗ u(n)⊥(T M), were classified with respect to α(X , Y , Z) = (∇XΦ)(Y , Z), where
Φ(X , Y ) = g(X , ϕY ). It is well known that this is equivalent to considering the intrinsic
torsion as a map β(X , Y , Z) = g(ξXY , Z). The correspondence follows from the fact that
∇XΦ = ξXΦ, since ∇U (n)×1Φ = 0. This implies a direct relation

α(X , Y , Z) = β(X , Y , ϕZ) − β(X , Z , ϕY ). (35)

Note that we should be careful with studying irreducible modules C1, . . . , C12, since the
correspondence α ↔ β interchanges some of the modules, which is underlined in Table 2.

Let us describe these spaces in more detail. Put

D1 = C1 ⊕ . . . ⊕ C4, D2 = C5 ⊕ . . . ⊕ C11, D3 = C12.
Each of the above spaces is characterized as follows [7]:

1. Class D1: ξζY = ξX ζ = 0. Applying formluas (32) and (33), we obtain ∇ζ = 0 and
hence χ = − 1

2ϕ(divϕ), as expected, since in this case, being not very precise, ξ is the
intrinsic torsion on the almost Hermitian structure kerη.

Table 2 Module correspondence
via α ↔ β

α C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
β C1 C2 C3 C4 C6 C5 C8 C7 C9 C10 C11 C12
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2. Class D2: ξXY = η(X)ξζY + η(Y )ξX ζ + η(ξXY )ζ . Taking X = Y = ζ , we get
ξζ ζ = −η(ξζ ζ )ζ and η to both sides we get ξζ ζ = 0. Taking X = Y = ei , we obtain

prkerηχ = 0.

Hence, χ ∈ span ζ , so by (34), χ = (divζ )ζ . Moreover, it is easy to see that for
X , Y ∈ kerη

ξXY ∈ span ζ, ξζY ∈ kerη, ξX ζ ∈ kerη, ξζ ζ = 0.

Thus, by formulas (32) and (33) for the intrinsic torsion, we get (X , Y ∈ kerη)

ξXY = (∇Xη)Y · ζ,

ξζY = 1

2
(∇ζ ϕ)ϕY ,

ξX ζ = −∇X ζ.

3. Class D3: ξXY = η(X)η(Y )ξζ ζ + η(X)η(ξζY )ζ . Therefore, for X , Y ∈ kerη

ξXY = 0, ξX ζ = 0, ξζY ∈ span ζ, ξζ ζ ∈ kerη.

Hence, χ = ξζ ζ = −∇ζ ζ and |χ |2 + |ξ alt|2 − |χ sym|2 = 0.

Analogously as in an almost Hermitian case, let us relate divergence and integral formulas
(10), (11) to quadratic invariants of almost contact metric structure. In this case, the space of
quadratic invariants is generated by 18 invariants [7]. For our purposes, we need only some
of them:

i1 =
∑
i, j,k

α(ei , e j , ek)
2, i2 =

∑
i, j,k

α(ei , e j , ek)α(e j , ei , ek)
2,

i4 =
∑
i, j,k

α(ei , ei , ek)α(e j , e j , ek), i5 =
∑
j,k

α(ζ, e j , ek)
2,

i6 =
∑
i, j,k

α(ei , ζ, ek)
2, i7 =

∑
j,k

α(ζ, e j , ek)α(e j , ζ, ek),

i8 =
∑
i, j

α(ei , e j , ζ )α(e j , ei , ζ ), i10 =
∑
i, j

α(ei , ei , ζ )α(e j , e j , ζ ),

i12 =
∑
i, j

α(ei , e j , ζ )α(ϕ(e j ), ϕ(ei ), ζ ), i14 =
∑
i, j

α(ei , ϕ(ei ), ζ )α(e j , ϕ(e j ), ζ ),

i16 =
∑
k

α(ζ, ζ, ek)
2, i17 =

∑
i,k

α(ei , ei , ek)α(ζ, ζ, ek),

where α(X , Y , Z) = g(ξXY , Z) and i, j = 1, . . . , 2n. Notice that

|ξ |2 = i1 + i5 + 2i6 + 2i16,

|χ |2 = i4 + i10 + i16,

|ξ sym|2 − |ξ alt|2 = i2 + i7 + i8 + i16.

Let us now compute scalar curvature ’components’. Define the ∗-scalar curvature as
follows:

s∗ = tr Ric∗ =
∑
i, j

g(R(ei , e j )ϕe j , ϕei ).
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Lemma 1 The following relations hold:

salt
u(n)⊥ = 1

2
(i8 − i10 + i12 + i14) + 2(i7 − i17) and

su(n)⊥ = 1

2
(s − s∗) + Ric(ζ, ζ ).

Proof Denote by (B, a) an element in u(n)⊥ of form (29). Note that a = (B, a)e2n+1 ∈
R
2n ⊂ R

2n+1. Then,

[(B, a), (B̃, ã)] = (−a ∧ ã, Bã − B̃a),

where a ∧ ã is an endomorphism of R2n given by (a ∧ ã)v = 〈ã, v〉a − 〈a, v〉ã. Thus

[(B, a), (B̃, ã)]u(n)⊥ = (−1

2
(a ∧ ã + ϕ0(a ∧ ã)ϕ0, Bã − B̃a),

where ϕ0 is a restriction of ϕ to R
2n , thus defining an almost complex structure.

By these considerations, we are ready to compute salt
u(n)⊥ . We have (here i, j = 1, . . . , 2n)

salt
u(n)⊥ = −1

2

∑
i, j

g((ξei z ∧ ξe j z + ϕ(ξei z ∧ ξe j z)ϕ)e j , ei ) + 2
∑
i

g(ξei ξζ ζ − ξζ ξei ζ, ei )

= −1

2

∑
i, j

(
g(ξei ei , ζ )g(ξe j ei , ζ ) − g(ξei e j , ζ )g(ξe j ei , ζ )

− g(ξei ϕ(ei ), ζ )g(ξe j ϕ(e j ), ζ ) + g(ξei ϕ(e j ), ζ )g(ξe j ϕ(ei ), ζ )

)

+ 2
∑
i

(−g(ξζ ζ, ξei ei ) + g(ξei ζ, ξζ ei ))

= 1

2
(−i10 + i8 + i14 + i12) + 2(−i17 + i7).

For su(n)⊥ by (30), we have

su(n)⊥ =
∑
i, j

g(R(ei , e j )u(n)⊥e j , ei )

= 1

2
(s − s∗) + 1

2

∑
i, j

(η(R(ei , e j )e j )η(ei ) + η(e j )g(R(ei , e j )ζ, ei )

= 1

2
(s − s∗) +

∑
i

(g(R(ζ, e j )e j , ζ )

= 1

2
(s − s∗) + Ric(ζ, ζ ).

�	
By Lemma 1 and above considerations, we may rewrite formula (10) as

divχ = −i2 + i4 − 3

4
i8 + 3

4
i10 + 1

4
i12 − 1

4
i14 − i17 − 1

4
(s − s∗) − 1

2
Ric(ζ, ζ ). (36)

Moreover, by a classification of each module Ci by quadratic invariants [7, Table I], we have
the following observation.
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Proposition 9 We have:

1. the characteristic vector field χ vanishes if and only if the intrinsic torsion belongs to
C1 ⊕ C2 ⊕ C3 ⊕ C6 ⊕ C7 ⊕ C8 ⊕ C9 ⊕ C10 ⊕ C11,

2. |ξ sym|2 − |ξ alt|2 = 0 if and only if the intrinsic torsion belongs to C3 ⊕ C4 ⊕ C11,
3. salt

u(n)⊥ = 0 if and only if the intrinsic torsion belongs to C1 ⊕ C2 ⊕ C3 ⊕ C4 ⊕ C7 ⊕ C9 ⊕
C10 ⊕ C11 ⊕ C12.

We are ready to interpret, at least in some cases, formula (36) in a geometric way. Denote
by Bη and T η the (symmetric) second fundamental form and integrability tensor of kerη,
respectively (see the section on almost product structures).

Proposition 10 Let (M, g, ϕ, η, ζ ) be an almost contact metric structure with the intrinsic
torsion ξ .

1. If ξ ∈ D2, then

div((divζ )ζ ) = (divζ )2 + |T η|2 − |Bη|2 + 1

2
salt
u(n)⊥ − 1

4
(s − s∗) − 1

2
Ric(ζ, ζ ),

or, equivalently,

div(∇ζ ζ ) = 1

2
salt
u(n)⊥ + 1

2
Ric(ζ, ζ ) − 1

4
(s − s∗).

If additionally, M is closed, then the following integral formula holds∫
M
Ric(ζ, ζ ) volM = 1

2

∫
M
s − s∗ − 2salt

u(n)⊥ volM =
∫
M

(divζ )2 + |T η|2 − |Bη|2 volM .

2. If ξ ∈ C6 ⊕ . . . ⊕ C11, then

|T η|2 − |Bη|2 = −1

2
salt
u(n)⊥ + 1

4
(s − s∗) + 1

2
Ric(ζ, ζ )

3. If ξ ∈ C11, then s − s∗ = −2Ric(ζ, ζ ) and
∫
M s − s∗ volM = ∫

M Ric(ζ, ζ ) volM = 0.
4. If ξ ∈ C12, then

div(∇ζ ζ ) = 1

4
(s − s∗) + 1

2
Ric(ζ, ζ ).

If, additionally, M is closed, then∫
M
s − s∗ volM = −2

∫
M
Ric(ζ, ζ ) vol.

Proof (1) Assume ξ ∈ D2. Then, for X , Y ∈ kerη, we have

ξ altX Y = −T η(X , Y ), ξ
sym
X Y = −Bη(X , Y ).

Moreover, by classification of D2 by quadratic invariants [7], we see that

|ξ alt|2 − |ξ sym|2 = −i8 = |T η|2 − |Bη|2.
Since χ = (divζ )ζ using Proposition 4, the divergence formula (10) takes the first form. The
second one and the integral formula follow again by Proposition 4.
(2) In this case, by Proposition 9, the characteristic vector field vanishes, i.e., divζ = 0. Thus,
it suffices to apply the first part.
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(3) This is an immediate consequence of (1), (2) and the fact that |T η|2 − |Bη|2 and salt
u(n)⊥

vanish (by Proposition 9).
(4) By discussion concerningD3 class, we have |χ |2 +|ξ alt|2 −|ξ sym|2 = 0 and χ = −∇ζ ζ .
Moreover, by Proposition 9, salt

u(n)⊥ = 0. Hence, the divergence formula (10) and the integral
formula (11) simplify to the desired ones. Notice that we could use the formula (36) and the
fact that for C12 class the only nonzero invariant is i16 [7, Table I]. �	

At the end, consider the following Janssen–Vanhecke C(α) condition [17]:

R(X , Y , Z ,W ) = R(X , Y , ϕZ , ϕW ) + α(−g(X , Z)g(Y ,W ) + g(X ,W )g(Y , Z)

+ g(X , ϕZ)g(Y , ϕW ) − g(X , ϕW )g(Y , ϕZ)),

where α is a smooth function. It implies that

s − s∗ = 4n2α and Ric(ζ, ζ ) = 2nα. (37)

Corollary 4 If the intrinsic torsion of an almost contact metric structure belongs to D2 class
and satisfies Janssen–Vanhecke C(α) condition, then

α = 1

n(n − 1)

(
1

2
salt
u(n)⊥ − div(∇ζ ζ )

)
.

Proof Follows immediately by Proposition 10(1). �	
Remark 4 In an analogous way as forU (n)-structures, it can be shown, with a little bit more
effort, that the integral formula (11) in this case is equivalent to the integral formula obtained
in [12].

5 Examples

In this section, we apply obtained results to certain almost Hermitian and almost contact
metric structures. First examples are simple illustration of obtained results for almost contact
metric structures. We deal with this structure only since it has not been investigated from
this point of view elsewhere. Almost Hermitian case is, due to well-known facts contained in
Proposition 7, well understood from this perspective. In the end, we focus on more involving
examples concerning homogeneous spaces, where we treat both cases—almost Hermitian
and almost contact metric structures.

Example 1 Let (M, g, ϕ, η, ζ ) be an almost contact metric structure which is Sasaki, i.e., ϕ
satisfies the relation

(∇Xϕ)Y = g(X , Y )ξ − η(Y )X , ∇X ζ = −ϕ(X).

Thus, by (32), the intrinsic torsion equals

ξXY = g(X , ϕ(Y ))ζ,

or, in matrix notation

ξX =
(

0 ϕ(X)

−ϕ(X)� 0

)
∈ u(n)⊥(T M) for X ∈ kerη
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and ξζ = 0. Hence, we arrive in the C5 class. From the proof of Lemma 1 or, directly, by
Proposition 9, we see that salt

u(n)⊥ does not vanish. In fact, by [7, Table 1], we have

i6 = −i8 = −i12 = 1

2n
i14.

Thus, by the definition of i6 and Lemma 1

salt
u(n)⊥ = (n − 1)i6 = 2n(n − 1).

It can be shown [17] that the curvature tensor of a Sasakian structure satisfiesC(1) condition.
Thus, by (37), s − s∗ = 4n2 and Ric(ζ, ζ ) = 2n. Since ∇ζ ζ = −ϕ(ζ ) = 0, it follows that
the left-hand side of the second divergence formula in Proposition 10(1) vanishes, whereas
the right-hand side equals

1

2
salt
u(n)⊥ − 1

4
(s − s∗) + 1

2
Ric(ζ, ζ ) = n(n − 1) − n2 + n = 0.

Example 2 Let (M, g, ϕ, η, ζ ) be an almost contact metric structure which is Kenmotsu, i.e.,
ϕ satisfies the following condition

(∇Xϕ)Y = g(ϕX , Y )ζ − η(Y )ϕ(X).

Hence, the intrinsic torsion, by the formula (32), equals

ξXY = g(X , Y )ζ, ξX ζ = −X , ξζY = 0, ξζ ζ = 0,

where X , Y ∈ kerη. In matrix notation, for X ∈ kerη,

ξX =
(

0 X
−X� 0

)
∈ u(n)⊥(T M).

Hence, arguing as in the example above, salt
u(n)⊥ does not vanish. Since, in this case,

i6 = i8 = i12 = 1

2n
i10,

by Lemma 1,

salt
u(n)⊥ = (1 − n)i6 = 2n(1 − n).

It can be shown that Kenmotsu structure satisfies C(−1) condition [17]. By (37), s − s∗ =
−4n2 and Ric(ζ, ζ ) = −2n. Therefore,

1

2
salt
u(n)⊥ − 1

4
(s − s∗) + 1

2
Ric(ζ, ζ ) = n(1 − n) + n2 − n = 0.

Since for a Kenmotsu manifold ∇X ζ = X − η(X)ζ , it follows that

divζ = 2n and ∇ζ ζ = 0.

It follows that the second divergence formula in Proposition 10 is justified.
Let us now justify condition (2) in Proposition 10. It is known that the distribution kerη

is integrable and umbilical [18]. Hence, T η = 0 and Bη = − 1
2n g ⊗ (divζ )ζ , which implies

|T η|2 − |Bη|2 = −2n

and
1

4
(s − s∗) + 1

2
Ric(ζ, ζ ) − 1

2
salt
u(n)⊥ = −n2 − n − n(1 − n) = −2n.
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Example 3 Consider a generalized Heisenberg group H(1, n) [12]. This is a Lie group con-
sisting of square n + 2 by n + 2 matrices of the form

g =
⎛
⎝ In At Bt

0 1 c
0 0 1

⎞
⎠ ,

where A = (a1, . . . , an) and B = (b1, . . . , bn) are elements ofRn and c ∈ R. Then, H(1, n)

is nilpotent of dimension 2n + 1. H(1, n) has a global coordinate system (xi , xn+1, z),
i = 1, 2, . . . , n given by

xi (g) = ai , xn+i (g) = bi , z(g) = c. (38)

We choose a Riemannian metric such that the left-invariant basis

Xi = ∂

∂xi
, Yi = ∂

∂xn+i
, Z = ∂

∂z
+

∑
i

x i
∂

∂xn+i

is an orthonormal one. Nonzero components of the Levi–Civita connection are given by [12]

∇Xi Xn+i = ∇Xn+i Xi = −1

2
Z ,

∇Xi Z = −∇Z Xi = 1

2
Xn+1,

∇Xn+i Z = ∇Z Xn+i = 1

2
Xi .

Thus, the integrability tensor T η vanishes and nonzero components of the second fundamental
form are equal

Bη(Xi , Xn+i ) = Bη(Xn+i , Xi ) = −1

2
Z .

Hence, |Bη|2 = n
2 . Moreover, by the formula for the curvature tensor [12]

R(Xi , X j , Xn+i , Xn+ j ) = 1

4
i �= j, R(Xi , Xn+ j , X j , Xn+i ) = −1

4
,

R(Xi , Z , Xi , Z) = 3

4
, R(Xn+i , Z , Xn+i , Z) = −1

4
with remaining components vanishing, we see that

s = −n

2
, Ric(Z , Z) = −n

2
.

Consider on H(1, n) an almost contact structure induced by the Reeb field ζ = Z and
a dual one form η = dz with a compatible endomorphism ϕ such that ϕ(Xi ) = Xn+i ,
ϕ(Xn+1) = −Xi . Then, we get a structure in a C9 class [12]. We have

s∗ = n

2
.

It is easy to see that divZ = 0; hence, the characteristic vector field vanishes (as noticed in
Proposition 9(1)). We are ready to compute both sides of the divergence formula in Propo-
sition 10(2). The left-hand side, clearly, equals − n

2 . Since by Proposition 9(3), salt
u(n)⊥ = 0,

the right-hand side is equal to

1

4
(s − s∗) + 1

2
Ric(ζ, ζ ) = −n

4
− n

4
= −n

2
.
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5.1 Examples on reductive homogeneous spaces

We will show that for a certain choice of G-structures on reductive homogeneous spaces
induced fromone-parameter deformations of invariant Riemannianmetrics, the characteristic
vector field χ vanishes; hence, the divergence formula becomes point-wise formula. We
justify this stating appropriate examples. We closely follow [3, p. 140] and [1].

Let K be a connected, compact Lie group and H its closed, connected Lie subgroup. The
quotient K/H is a homogeneous space denoted by M . Assume additionally that on the level
of Lie algebras k = h ⊕ m, where m is the orthogonal complement with respect to some
ad(H)-invariant bilinear formB on k. DeformB in the followingway: Assumem = m0⊕m1,
where

[h,m0] = m0, [m0,m0] ⊂ h ⊕ m1,

[h,m1] ⊂ m1, [m1,m1] ⊂ h, [m0,m1] ⊂ m0.
(39)

For any t > 0, we put

Bt = B|m0×m0 + 2tB|m1×m1 .

Form Bt defines an invariant Riemannian metric gt on M . We will often write g instead of
gt , if there is no confusion. The Levi–Civita connection of g may be described as a linear
map Λ : m → so(m) defined as follows: [3]

Λ(X)Y = 1

2
[X , Y ]m1 ,

Λ(X)B = t[X , B],
Λ(A)Y = (1 − t)[A, Y ],
Λ(A)B = 0,

where X , Y ∈ m0, A, B ∈ m1.
Now, we consider a G-structure on M . Thus, we have a decomposition so(m) = g⊕ g⊥,

where we take orthogonal complement with respect to the Killing form on so(m). Then, Λ
splits as Λ = Λg + Λg⊥ . Λg defines a G-connection ∇G , whereas Λg⊥ corresponds to the
intrinsic torsion ξ .

In the following two examples, we introduce aG-structure via the same procedure. Denote
by x0 the coset eH , and let ad : H → SO(m) be the isotropy representation. Let ϕ : m → m

be a linear map, which intertwines the isotropy representation. Since all tensor bundles on
M are associated with the bundle G 
→ M with respect to the isotropy representation, it
follows that ϕ induces (1, 1)-tensor field, in our case, almost Hermitian or almost contact
metric structure.

Example 4 We follow [3, p. 142]. Consider a complex flag manifold F1,2 consisting of pairs
(l, V ), where l is one-dimensional complex subspace and V is a complex two-dimensional
subspace containing l in C

3. U (3) acts transitively with a isotropy subgroup H = U (1) ×
U (1)×U (1). Thus, F1,2 is a homogeneous space. On the level of Lie algebras, u(n) = h⊕m,
where h consists of diagonal matrices, whereas m is a subspace of the form

m =
⎧⎨
⎩

⎛
⎝ 0 a b

−ā 0 c
−b̄ −c̄

⎞
⎠ , a, b, c ∈ C

⎫⎬
⎭ .

123



Annals of Global Analysis and Geometry (2019) 56:167–192 189

m splits into two subspacesm0 andm1 given, respectively, by relations c = 0 and a = b = 0.
Denote by B the Killing form on u(3), B(X , Y ) = 1

2Re(trXY )). The inner product on m

given by

−B|m0×m0 + 2t(−B)|m1×m1

defines a one-parameter family of Riemannian metrics on F1,2. The following basis is
orthonormal with respect to the given inner product on m:

E1 = e12, E2 = s12, E3 = e13, E4 = s13, E5 = 1√
2t
e23, E6 = 1√

2t
s23,

where e jk is a skew-symmetric matrix with the ( j, k) entry equal to 1 and s jk is a symmetric
matrix with the ( j, k)-entry equal to i (and remaining elements except for (k, j)-entry equal
to zero). We see that m0 is spanned by E1, E2, E3, E4, whereas m1 by E5, E6. It can be
verified that relations (39) hold.

Let us define an almost Hermitian structure on F1,2. The isotropy representation Ad :
H → SO(m) = SO(6) equals

Ad(t, r , s) =
⎛
⎝ Rt−s 0 0

0 Rt−r 0
0 0 Rs−r

⎞
⎠ ,

where (t, r , s) denotes an element diag(eit , eis, eir ) ∈ H and Rθ is a rotation in R2 through
an angle θ . In order to define an almost Hermitian structure, it suffices to define isotropy
invariant (1, 1)-tensor J0 in m with J 20 = −1. Let

J0(E1) = −E2, J0(E3) = E4, J0(E5) = −E6.

The Levi–Civita connection of this almost Hermitian structure can be described by a map
Λ : m → so(m),

Λ(E1) =
√
t√
2
(e35 + e46), Λ(E2) =

√
t√
2
(e45 − e36),

Λ(E3) =
√
t√
2
(e26 − e15), Λ(E4) = −

√
t√
2
(e16 + e25),

Λ(E5) = 1 − t√
2t

(e13 + e24), Λ(E6) = 1 − t√
2t

(e14 − e23).

The curvature tensor R is given by

R(X , Y ) = [Λ(X),Λ(Y )] − Λ([X , Y ]m) − Ad([X , Y ]h),

where Ad : h → so(m) denotes the differential of the isotropy representation,

Ad(H1) = −e12 − e34, Ad(H2) = e12 − e56, Ad(H3) = e34 + e56.

Here, Hk denotes the matrix 1
2 skk .

Now we are ready to compute su(3)⊥ . Deriving relations for the commutators inm and its
components in h and then the curvature tensor R and projections of elements ei j to u(3)⊥,
we get

su(3)⊥ = 8(2 − t).
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We could obtain the above relation by applying formula (22). It is easy to see that s =
2(−13 + 3t − 2

t ) and s
∗ = 2(3 − 5t − 2

t ).
Let us turn to computations of the intrinsic torsion and its components. We easily see that

Λ : m → u(3)⊥. Hence, the minimal connection∇U (3) is induced by a zero map. Moreover,
∑
i, j

〈Λ(Ei )Ei ,Λ(E j )Ei )〉 = 4(t − 2)

corresponds to |ξ sym|2 − |ξ alt|2; hence, the main divergence formula, which reduces to
1
2 su(3)⊥ = |ξ alt|2 − |ξ sym|2 = 4(2 − t), is justified.

Let us look at the Gray–Hervella classes induced by t for each choice of t > 0. Since
χ = 0, the considered almost Hermitian structure is of type W1 ⊕ W2 ⊕ W3. Simple
calculations show that Λ, hence ξ , satisfies ξJ X JY = −ξXY . Thus, by Proposition 5, the
considered structures are of typeW1 ⊕W2. Moreover, it is nearly Kähler, i.e., inW1, if and
only if t = 1

2 . By above considerations, we see that for t < 2, su(3)⊥ > 0 and for t > 2,
su(3)⊥ < 0.

Example 5 We follow very closely the approach by Agricola [1]. Consider the five-
dimensional Stiefel manifolds V4,2 = SO(4)/SO(2). We embed S(2) as a lower diagonal
block. We have the splitting so(4) = so(2) ⊕ m with respect to the Killing form B, where

m =
{(

A X
− X� 0

)
| A =

(
0 − a
a 0

)
, X ∈ M2×2(R)

}
.

There is a one-parameter family gt of Riemannian metrics on V4,2 constructed by Jensen
[16], which are obtained from the invariant dot product on m

〈(a, X), (b, Y )〉 = B(X , Y ) + 2t ab,

where (a, X), (b, Y ) denote the elements in m and B(X , Y ) = 1
2 tr(X

�Y ). Denoting the
canonical basis in so(4) by (ei j ), i.e., ei j is a skew-symmetric matrix with the (i, j)-entry
equal to −1 (be aware of the difference with the sign convention compared to the previous
example), we have an orthonormal basis

E1 = e13, E2 = e14, E3 = e23, E4 = e24, E5 = 1√
2t
e12

inm. The Levi–Civita connection of this homogeneous space is described by amapΛ : m →
so(m) = so(5) of the form [1,16]

Λ(E1) =
√

t

2
e35, Λ(E2) =

√
t

2
e45, Λ(e3) = −

√
t

2
e15,

Λ(E4) = −
√

t

2
e25, Λ(E5) = 1 − t√

2t
(e13 + e24).

The curvature tensor is then given by

R(X , Y ) = [Λ(X),Λ(Y )] − Λ([X , Y ]m) − Ad([X , Y ]h),

where Ad is the differential of the isotropy representation Ad : SO(2) → SO(m),

Ad(g) =
⎛
⎝ g 0 0
0 g 0
0 0 0

⎞
⎠ , g ∈ SO(2).
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Now we introduce an almost contact structure on V4,2 by defining an isotropy invariant
map ϕ : m → m, which is, in terms of the basis (Ei ), given by a matrix

ϕ =

⎛
⎜⎜⎜⎜⎝

0 0 1 0 0
0 0 0 1 0

− 1 0 0 0 0
0 − 1 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ .

One can check thatϕ, in deed, defines an almost contact structurewith theReebfield ζ induced
by E5 and compatible with the metric gt . Notice that the fundamental form F(X , Y ) =
gt (X , ϕ(Y )) induced by ϕ if F = e13 + e24, which is proportional to dE5 making the
structure just Sasaki structure [1].

To derive the formula for su(2)⊥ , we need to compute the u(2)⊥-component of R, i.e.,
project R(Ei , E j ) to the second factor with respect to the decomposition so(m) = u(2) ⊕
u(2)⊥. It is easy to see that ei5 ∈ u(2)⊥ and e13, e24 ∈ u(2). Moreover, e13 and e24 project to
v = 1

2 (e13 − e24) and −v, respectively. Finally, e12 projects to w = 1
2 (e12 − e34), whereas

e34 projects to −w. Thus,

su(2)⊥ = 6t .

We could compute su(2)⊥ using Lemma 1 and noticing that

s = 2(4 − t), s∗ = 2(4 − 5t), Ric(ζ, ζ ) = 2t .

Let us describe the intrinsic torsion. We see that Λu(3)⊥(Ei ) = Λ(Ei ) for i = 1, 2, 3, 4,
and Λu(3)⊥(E5) = 0. Hence, the characteristic vector field χ , which corresponds to∑

i Λu(2)⊥(Ei )Ei , vanishes and, it is not hard to see that |ξ alt|2−|ξ sym|2, which corresponds
to −∑

i, j 〈Λu(2)⊥(Ei )E j ,Λu(2)⊥(E j )Ei 〉, equals 2t . Finally, directly from the definition, it

is not hard to see that salt
u(2)⊥ = 2t . Thus,

1

2
salt
u(2)⊥ − 1

2
su(2)⊥ + |ξ alt|2 − |ξ sym|2 = t − 3t + 2t = 0.

Notice, finally, that by the classification of all possible intrinsic torsion modules [7], since
i2 = |ξ sym|2 − |ξ alt| = −t < 0, we arrive in a pure C1 class.
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