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1. Introduction

We prove here four results, two positive and two negative:

(1) Any self-adjoint operator A acting on a finite-dimensional (complex) Hilbert space can be written as 
a linear combination of 4 projections, with two of the coefficients chosen arbitrarily from the interval 
[2‖A‖, ∞[.

(2) Any self-adjoint operator A in an infinite von Neumann factor can be written as a linear combination 
of 4 projections, with two of the coefficients chosen arbitrarily from the interval ]2‖A‖, ∞[.

(3) There is a self-adjoint operator in any type II1 algebra that cannot be written as a linear combination 
of 3 projections.

(4) There is a self-adjoint operator in any type II∞ factor that cannot be written as a linear combination 
of 3 projections.

Any self-adjoint operator acting in a (complex) finite-dimensional Hilbert space can be written as a linear 
combination of a finite number of projections — this follows easily from the spectral theorem. What is not 
immediately obvious is whether we can make the number of projections independent of the dimension of 
the Hilbert space. Is this also possible if the Hilbert space is infinite dimensional? The first positive results 
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in this direction were obtained by Fillmore 1967 (see [3]), who was able to get down to 9 projections [4]. 
Pearcy and Topping [16] reduced it to 8 already in 1967, then the second-named author to 6 in 1980 (see 

[15]). Using the ideas from [15], Matsumoto showed in 1984 that 5 is enough. Also in 1984 Nakamura [12]
proved that any Hermitian matrix is a linear combination of 4 projections.

In 1985 the second-named author proved that any self-adjoint operator in B(H) can be written as a 

linear combination of 4 projections, both for finite and infinite-dimensional Hilbert space H, with a proof 
for Hermitian matrices differing from that of Nakamura [12]. The paper [14] with the results was sent to a 

journal and got a positive review, requiring only minor improvements, but for some inexplicable reason it 
has not been resent to the journal. This fact went unnoticed by the first-named author who was compiling 

the joint publication on linear combinations of projections in von Neumann algebras [5] while on leave from 

his alma mater, and the paper was advertised as accepted for publication. Even worse, some results from 

the joint publication depend on the unpublished paper, including the criterion for a von Neumann algebra 

to be a complex linear span of its projections.
In 2016, the first-named author met Viacheslav Rabanovich at the conference “Groups and Operators” 

in Gothenburg, Sweden. There he learned that [14] has never been published, and that Rabanovich [17]
himself proved that 4 projections are sufficient in the case of B(H) with a separable infinite-dimensional 
Hilbert space H.

We decided that there are good reasons for complementing our earlier paper [5] with this one, dealing 

with linear combinations of projections in von Neumann factors. Both Nakamura’s [12] and Rabanovich’s 
[17] proofs are elegant, and they show clearly that 4 projections are enough for self-adjoint operators in H

both in finite- and infinite-dimensional cases. However, there are several reasons for our presentation:

(1) Theorem 1.1 (a) of [5] attributed to [14], and hence did not prove, a decomposition of self-adjoint oper-
ators in a type In factor as linear combinations of 4 projections, with a specific form of the coefficients. 
That form is not available from Nakamura’s [12] but is required to obtain in Theorem 2.1 (a) of [5] the 

decomposition of self-adjoint operators in a finite discrete von Neumann algebra as a linear combination 

of 4 projections with coefficients in the center of the algebra. A proof based on the unpublished paper 
[14] is presented in Theorem 2.1 below.

(2) Theorem 1.1 (a) of [5] attributed to [14] a decomposition of self-adjoint operators in an infinite von 

Neumann factor as a linear combination of 4 projections. The proof presented by Rabanovich [17] holds 
for a separable Hilbert space and cannot be easily adapted to the case of an arbitrary infinite factor. 
An independent proof based on [14] is presented in Theorem 3.5.

(3) Given Theorem 2.1 and Theorem 3.5, all the results from [5] are now proved. The results have already 

been used by several authors throughout the years.

The interest in this field of research continues (see, for example, [7]), with more attention directed recently 

to a situation in C∗-algebras (see [10]). Nevertheless, as seen below, there are some open questions even in 

the von Neumann algebra case (see ‘Open problems’ at the end of the paper).
For a von Neumann algebra A we denote by Ah its self-adjoint part and by ProjA the lattice of projections 

in A. For a projection E, we denote by AE the reduced von Neumann algebra EAE acting in EH. For 
A ∈ Ah, eA(·) denotes the spectral measure of A. The unit of A is denoted by 1A or simply 1, if there is no 

danger of confusion. For projections P, Q ∈ A, we write P ∼ Q if there is a partial isometry U ∈ A such 

that P = U∗U and Q = UU∗, and then P � Q if P ∼ R ≤ Q for a projection R ∈ A, and P ≺ Q if P � Q

and P � Q.
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2. Finite discrete factors

Let A be factor of type In, n < ∞, and τ the tracial state on A. We assume (for convenience) that A is 
represented on a Hilbert space H in such a way that A = B(H).

Theorem 2.1. [1.1(a) in [5]] Let A ∈ Ah and α = τ(A). For any β, γ ≥ 2‖A‖, there are projections P, Q, R, S
in A with P ∼ Q and R ∼ S such that

A = (β + α)P − βQ + (γ + α)R− γS (1)

when α ≥ 0, and

A = βP − (β − α)Q + γR− (γ − α)S (2)

when α ≤ 0.

Proof. (2) follows from (1) applied to −A. We show (1). If A = α1, take P = Q = 1, R = S = 0. Consider 
n ≥ 2 and A 	= α1. Assume that ‖A‖ = 1, otherwise use (1/‖A‖)A. Put Ã = A − α1. Then Ã 	= 0. Let 
{e1, . . . , en} be an orthonormal basis in H consisting of eigenvectors of A (and Ã), and let α1, . . . , αn be 
the corresponding eigenvalues of Ã. We order the eigenvalues (and the corresponding eigenvectors) in such 
a way that for each j, j = 1, . . . , n, βj := α1 + · · ·+αj ∈ [0, 2]. By Lemma 1 in [12] (or Lemma 3.4 below), 
for any β, γ ≥ 2, there exist rank one projections Pj , Qj in A with Pj , Qj ≤ Ej + Ej+1, when Ej is a rank 
1 projection onto the subspace generated by ej, such that

βj(Ej − Ej+1) + αEj =
{

(β + α)Pj − βQj for j odd,
(γ + α)Pj − γQj for j even.

We have (noting that βn = 0 and αn = −βn−1) that for 1 ≤ j ≤ n − 1

A = [β1(E1 − E2) + αE1] + · · · + [βn−1(En−1 −En) + αEn−1] + αEn

= (β + α)(
∑
j odd

Pj) − β(
∑
j odd

Qj) + (γ + α)(
∑

j even
Pj) − γ(

∑
j even

Qj) + αEn.

If n is odd, put P =
∑

j odd Pj +En, Q =
∑

j odd Qj +En, R =
∑

j even Pj , S =
∑

j even Qj ; if n is even, 
add En to the sums over even indices. (For n = 2, put R = S = E2.) �
3. Infinite factors

The following lemma belongs to mathematical folklore. We give here its proof for completeness.

Lemma 3.1. Let A be a von Neumann factor, and let P, Q, R ∈ ProjA with P + Q = R, and R infinite. 
Then R � P or R � Q.

Proof. Let E, F ∈ ProjA be such that E + F = R, E ∼ F ∼ R (see Lemma 6.3.3 in [8]). Then P ∧ E �
Q ∧ F or P ∧ E � Q ∧ F . Assume P ∧ E � Q ∧ F ; then, using Kaplansky’s Parallelogram Law, we get 
R ∼ E = P ∧ E + (E − P ∧ E) � Q ∧ F + (E ∨ P − P ) ≤ Q, so R � Q.

The proof in the case when P ∧E � Q ∧ F is obtained by exchanging the roles of P and Q in the proof 
above. �
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The next four lemmas are essential.

Lemma 3.2. Let A be an infinite factor, and let A ∈ Ah. There exists a ∈ [−‖A‖, ‖A‖] such that eA
(
]a −

ε, a + ε[
)
∼ 1 for each ε > 0.

Proof. Assume there is no such a. Then, for each x ∈ [−‖A‖, ‖A‖], there is εx > 0 such that eA
(
]x −

εx, x + εx[
)
≺ 1. From compactness of [−‖A‖, ‖A‖], there is a finite number of intervals ]xn− εxn

, xn + εxn
[

covering the interval [−‖A‖, ‖A‖]. Hence, there is a finite number of disjoint intervals In, each contained in 

]xn−εxn
, xn+εxn

[, with union [−‖A‖, ‖A‖], so that 1 =
∑

pn for pn = eA(In) ≤ eA

(
]xn−εxn

, xn+εxn
[
)
≺ 1, 

which contradicts Lemma 3.1. �
Note that a satisfies the conditions of the Lemma if and only if it belongs to the essential spectrum of A

with respect to the largest closed ideal of A (the one generated by all the projections not equivalent to 1).

Lemma 3.3. Let A be an infinite factor and let A ∈ Ah. Assume that for each δ > 0, eA(] − δ, δ[) ∼ 1. For 
any ε > 0, there are: a sequence (εi), i ∈ Z of positive numbers satisfying ε0 = ‖A‖ and 

∑
i�=0 εi ≤ ε, and 

a sequence (Ei), i ∈ Z of projections from A such that Ei ∼ 1 and EiA = AEi for all i, 
∑

i∈ZEi = 1 and 
−εiEi ≤ AEi ≤ εiEi for i ∈ Z.

Proof. Consider the following cases:
I eA({0}) ∼ 1. Choose Ei, i ∈ Z\{0}, E′

0 so that E′
0 ∼ Ei ∼ 1 and 

∑
i�=0 Ei + E′

0 = eA({0}). Put 
E0 = E′

0 + eA(R\{0}), ε0 = ‖A‖ and εi = 0 for i ∈ Z\{0}.
II eA

(
{0}

)
� 1. First observe that we can replace the set of indices Z by any other countable set. 

Define, for a sequence (εn), n = 0, 1, . . . with ε0 = ‖A‖, ε1 = ε/2 and εn+1 ≤ εn/2 for n ≥ 2, sets 
In = [−εn, −εn+1[∪]εn+1, εn] and Dn = eA(In). Since 

∑∞
n=0 Dn ∼ 1 (by Lemma 3.1), we can choose εn so 

that Dn 	= 0 for each n, by assumption and again Lemma 3.1. There are again two cases:

(a) For infinitely many n, say n ∈ M ⊆ N, Dn ∼ 1. Then we can use them for forming Ei, with E0 obtained 
as 1 −

∑
i�=0 Ei.

(b) If Dn ∼ 1 for finitely many (or none) of indices n, we can assume that Dn � 1 for each n 	= 0.
Now, if 1 is σ-finite, we are necessarily in a semifinite factor (all non-zero projections in a σ-finite type 
III factor are equivalent to 1), and we can use a faithful normal semifinite trace τ on A. We have ∑∞

n=1 τ(Dn) = τ
(
eA

(
] − ε1, ε1[\{0}

))
= τ(1) = +∞, by assumption and Lemma 3.1. Now we can 

find infinitely many disjoint infinite sets Mi ⊆ N such that 
∑

n∈Mi
τ(Dn) = +∞. Thus we can take 

Ei =
∑

n∈Mi
Dn, i 	= 0, with (as before) E0 = 1 −

∑
i�=0 Ei.

If 1 is not σ-finite, we may assume that all projections Dn(n 	= 0) are infinite (and ≺ 1). For a projection 
F ∈ A, denote by #F the largest cardinal number of a maximal orthogonal family of non-zero σ-finite 
projections majorized by F (this corresponds directly to the generalized dimension function of Tomiyama 

in the factorial case (see [19]). By Lemma 3.1, eA
(
] − ε1, ε1[\{0}

)
∼ 1. Since A is a factor, we have, by 

Tomiyama [19, Theorem 4 and its corollary] (see also Blackadar [1, III.1.7.1])

∞∑
n=1

#Dn = #
∞∑

n=1
Dn = #eA

(
] − ε1, ε1[\{0}

)
= #1.

This means that there is no cardinal κ < λ = #1 such that #Dn ≤ κ for n = 1, 2, . . . . Hence, λ is a 
limit cardinal of countable cofinality (see, for example, [11]), and we can form a subsequence (Dmn

) of 
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(Dn) such that #Dmn
↗ λ. We use the subsequence to build countably many sets Mi ⊆ N such that ∑

n∈Mi
#Dmn

= #1 for each κ. We finish the proof as in the σ-finite case. �
Lemma 3.4. Let A be a von Neumann algebra, E, F ∈ ProjA, E ⊥ F , E = U∗U , F = UU∗ for some U ∈ A
(so that E ∼ F ). For any α, β ≥ 0 and D ∈ A+ satisfying D ≤ βE, there exist P, Q ∈ ProjA with P ∼ Q

such that

(α + β)P − βQ = αE + D − UDU∗

and that P, Q ≤ E + F .

Proof. If β = 0, then D = 0 and one can take P = Q = E. Hence, we can assume that β > 0. We use the 
standard material on the relative position of two projections in a von Neumann algebra (see Halmos [6] or 
Takesaki [18, pp. 306–308]). We construct P, Q ∈ ProjA in such a way that P, Q ≤ E + F and P ∼ E ∼ Q

(in AE+F ). More specifically, we represent the operators as 2 × 2 matrices over AE , so that
[
A11 A12
A21 A22

]
= A11 + UA22U

∗ + A12U
∗ + UA21

for Aij ∈ AE (note that 1AE
= E). Then

E =
[

1 0
0 0

]
, P =

[
C2 CS

CS S2

]
and Q =

[
C ′ 2 C ′S′

C ′S′ S′ 2

]

for suitably chosen C, S, C ′, S′ with 0 ≤ C, S ≤ 1, 0 ≤ C ′, S′ ≤ 1 and C2 + S2 = 1, C ′ 2 + S′ 2 = 1.
Define first H ∈ AE by H := (2D + α1)−1(D + α1) for α > 0 and H := (1/2)1E for α = 0. Check that 

0 ≤ (α + β)−1[D + (α + β)1]H ≤ 1 and 0 ≤ β−1(β1 −D)H ≤ 1. Let C and C ′ be the square roots of the 
two operators, respectively, and let S = (1 − C2) 1

2 , S′ = (1 − C ′ 2) 1
2 . Note that C, S, C ′ and S′ belong to 

the abelian von Neumann algebra generated by D and E. We check that

(α + β)P − βQ =
[
α1 + D 0

0 −D

]
,

which ends the proof. �
Theorem 3.5. [1.3(a) in [5]] Let A be an infinite factor, and let A ∈ Ah. For any β, γ > 2‖A‖, there exist 
α ∈ R with |α| ≤ ‖A‖ and projections P, Q, R, S ∈ A such that, depending on α, (1) or (2) of Theorem 2.1
holds.

Proof. The case A = 0 is trivial. We may assume that ‖A‖ = 1, otherwise use (1/‖A‖)A instead of A. Let 
α be such that eA

(
]α − ε, α + ε[

)
∼ 1 for any ε > 0. It is enough to consider the case α ≥ 0: if α < 0, use 

−A instead of A. Put Ã = A − α1. Take ε > 0 satisfying 2(1 + ε) < β, γ. Let (Ei)i∈Z and (εi)i∈Z be as in 
Lemma 3.3, for Ã and ε.

Let Uj ∈ A be any partial isometry satisfying U∗
j Uj = Ej , UjU

∗
j = Ej+1. Put U =

∑
j∈Z Uj and let h

denote the mapping X �→ UXU∗ on A. Note that U is unitary and h−1 exists and maps X to U∗XU . Let 
Aj = EjÃEj and B0 = (1 − α + ε)E0. Use the recurrence relation Aj = Bj − hBj−1 to define Bj for all 
j 	= 0. Then

(−1 − α)E0 ≤ A0 ≤ (1 − α)E0;
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for j ∈ Z, j 	= 0,

−εjEj ≤ Aj ≤ εjEj ;

finally,

0 ≤ Bj ≤ 2(1 + ε)Ej .

Apply Lemma 3.4 to obtain

αEj + Bj − hBj =
{

(β + α)Pj − βQj for j odd,
(γ + α)Rj − γSj for j even.

Then put

P =
∑
j odd

Pj , Q =
∑
j odd

Qj , R =
∑

j even

Rj , S =
∑

j even

Sj .

Note that

A = Ã + α1 =
∑
j∈Z

(Aj + αEj) =
∑
j∈Z

(Bj − hBj + αEj)

to end the proof. �
4. Type II1 algebras

Let A be a σ-finite type II1 algebra and let τ0 be a fixed faithful normal tracial state on A. In this section 
τ denotes a fixed trace that is a scalar multiple of τ0.

We will be constructing an operator A ∈ A+ with the property that whatever α, β ∈ R+ and γ ∈ R, and 
whatever projections P, Q, R ∈ A,

A + γR 	= αP + βQ. (3)

We shall first describe the properties of the right-hand side of (3), introducing convenient terminology.

Definition 4.1. A distribution function is a non-decreasing, left-continuous function F : R → [0, ∞[ such that 
limt→−∞ F (t) = 0. For a distribution function F we denote by F+ its right-continuous variant: F+(t) :=
lims↘t F (s), and by F (δ) and F (δ)+, for any δ ∈ R, the functions F (δ)(t) := F (t) +F+(δ−t) and F (δ)+(t) :=
F+(t) + F (δ − t), respectively.

For any A ∈ Ah, the function FA given by FA(t) := τ(eA(] −∞, t[) is a distribution function, called the 
distribution function of A w.r.t. the trace τ . Note that limt→+∞ FA(t) = τ(1) and F+

A (t) = τ(eA(] −∞, t])).

Definition 4.2. A distribution function F is called (α, β)-symmetric (with 0 ≤ α ≤ β) if it is constant on 
each of the intervals ] −∞, 0], ]α, β], ]α + β, ∞[ and F (α+β) is constant on ]0, α]∪]β, α + β].

F is symmetric if it is (α, β)-symmetric for some 0 ≤ α ≤ β.

It is clear that the notions of symmetry just defined do not depend on the choice of the trace τ (being 
always a scalar multiple of τ0). Similarly, if the distribution function of an operator is symmetric, then the 
distribution function of a positive multiple of this operator is symmetric as well.
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Remark 4.3. If the distribution function FA (w.r.t. τ) of an operator A ∈ Ah is (α, β)-symmetric, then 
A ∈ A+ and

FA(0) = 0 (4)

F+
A (α + β) = τ(1) (5)

F+
A (α) = FA(β), (6)

and

F
(α+β)
A takes on at most three different values. (7)

In fact, positivity of A and (4) follow from the distribution FA being constant on ] −∞, 0[. Then (5) and 
(6) follow from FA being constant on ]α + β, ∞[ and ]α, β], respectively. The definition of (α, β)-symmetry 
also implies that F (α+β) is constant and equal to τ(1) on ] −∞, 0]∪]α+ β, ∞[, and that F (α+β) is constant 
(and equal to 2FA(β)) on ]α, β], which yields (7).

We will now investigate properties of the distribution function of a linear combination A = αP + βQ

of two projections P, Q ∈ A with α, β ≥ 0. The structure of such an operator A was described (for real 
coefficients) by Nishio [13]. The symmetry of the spectrum of A follows immediately from Corollary 3 of 
[13], as observed by Rabanovich, who adds a few more facts on the symmetry properties of A in section 2 of 
[17]. Nevertheless, we have not spotted any proof (or even statement) of the more general fact given below 
and concerning symmetry of the spectral measure of A, a result crucial for the sequel.

Lemma 4.4. Let A be an arbitrary von Neumann algebra and let P, Q ∈ A be two projections in a generic 
position (i.e. P ∧ Q = P ∧ Q⊥ = P⊥ ∧ Q = P⊥ ∧ Q⊥ = 0). Then, for any α, β ≥ 0 and any Borel 
Z ⊆ [0, α + β],

eαP+βQ(Z) ∼ eαP+βQ(α + β − Z).

Proof. We use 2 × 2 matrix representation of A over AP (cf. references in the proof of Lemma 3.4). Then

P =
[

1 0
0 0

]
and Q =

[
C2 CS

CS S2

]

for some 0 ≤ C, S ≤ 1, C2 + S2 = 1. Let V =
[

0 1
−1 0

]
. Then

V ∗(αP + βQ)V = αP⊥ + βQ⊥ = (α + β)1 − (αP + βQ),

hence the spectral projections

eαP+βQ(Z) and eαP+βQ(α + β − Z) = e(α+β)1−(αP+βQ)(Z)

are unitarily equivalent. �
Corollary 4.5. Let A be an arbitrary von Neumann algebra, and let P, Q ∈ ProjA, α, β ∈ R, 0 ≤ α ≤ β. 
Then

eαP+βQ(]0, α[) ∼ eαP+βQ(]β, α + β[) and eαP+βQ(]α, β[) = 0. (8)
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Moreover, if 0 < α ≤ β, then

eαP+βQ({0}) = P⊥ ∧Q⊥ and eαP+βQ({α + β}) = P ∧Q.

If, additionally, α < β, then

eαP+βQ({α}) = P ∧Q⊥ and eαP+βQ({β}) = P⊥ ∧Q,

while if α = β,

eαP+βQ({α}) = P ∧Q⊥ + P⊥ ∧Q.

(Trivially, for 0 = α < β we have eαP+βQ({0}) = Q⊥ and eαP+βQ({β}) = Q, and for α = β =
0, eαP+βQ({0}) = 1.)

Proof. Let A = αP + βQ. Put (cf. Takesaki [18, pp. 306–308)])

P0 = P − P ∧Q− P ∧Q⊥, Q0 = Q− P ∧Q− P⊥ ∧Q, (9)

and

A0 = αP0 + βQ0. (10)

If PQ = QP , then P0 = Q0 = 0. If P and Q do not commute, then P0 and Q0 are both non-zero and in 
a generic position in AP0∨Q0 . Note that

1 = P0 ∨Q0 + P ∧Q + P ∧Q⊥ + P⊥ ∧Q + P⊥ ∧Q⊥.

As observed by Rabanovich in the first paragraph of section 2 of [17], it follows from Halmos [6] that the 
only parts of P and Q that contribute to the possibly non-zero values of the spectral measure eA(·) at the 
one-point sets {0}, {α}, {β} and {α + β} are the ‘commuting’ ones, that is P ∧ Q, P ∧ Q⊥, P⊥ ∧ Q and 
P⊥∧Q⊥. By the above, eA(]0, α[) = eA0(]0, α[), eA(]α, β[) = eA0(]α, β[) and eA(]β, α+β[) = eA0(]β, α+β[). 
Note that eA0(]α, β[) = 0. This follows, for example, from the formula in Corollary 3 in Nishio [13]. Hence 
also eA(]α, β[) = 0. The rest follows from Lemma 4.4. �

We return to our assumption that A is a σ-finite algebra of type II1, and τ is a scalar multiple of a finite 
tracial state on the algebra. The following result is well known (see, for example, the proof or Lemma 2.5 
(iii) in [2]), but we give here a simple proof for completeness.

Lemma 4.6. For 0 ≤ B ≤ A and λ ∈ R we have FA(λ) ≤ FB(λ).

Proof. Assume that FA(λ) > FB(λ) for some λ. This means that τ
(
eB([λ, ∞[)

)
> τ

(
eA([λ, ∞[

)
, so that 

there is a non-zero ξ ∈
(
eB([λ, ∞[) ∧ eA(] −∞, λ[)

)
(H), for which 〈Aξ, ξ〉 < λ‖ξ‖2 and 〈Aξ, ξ〉 ≥ 〈Bξ, ξ〉 ≥

λ‖ξ‖2, a contradiction. �
Lemma 4.7. For any P, Q ∈ ProjA in generic position and any 0 ≤ α ≤ β, the distribution function 
F := FαP+βQ (w.r.t. τ) satisfies
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F (0) = 0, (11)

F (t) = 1
2τ(1) for t ∈]α, β], (12)

F+(α + β) = τ(1), (13)

F (α+β)(t) = τ(1) for t ∈ R. (14)

In particular, F is (α, β)-symmetric.

Proof. Since P and Q are in a generic position, also P and Q⊥ are in a generic position, which implies 
Q ∼ P ∼ Q⊥, so that τ(Q) = (1/2)τ(1). By Lemma 4.6, we have FαP+βQ(0) ≤ F0(0) = 0, which yields 
(11), and FαP+βQ(β) ≤ FβQ(β) = τ(1) − τ(Q) = (1/2)τ(1). Applying Lemma 4.4 with Z =] −∞, t[ gives

F (t) = τ(eαP+βQ(] −∞, t[))

= τ(eαP+βQ(]α + β − t,∞[)) = τ(1) − F+(α + β − t)
(15)

for all t ∈ R. Hence (14) and, by (11), F+(α + β) = τ(1) − F (0) = τ(1), which shows (13). For (12) note 
that by (15) we have F+(α) = τ(1) − F (β) ≥ τ(1) − (1/2)τ(1) = (1/2)τ(1). �
Lemma 4.8. For any commuting P, Q ∈ ProjA and any 0 ≤ α ≤ β, the distribution function F := FαP+βQ

is constant on each of the intervals ] −∞, 0], ]0, α], ]α, β], ]β, α + β] and ]α + β, ∞[. Moreover,

F (α+β)(t) = 2τ(1) − τ(P ) − τ(Q) for t ∈]0, α]∪]β, α + β]. (16)

In particular, F is (α, β)-symmetric.

Proof. Note that for commuting P and Q, αP + βQ = αP ∧ Q⊥ + βP⊥ ∧ Q + (α + β)P ∧ Q is a linear 
combination of three mutually orthogonal projections, which shows that the distribution function FαP+βQ

has to be constant on each of the intervals ] −∞, 0], ]0, α], ]α, β], ]β, α + β] and ]α + β, ∞[. In particular,

τ(P⊥ ∧Q⊥) =
{
F (t) for t ∈]0, α],
F+(α + β − t) for t ∈]β, α + β]

and

τ((P ∧Q)⊥) =
{
F (t) for t ∈]β, α + β],
F+(α + β − t) for t ∈]0, α].

A simple calculation gives now (16). �
The work done so far can be summed up in the following:

Theorem 4.9. Let P, Q be projections from A, and let 0 ≤ α ≤ β. Then the distribution function F of 
A = αP + βQ (w.r.t. τ) is (α, β)-symmetric, and

F (α+β)(t) = 2τ(1) − τ(P ) − τ(Q) for t ∈]0, α]∪]β, α + β]. (17)
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Proof. Let us first extract commuting and generic parts of P and Q. We put

Pc := P ∧Q + P ∧Q⊥, Qc := P ∧Q + P⊥ ∧Q;

P0 := P − Pc, Q0 := Q−Qc.

We consider P0 and Q0 in the reduced von Neumann algebra AP0∨Q0 . Similarly, we treat Pc and Qc as 
elements of A(P0∨Q0)⊥ . Put F0 := FαP0+βQ0 and Fc := FαPc+βQc

. By Lemmas 4.7 and 4.8, both F0 and Fc

are (α, β)-symmetric, and they satisfy, for t ∈]0, α]∪]β, α + β],

F
(α+β)
0 (t) = τ(P0 ∨Q0) = 2τ(P0 ∨Q0) − τ(P0) − τ(Q0),

F (α+β)
c (t) = 2τ((P0 ∨Q0)⊥) − τ(Pc) − τ(Qc).

Hence F = F0 + Fc is also (α, β)-symmetric and F satisfies (17). �
The next few lemmas show the existence of a positive operator A such that the distribution function of 

A + γR is not symmetric, whatever the choice of γ ∈ R and projection R ∈ A.

Lemma 4.10. Choose arbitrary λ > 0 and 0 ≤ Λ < τ(1). If A = B + C, B, C ∈ A+, ‖B‖ < λ and 
τ(suppC) ≤ Λ, then FA(λ) ≥ τ(1) − Λ. Consequently, if A = B1 + · · · + Bm + C1 + · · · + Cn with 
Bi, Cj ∈ A+, ‖B1‖ + · · · + ‖Bm‖ < λ and τ(suppC1) + · · · + τ(suppCn) ≤ Λ, then FA(λ) ≥ τ(1) − Λ.

Proof. Suppose that FA(λ) < τ(1) − Λ. Then τ(eA(] − ∞, λ[) ∨ suppC) < (τ(1) − Λ) + Λ = τ(1), 
so that eA([λ, ∞[) ∧ (suppC)⊥ = (eA(] − ∞, λ[) ∨ suppC)⊥ 	= 0, and there is a non-zero vector 
ξ ∈

(
eA([λ, ∞[) ∧ (suppC)⊥

)
(H). Hence 〈Aξ, ξ〉 = 〈Bξ, ξ〉 ≤ ‖B‖‖ξ‖2 < λ‖ξ‖2, while at the same time 

〈Aξ, ξ〉 ≥ 〈λeA([λ, ∞[)ξ, ξ〉 = λ‖ξ‖2, a contradiction. �
In the rest of this section we assume that the trace τ satisfies τ(1) ≥ 1071.

Remark 4.11. Below you will find a few technical lemmas that lead to the construction of an operator that 
cannot be written as a linear combination of three projections. To this aim, we build in 4.19 an operator 
A such that the distribution function F of A + γR is not symmetric, whatever the values of γ ∈ R and 
R ∈ ProjA. This shows, according to Theorem 4.9, that A +γR is not a linear combination of two projections 
with positive coefficients. The case of arbitrary real coefficients is then obtained easily in Theorem 4.20.

Note that the operator A := B + C + 4E1 + 21E2 constructed in Lemma 4.19 is a linear combination of 
9 projections, with B (constructed in Lemma 4.15 and Corollary 4.16) a linear combination of 4 mutually 
orthogonal projections, say EB0, . . . , EB3, then C (built in Lemma 4.17 and Corollary 4.18) of 3 mutually 
orthogonal projections, say EC1, EC2, EC3, and finally with E1 and E2 mutually orthogonal. The construc-
tions of B, C and the pair E1, E2 are independent of each other. Specific values of τ on the projections will 
be used in proving Corollary 4.22, dealing with a factor of type In.

Only the values of the trace on the 9 projections (and, of course, the values of the coefficients of the 
linear combinations) matter for the validity of the lemmas mentioned above. The choice of allowed values, 
used in Lemmas 4.15 and 4.17, was made to avoid complicated fractions. The assumption τ(1) ≥ 1701 is 
needed to make room for the construction of these projections.

Lemma 4.12. Let B, C ∈ A+, ‖B‖ < 1, τ(suppC) < 1, and let E1, E2, R ∈ ProjA with E1 ⊥ E2. Denote 
Λi := τ(Ei), c := τ(R) and assume that c > 0, Λ1 > Λ2 and that

A = B + C + λ1E1 + λ2E2 + γR
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for some 0 < λ1 < λ2 < γ. Then the distribution function F of A satisfies:

1. F (t) + F+(γ + λ1 − t) ≤ 2τ(1) − c − Λ1 − Λ2 for t ∈]0, λ1];
2. F (t) + F+(γ + λ2 − t) ≤ 2τ(1) − c − Λ2 for t ∈]0, λ2];
3. F (γ) ≤ τ(1) − c;
4. F (1) > τ(1) − (c + 1 + Λ1 + Λ2);
5. F (γ + 1) > τ(1) − (1 + Λ1 + Λ2);
6. F (λ1 + 1) > τ(1) − (c + 1 + Λ2);
7. F (γ + λ1 + 1) > τ(1) − (1 + Λ2);
8. F (λ2 + 1) > τ(1) − (c + 1);
9. F (γ + λ2 + 1) > τ(1) − 1.

Proof. For 3., use A ≥ γR and Lemma 4.6. For 1. and 2., use respectively A ≥ λ1(E1 +E2) + γR and A ≥
λ2E2+γR, Lemma 4.6 and (17) in Theorem 4.9. The others result from Lemma 4.10, and representations: 4. 
A = B+(C+λ1E1+λ2E2+γR); 5. A = (B+γR) +(C+λ1E1+λ2E2); 6. A = (B+λ1E1) +(C+λ2E2+γR); 7. 
A = (B+λ1E1+γR) +(C+λ2E2); 8. A = (B+λ1E1+λ2E2) +(C+γR); 9. A = (B+λ1E1+λ2E2+γR) +C. �
Corollary 4.13. Let B, C ∈ A+, ‖B‖ < 1, τ(suppC) < 1, and let E1, E2, R ∈ ProjA, with E1 ⊥ E2, τ(E1) =
16, τ(E2) = 4 and c := τ(R) > 0. Let

A = B + C + 4E1 + 21E2 + γR with γ > 21.

Then the distribution function F of A satisfies:

1. F (t) +F+(γ +4 − t) ≤ 2τ(1) − c − 20 for t ∈]0, 4]; in particular F (t) ≤ τ(1) − c − 10 or F+(γ +4 − t) ≤
τ(1) − 10 for any t ∈]0, 4];

2. F (t) +F+(γ+21 − t) ≤ 2τ(1) − c −4 for t ∈]0, 21]; in particular F (t) ≤ τ(1) − c −2 or F+(γ+21 − t) ≤
τ(1) − 2 for any t ∈]0, 21];

3. F (γ) ≤ τ(1) − c;
4. F (1) > τ(1) − c − 21;
5. F (γ + 1) > τ(1) − 21;
6. F (5) > τ(1) − c − 5;
7. F (γ + 5) > τ(1) − 5;
8. F (22) > τ(1) − c − 1;
9. F (γ + 22) > τ(1) − 1.

Proof. Put λ1 = 4, λ2 = 21, Λ1 = 16, Λ2 = 4 and γ > 21 in Lemma 4.12. �
Lemma 4.14. If F is a distribution function satisfying 1. − 9. of Corollary 4.13 for γ > 44 and c > 42, then 
F is not symmetric.

Proof. Assume F is symmetric. We shall consider four cases, one of which would necessarily take place if 
the function F were symmetric with respect to some (α, β).

I β ∈ [γ, γ + 1[). By 4.13.8,

F (β) ≥ F (γ) ≥ F (22) > τ(1) − c− 1.

Hence, by 4.13.2 with t = 11 + γ − β, (5) and (6), either
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F+(10) ≤ F (11 + γ − β) ≤ τ(1) − c− 2 < F (β) = F+(α)

or

F+(β + 10) ≤ τ(1) − 2 < τ(1) = F+(β + α).

Thus α ≥ 10, and by 4.13.6 and 4.13.7,

F (5) + F+(α + β − 5) ≥ F (5) + F (γ + 5) > 2τ(1) − c− 10. (18)

Note that α+ β− γ− 2 ≤ 2β− γ− 2 < 2(γ + 1) − γ− 2 = γ. Hence, by 4.13.1 with t = 2, (5) and 4.13.3, 
we have either

F (2) + F+(α + β − 2) ≤ (τ(1) − c− 10) + τ(1) = 2τ(1) − c− 10 (19)

or

F+(γ + 2) + F (α + β − γ − 2) ≤ (τ(1) − 10) + (τ(1) − c) = 2τ(1) − c− 10. (20)

By Definition 4.2, the left hand sides of (18), (19) and (20) are all equal to the value of F (α+β) on ]0, α]∪]β, α+
β], which yields a contradiction.

II β ≥ γ + 1. By (6) and 4.13.5, F+(α) = F (β) > τ(1) − 21 > τ(1) − c. By 4.13.3, α ≥ γ.
By 4.13.5, (5) and the definition of symmetry 4.2, we have as well 21 > τ(1) − F (γ + 1) ≥ F (α + β) −

F+(β) = F (α) − F+(0); by 4.13.3 and 4.13.5, F (γ + 1) − F+(0) ≥ F (γ + 1) − F (γ) ≥ 21. This implies 
α < γ + 1.

Since α ≥ γ, we have F (α+ β− 22) ≥ F (2γ − 22) ≥ F (γ + 22) > τ(1) − 1, by 4.13.9. This implies, again 
by symmetry of F and 4.13.8, F (2) +F+(α+β−2) = F (22) +F+(α+β−22) > (τ(1) −c −1) +(τ(1) −1) =
2τ(1) − c − 2, hence

F+(2) > τ(1) − c− 2. (21)

In particular, F (3) > τ(1) − c − 10, and by (6) with 4.13.1, F (β) = F+(α) ≤ F+(γ + 1) ≤ τ(1) − 10, so 
that, by 4.13.7, β < γ + 5.

The inequality (21) yields also F (11) > τ(1) − c − 2, so that, by 4.13.2, F+(γ + 10) ≤ τ(1) − 2. Since 
γ ≤ α < γ+1 and γ+1 ≤ β < γ+5, we have γ+10 = α+β− t for some t ∈]0, α] with t < γ. Consequently, 
F (t) + F+(γ + 10) = F (22) + F+(α + β − 22), so that F+(γ + 10) = F (22) + F+(α + β − 22) − F (t) >
(τ(1) − c − 1) + (τ(1) − 1) − (τ(1) − c) = τ(1) − 2, from 4.13.8 and 4.13.3. We obtained a contradiction.

III β ∈ [0, γ/2[ We have α ≤ β < γ/2, so that γ > α + β and F (γ) = τ(1), which contradicts 4.13.3.
IV β ∈ [γ/2, γ[ We have α + β ≥ γ, since by (5) F+(α + β) = τ(1) and F (γ) ≤ τ(1) − c, by 4.13.3. By 

4.13.4, there is a 0 < ε < 1 satisfying F (ε) > τ(1) − c − 21. Suppose α + β > γ + 1 + ε. Choose γ′ with 
β < γ′ < γ. We have γ + 1 = α + β − t1, γ′ = α + β − t2 for some ε < ti < α, i = 1, 2. Using α ≤ β < γ, 
4.13.3 and the choice of ε, we have F (ti) ∈]τ(1) − c − 21, τ(1) − c] for i = 1, 2. On the other hand, by 4.13.3, 
F+(α+β−t2) = F+(γ′) ≤ τ(1) −c, and F+(α+β−t1) = F+(γ+1) > τ(1) −21, by 4.13.5. This contradicts 
c > 42 and the equality F (t1) + F+(α + β − t1) = F (t2) + F+(α + β − t2), satisfied for t1, t2 ∈]0, α]. We 
showed that α + β ≤ γ + 1 + ε < γ + 2, in particular, by (5), F (γ + 2) = τ(1).

Since F+(γ +10) = τ(1), by 4.13.2 with t = 11 we have F (11) ≤ τ(1) − c − 2. By 4.13.8 and (6), we have 
F+(α) = F (β) ≥ F (γ/2) ≥ F (22) ≥ τ(1) − c − 1, so that α ≥ 11. Consequently, F (2) + F+(α + β − 2) =
F (5) + F+(α + β − 5). Since γ ≤ α + β < γ + 2, we have α + β − 2, α + β − 5 ∈ [γ − 5, γ[⊆]22, γ[, and it 
follows from 4.13.3 and 4.13.8 that F+(α+β− 2) −F+(α+β− 5) < 1 and F (5) −F (2) < 1. By 4.13.6 this 
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implies F (2) > τ(1) − c − 6, hence F+(γ + 2) ≤ τ(1) − 10 by 4.13.1 with t = 2. We got contradiction with 
the equality F (γ + 2) = τ(1), which ends the proof. �
Lemma 4.15. Let τ ′ be a multiple of τ0 such that τ ′(1) > 17. There is an operator B ∈ A+ satisfying ‖B‖ < 1
and the following condition: for any operator C ∈ Ah with τ ′(suppC) ≤ 1, the distribution function FB+C

(w.r.t. τ ′) is not symmetric.

Proof. If the distribution function F of an operator (w.r.t. τ ′) satisfies, for some 0 = λ0 < λ1 < λ2 < λ3/2, 
the inequalities F+(λi) − F (λi) ≥ 4 for i = 0, 1, 2, F+(λ2) ≥ τ ′(1) − 3, F (λ3) < τ ′(1), then F cannot be 
symmetric. In fact, suppose that F is (α, β)−symmetric for some 0 ≤ α ≤ β, and put δ := α+β. For δ < λ3

one has F+(δ) ≤ F (λ3) < τ ′(1), contradicting (5). On the other hand, if δ ≥ λ3, then

F (δ)+(λi) − F (δ)+(λi−1) =
(
F+(λi) − F+(λi−1)

)
+

(
F (δ − λi) − F (δ − λi−1)

)
≥

(
F+(λi) − F (λi)

)
+

(
F (δ − λi) − F (δ − λi−1)

)
≥ 4 + F (δ − λ2) − τ ′(1)

≥ 4 + F+(λ2) − τ ′(1) ≥ 1,

for i = 0, 1, 2 and any λ−1 < 0. Consequently, F (δ) has at least three jumps, so it takes on more than three 
values, contradicting (7). Thus F is not (α, β)-symmetric.

Put now B :=
∑3

i=0 λiEi, where Ei are mutually orthogonal projections from A with sum 1A such that 
τ ′(E0), τ ′(E1), τ ′(E2) ≥ 5 and τ ′(E3) = 2, with λi as above, and assume additionally that λ3 < 1, so 
that ‖B‖ < 1. The operator B + C has eigenspaces E′

i(H) for eigenvalues λi, with E′
i ≥ Ei ∧ (suppC)⊥, 

for i = 0, 1, 2, 3. Hence τ ′(E′
0), τ ′(E′

1), τ ′(E′
2) ≥ 4, τ ′(E′

3) ≥ 1 and F+
B+C(λi) − FB+C(λi) ≥ 4 for i =

0, 1, 2, F+
B+C(λ3) − FB+C(λ3) > 0. Moreover, by Lemma 4.10 applied to τ ′, F+

B+C(λ2) ≥ τ ′(1) − (τ ′(E3) +
τ ′(suppC)) ≥ τ ′(1) − 3, so that the first part of the proof applies and, consequently, B has the desired 
properties. �
Corollary 4.16. There exists an operator B ∈ A+ satisfying ‖B‖ < 1 and the following condition: for any 
operator C ∈ Ah with τ(suppC) ≤ 63, the distribution function of B + C (w.r.t. τ) is not symmetric.

Proof. Put τ ′ = (1/63)τ and build B for τ ′ as in Lemma 4.15. For any C with τ(suppC) ≤ 63, we have 
τ ′(suppC) ≤ 1, so that FB+C is not symmetric. �
Lemma 4.17. There is C ′ ∈ A+ satisfying τ(suppC ′) < 1 and the following condition: for any operator 
B′ ∈ Ah with −ε · 1A ≤ B′ ≤ (1 − ε) · 1A for some ε ∈ [0, 1], the distribution function F ′ of B′ + C ′ (w.r.t. 
τ) is not symmetric.

Proof. Define C ′ :=
∑3

i=0 λiEi, where λ0 = 0, λ1 = 2, λ2 = 4 and λ3 = 11, and where Ei are mutually 
orthogonal projections from A with sum 1A satisfying τ(E1 + E2 + E3) < 1 and τ(Ei) > τ(E3) > 0 for 
i = 0, 1, 2. By Lemma 4.10, for any B ∈ A+ with ‖B‖ ≤ 1, the distribution function F := FB+C′ of the 
operator B+C ′ satisfies F+(λi+1) ≥ τ(1) −τ(Ei+1+ · · ·+E3) = τ(E0+ · · ·+Ei) for i = 0, 1, 2, 3 (an empty 
sum is the zero operator). By Lemma 4.6, it satisfies F (λi) ≤ τ(E0 + · · ·+Ei−1) for i = 0, 1, 2, 3. Hence, for 
an operator B′ as in the statement of our lemma, we can take B := B′ + ε · 1A, and then the distribution 
function F ′ satisfies F ′(t) = F (t +ε), so that F ′+(λi+1 −ε) ≥ τ(E0+· · ·+Ei), F ′(λi−ε) ≤ τ(E0+· · ·+Ei−1)
for i = 0, 1, 2, 3. Thus we have
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F ′(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 for t ∈] −∞,−ε]
τ(E0) for t ∈]1 − ε, 2 − ε],
τ(E0 + E1) for t ∈]3 − ε, 4 − ε],
τ(1) − τ(E3) for t ∈]5 − ε, 11 − ε],
τ(1) for t ∈]12 − ε,∞[.

(22)

Suppose that F ′ is (α, β)-symmetric for some 0 ≤ α ≤ β, and let δ := α+β. If δ < 11 − ε, then F ′+(δ) ≤
F ′(11 −ε) < τ(1). If δ ≥ 11 −ε, then, for any t ≤ 6, F ′ (δ)(t) = F ′(t) +F ′+(δ−t) ∈ [F ′(t) +F ′+(5 −ε), F ′(t) +
τ(1)] ⊆ [F ′(t) + τ(1) − τ(E3), F ′(t) + τ(1)]. We have got F ′ (δ)(t0) < F ′ (δ)(t1) < F ′ (δ)(t2) < F ′ (δ)(t3) for 
arbitrarily chosen t0 ≤ −ε, 1 − ε < t1 ≤ 2 − ε, 3 − ε < t2 ≤ 4 − ε, 5 − ε < t3 ≤ 6, using τ(E3) < τ(Ei) for 
i = 0, 1, 2. Thus, for any δ ∈ R, either F ′+(δ) < τ(1) or F ′ (δ) takes on more than 3 values, which contradicts 
(7). �
Corollary 4.18. There is an operator C ∈ A+ satisfying τ(suppC) < 1 and the following condition: for any 
operator B ∈ Ah with −1 · 1A ≤ B ≤ 66 · 1A, the distribution function of B + C is not symmetric.

Proof. Take C := 67C ′, where C ′ is the operator from Lemma 4.17, used with ε = 1/67. Then, for any 
B ∈ Ah with −1 ·1A ≤ B ≤ 66 ·1A, we have for B′ := (1/67)B that FB′+C′ is not symmetric, so that FB+C

is not symmetric, either. �
Lemma 4.19. Put A := B + C + 4E1 + 21E2, where E1, E2 ∈ ProjA with E1 ⊥ E2, τ(E1) = 16, τ(E2) = 4, 
and where B and C are operators from Corollaries 4.16 and 4.18, respectively. Whatever the choice of 
projection R ∈ A and γ ∈ R, the distribution function of A + γR is not symmetric.

Proof. I For R such that τ(R) ≤ 42 (and any γ ∈ R) we have τ(supp(C+4E1 +21E2 +γR)) ≤ τ(suppC) +
τ(E1) + τ(E2) + τ(R) < 1 + 16 + 4 + 42 = 63, and Corollary 4.16 together with the definition of B imply 
that the distribution function of A + γR is not symmetric.

II For −1 < γ ≤ 44, we have −1A ≤ B + 4E1 + 21E2 + γR ≤ 66 · 1A. Corollary 4.18 implies that the 
distribution function of A + γR = C + (B + 4E1 + 21E2 + γR) is not symmetric.

III For γ ≤ −1 and τ(R) > 42 the operator A + γR is not positive. In fact, τ(supp(C + 4E1 + 21E2)) ≤
τ(suppC) + τ(E1) + τ(E2) = 1 + 4 + 16 < τ(R). Hence, for 0 	= ξ ∈ (R ∧ (supp(C + 4E1 + 21E2))⊥)(H), 
we have 〈(A + γR)ξ, ξ〉 = 〈Bξ, ξ〉 + γ‖ξ‖2 ≤ (‖B‖ + γ)‖ξ‖2 < (1 + γ)‖ξ‖2 < 0.

Thus FA+γR(0) > 0, which by Remark 4.3(4) means that A + γR is not symmetric.
IV For γ > 44 and τ(R) > 42, the distribution function of the operator A +γR is not symmetric. In fact, 

it satisfies the assumptions of Corollary 4.13, so we can use Lemma 4.14. �
It should be noted that if a self-adjoint operator A cannot be written as a real linear combination of 

three projections, it cannot be written as a complex linear combination of three projections, either. In fact, 
if A = αP + βQ + γR with α, β, γ ∈ C, then A = (1/2)(A + A∗) = (�α)P + (�β)Q + (�γ)R. Hence, 
Theorem 4.20, Corollaries 4.21 and 4.22, as well as Theorem 5.3 of the next section, hold for arbitrary 
combinations of projections.

Theorem 4.20. Let A be a σ-finite type II1 algebra with a faithful normal tracial state τ0. For any 0 < δ ≤ 1
there exists an operator A ∈ A+ with τ0(suppA) ≤ δ such that A is not a real linear combination of three 
projections from A.

Proof. Put τ := (1071/δ)τ0. We will apply Lemma 4.19 with the trace τ , and show that the operator 
A defined there cannot be of the form αP + βQ + γR, whatever α, β, γ ∈ R and choice of projections 
P, Q, R ∈ A. In fact:
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I If at least two of the numbers α, β and γ are non-negative, the result follows immediately from Theo-
rem 4.9 and Lemma 4.19.

II If at least two of them, say β and γ, are negative, we have 0 ≤ A − γR = αP + βQ. Hence, if 
0 	= ξ ∈ P⊥(H), then Qξ = 0, so that Q ≤ P . If Q = 0, we can replace β with any β′ ≥ 0, and we have 
again case I. Otherwise, we have 0 ≤ A −γR = α(P −Q) +(α+β)Q, and the RHS consists of two operators 
with disjoint supports, both necessarily positive. Hence α, α + β ≥ 0, and we are back to the case I of at 
least two non-negative coefficients. �
Corollary 4.21. Let A be a type II1 algebra. There exists an operator A ∈ A+ such that A is not a real 
linear combination of three projections from A.

Proof. Any type II1 algebra is a direct sum of σ-finite type II1 algebras (see e.g. Takesaki [18], Corollary 
V.2.9). It is enough to build the operator A as in Theorem 4.20 in one of those direct summands. �
Corollary 4.22. For any type II1 algebra A there exists a natural number n, a factor An ⊂ A of type In
and a self-adjoint operator A ∈ An which cannot be written as a real linear combination of three projections 
from A (and not just in An).

Proof. We can first restrict our attention to a σ-finite algebra, which allows us to use a finite trace. By the 
halving lemma (see e.g. Takesaki [18]) there exists in A an orthogonal family {Fi} of n := 213 equivalent 
projections with sum 1A. Let {Uij} be a matrix unit in A such that Uii = Fi for each i (see Takesaki 
[18], IV.1.7), and let An be the factor of type In generated by the matrix unit. Take a trace tr on A such 
that tr(1A) = 213. Now construct all the 9 projections mentioned in Remark 4.11 as sums of minimal 
projections from An so that tr(E1) = 6 · 16, tr(E2) = 6 · 4, tr(EB0) = tr(EB1) = tr(EB2) = 6 · 5 · 63, 
tr(EB3) = 6 · 2 · 63, tr(EC1) = tr(EC2) = 2 and tr(EC3) = 1. We easily check that if we take τ = (1/6)tr, 
then all the assumptions of Lemma 4.19 are satisfied. This ends the proof of the corollary. �

Rabanovich showed in [17] an example of an operator that cannot be written as a real linear combination 
of three projections in a factor of type In, for n = 76. Although the above corollary is slightly more general 
than his Proposition 4.6 (even using projections from a surrounding algebra does not help in writing the 
operator as a linear combination of three projections), the n obtained here is much larger.

5. Type II∞ factors

The construction of an operator in an algebra (or just a factor) of type II1 that cannot be written as 
a linear combination of three projections leads to a fairly easy construction of such an operator in a II∞
factor A. It is constructed in a reduced factor AE of type II1, where E is a finite projection in A. It is 
shown that if this operator were a linear combination of three projections from the factor A, we could also 
find such a decomposition inside AE.

We start with a lemma:

Lemma 5.1. Let A be a factor of type II∞ with a faithful normal semifinite trace τ . Let further P, Q, S ∈
ProjA, and let α, β and γ be real numbers with 0 < α ≤ β. If B ∈ Ah is such that τ(suppB) < τ(S)
(so, in particular, τ(suppB) < ∞), suppB ⊥ S and B + γS = αP + βQ, then B = αP ′ + βQ′ for some 
P ′, Q′ ∈ ProjA.

Proof. Let e(·) := eB+γS(·) = eαP+βQ(·). If γ = 0, the result is obvious. If γ 	= 0, then necessarily γ > 0, 
since αP +βQ is positive, and suppB ⊥ S. If γ /∈]0, α[, then e(]0, α[) ⊥ S. Since e(]0, α[) ≤ supp(B+γS) =
suppB + S, we have e(]0, α[) ≤ suppB. Similarly, if γ /∈]β, α + β[, then e(]β, α + β[) ≤ suppB. One 
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of the two possibilities has to occur, hence, by (8) in Corollary 4.5, τ(e(]0, α[)) = τ(e(]β, α + β[)) ≤
τ(suppB) < τ(S). On the other hand, if γ ∈]0, α[∪]β, α + β[, then S ≤ e(]0, α[) or S ≤ e(]β, α + β[), so 
that τ(S) ≤ τ(e(]0, α[)) = τ(e(]β, α + β[)) ≤ τ(suppB), which contradicts one of the assumptions. Again 
by (8), we also have e(]α, β[) = 0, so that γ ∈ {α, β, α + β} and one of the following cases must hold (cf. 
Corollary 4.5):

(1) γ = α + β. Then S ≤ e({α + β}) = P ∧Q and B = α(P − S) + β(Q − S).
(2) γ = α < β. Then S ≤ e({α}) = P ∧Q⊥ and B = α(P − S) + βQ.
(3) γ = β > α. Then S ≤ e({β}) = P⊥ ∧Q and B = αP + β(Q − S).
(4) γ = α = β. Then S ≤ e({α}) = P ∧Q⊥ + P⊥ ∧Q and B = α(P − P ∧Q⊥) + α(Q + P ∧Q⊥ − S).

In each case, we have the desired representation of B as a linear combination of two projections. �
Lemma 5.2. Let A be a factor of type II∞ with a faithful normal semifinite trace τ , and let E be a non-
zero finite projection from A with trace 1. Suppose A ∈ AE,+ ⊆ A+ is not a real linear combination of 
three projections in the reduced algebra AE. Then there are no α, β, γ ∈ R and P, Q, R ∈ ProjA such that 
τ(suppA ∨ P ∨Q ∨R) ≤ 1 and A = αP + βQ + γR.

Proof. Assume that for some α, β, γ ∈ R and P, Q, R ∈ ProjA with τ(suppA ∨ P ∨Q ∨R) ≤ 1, A = αP +
βQ +γR. Let F ∈ ProjA be such that suppA ∨P ∨Q ∨R ≤ F and τ(F ) = 1. Then E−suppA ∼ F−suppA, 
so there exists a partial isometry U ∈ A such that U∗U = E, UU∗ = F and U acts as identity on (suppA)H. 
Thus, we would have A = U∗AU = αU∗PU + βU∗QU + γU∗RU , with the decomposition taking place in 
AE , which contradicts the assumption. �
Theorem 5.3. Let A be a factor of type II∞. There exists an operator A ∈ Ah such that A is not a real 
linear combination of three projections from A.

Proof. Let E ∈ ProjA be a non-zero finite projection with trace 1. By Theorem 4.20, there exists an 
operator A ∈ AE,+ with τ(suppA) ≤ 1/4, satisfying the assumptions of Lemma 5.2. Suppose that for 
some α, β, γ ∈ R, we have A = αP + βQ + γR with P, Q, R ∈ ProjA. We shall show that then either 
τ(suppA ∨ P ∨Q ∨ R) ≤ 1, contradicting Lemma 5.2, or there are other projections in A, say P ′, Q′ and 
R′, such that A = αP ′ + βQ′ + γR′ and τ(suppA ∨ P ′ ∨Q′ ∨R′) ≤ 1, again contradicting Lemma 5.2.

Clearly, A is non-zero, and if A = αP with P ∈ ProjA and non-zero α ∈ R, then P = suppA and 
τ(suppA ∨ P ) ≤ 1, contradicting Lemma 5.2.

Assume A = αP + βQ for some non-zero α, β ∈ R with α ≤ β. If α > 0, then P, Q ≤ suppA, so that 
τ(suppA ∨ P ∨ Q) ≤ τ(suppA) ≤ 1. If α < 0, then 0 	= ξ ∈ Q⊥(H) implies 〈Aξ, ξ〉 = α〈Pξ, ξ〉 ≥ 0, so 
that ξ ∈ P⊥(H). Hence, P ≤ Q and A = (α + β)P + β(Q − P ), which yields suppA ≥ Q and again 
τ(suppA ∨ P ∨Q) = τ(suppA) ≤ 1, contradicting Lemma 5.2.

The last case to consider is that of a A = αP+βQ +γR for some non-zero α, β, γ ∈ R and P, Q, R ∈ ProjA. 
As in part I of the proof of Theorem 4.20, we can assume that at least two of the coefficients, say α and β, 
are positive, with α ≤ β. Changing γ to −γ we get A + γR = αP + βQ.

Let S := R ∧ (suppA)⊥. If τ(S) ≤ 1/2, then τ(R) ≤ 3/4, τ(suppA ∨ R) ≤ 1, and P, Q ≤ suppA ∨ R, 
which leads to τ(suppA ∨ P ∨Q ∨R) ≤ 1, contradicting Lemma 5.2.

Assume now τ(S) > 1/2 and put R′ := R − S, B := A + γR′. Note that S ⊥ suppB. Since R⊥ +
R − S = 1 − R ∧ (suppA)⊥ = R⊥ ∨ suppA, we have, by Kaplansky’s formula ([18, Proposition V.1.6]), 
R′ = R⊥∨suppA −R⊥ ∼ suppA −R⊥∧suppA � suppA. Hence τ(R′) ≤ 1/4 and τ(suppB) ≤ 1/2, so that 
τ(suppB) < τ(S). By Lemma 5.1, B = αP ′ +βQ′ for some P ′, Q′ ∈ ProjA and B = A +γR′ = αP ′ +βQ′. 
Since α and β are positive, P ′, Q′ ≤ suppB ≤ suppA ∨R′ so that τ(suppA ∨P ′∨Q′∨R′) ≤ 1, contradicting 
Lemma 5.2. �
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6. Open problems

There are many interesting open problems connected with linear combinations of projections with complex 
(cf. [17]), positive (cf. [9]) and integral (cf. [5]) coefficients. Here we present only three problems strictly 
connected with the subject of our paper.

(1) In [17], Rabanovich proved that there exists a 76 by 76 Hermitian matrix that cannot be written as a 
linear combination of 3 projections. As shown by Nakamura [12], any Hermitian n by n matrix with 
n ≤ 7 can be written as a linear combination of 3 projections. What is the largest number n such that 
each Hermitian n by n matrix is a linear span of 3 projections?

(2) As shown in [5], each self-adjoint operator in a factor (or von Neumann algebra) of type II1 is a linear 
combination of 12 projections. Is Theorem 4.20 sharp, that is, is any self-adjoint operator in a type II1
factor a linear span of 4 projections?

(3) We know from 3.5 (and, for a separable factor of type I∞, from [17]) that any self-adjoint operator in 
an infinite factor can be written as a linear combination of 4 projections. We also know from [17] that 
if K is a positive compact operator of infinite rank, then neither 1 + K nor 1 −K can be written as a 
linear combination of 3 projections. Can we find self-adjoint operators in type III factors that are not 
linear combinations of 3 projections?
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