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Abstract
& Key message Natural regeneration of P. abies (L.) H. Karst. may reach high densities in lower mountain elevations. The
highest densities were found in sites with moderate light availability, with low pH, and not near the riverbank. However,
age-height classes differed in the predicted magnitude of response, but were consistent in response directions. Mosses and
understory species typical of coniferous forests were positively correlated with regeneration density.
& Context Norway spruce Picea abies (L.) H. Karst. in Central Europe is at risk under climate change scenarios, particularly in
mountain regions. Little is known about the impact of environmental factors on the natural regeneration of P. abies in low-
elevation mountain forests.
& Aims We aimed to assess impacts of distance from the riverbank, soil pH, and light availability on natural P. abies regeneration.
We hypothesized that (1) natural P. abies regeneration would depend on light availability and soil pH and (2) there are understory
plant species which may indicate the microsites suitable for natural regeneration of P. abies.
&Methods The study was conducted in the StołoweMountains National Park (SW Poland, 600–800m a.s.l.).We established 160
study plots (25 m2) for natural regeneration, light availability, soil pH, and understory vegetation assessment.
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& Results The highest densities of natural regeneration of P. abieswere observed in sites with moderate light availability (0.1–0.2
of open sky) and low pH (3.5–4.5), and located relatively far from the riverbank. Cover of 22 understory plant species were
correlated with natural P. abies regeneration densities, mostly positively.
& Conclusion Different stages of natural regeneration of P. abies revealed different regeneration niches. Most understory plant
species (bryophytes and herbs typical of coniferous forests) do not compete with natural regeneration of P. abies.

Keywords Recruitment . Understory vegetation . Diffuse non-interceptance . Soil pH . Seedlings . Saplings

1 Introduction

Natural regeneration is a crucial process responsible for gen-
erational replacement in forest ecosystems (Baraloto et al.
2005; Beckage et al. 2005; Dech et al. 2008). Young regener-
ation is especially vulnerable to limiting abiotic factors, for
instance frost or drought (Niinemets and Valladares 2006;
Eckstein et al. 2011; Jagodziński et al. 2017), as well as to
herbivory (de Chantal and Granström 2007; Iszkuło et al.
2014; Bodziarczyk et al. 2017), leading to low survival rates.
Another important factor is competition with understory her-
baceous species (Lorimer et al. 1994; Emborg 1998; Chmura
and Sierka 2007), as well as competition within the regenera-
tion layer, both intra- and interspecific (Janzen 1970;
Robakowski and Bielinis 2011; Kawaletz et al. 2014;
Martínez-García et al. 2015). For that reason, assessment of
natural regeneration is crucial both for understanding dynam-
ics of forest species composition and for developing forest
management strategies.

Norway spruce Picea abies (L.) H. Karst occurs in bo-
real and mountain forests, but also occupies temperate for-
ests with poor soils. The largest P. abies trees can reach
heights of 50–60 m and diameter at breast height (dbh) of
150 cm. Its range in Europe (both natural and introduced)
covers an area from the Ural Mountains in the east to Great
Britain in the west and from the Alps and Pyrenees in the
south to the timberline in Scandinavia in the north. In the
Alps, P. abies reaches its maximum elevation of 2400 m
a.s.l. (Caudullo et al. 2016). P. abies is a shade-tolerant tree
species (4.45 on the 0–5 scale of Niinemets and Valladares
2006), with high moisture requirements (Ellenberg 1988;
Niinemets and Valladares 2006). The latter implies low
tolerance not only for drought but also for waterlogging
(Niinemets and Valladares 2006). P. abies has been widely
cultivated since the nineteenth century, as a fast-growing
tree producing valuable timber. For that reason, extensive
areas of mountain beech and fir forests have been replaced
by P. abies plantations (Felton et al. 2010; Caudullo et al.
2016; Naudts et al. 2016).

Future dynamics and occurrence of P. abies in Central
Europe seem to be at risk, due to increased frequency and
intensity of bark beetle infestations (Kučerová et al. 2008;
Bastl et al. 2009; Müller et al. 2010; Seidl et al. 2014), which
result from climate change and decreased water availability

(Seidl et al. 2011; Gutowski and Jaroszewicz 2015; Grodzki
2016; Dyderski et al. 2018b). This is especially important due
to the high transpiration rate of P. abies (Cienciala et al. 1992).
Uncertainty about P. abies persistence in forest ecosystems is
currently a subject of broad discussions in forest ecology and
nature conservation (Brzeziecki et al. 2016; Jaroszewicz et al.
2017). For that reason, most of the papers regarding its natural
regeneration are focused on post-disturbance areas (e.g.,
Kučerová et al. 2008; Pröll et al. 2015; Zeppenfeld et al.
2015). Miina and Saksa (2013) elaborated a model of natural
regeneration based on silvicultural treatments and soil
properties, but not accounting for light availability. Vacek
et al. (2017) studied P. abies regeneration in forests, but their
research was focused on natural regeneration of Fagus
sylvatica and data about P. abies were only a background for
the study. Holeksa et al. (2007) analyzed patterns of natural
regeneration of P. abies in natural forests, dominated by
P. abies, and Jonášová and Prach (2004) studied its patterns
in semi-natural P. abies forests after a bark beetle outbreak.
There is a lack of studies focused on natural regeneration of
P. abies in secondary forests, where the species is growing
outside of sites where it would dominate the potential natural
vegetation.

We aimed to assess impacts of distance from the river-
bank, soil pH, and indirect light availability on natural
regeneration of P. abies in low-elevation mountain forests
in a river valley. We hypothesized that (1) natural regener-
ation of P. abies would be most abundant in sites with the
highest light availability and the lowest soil pH and nearest
to the riverbank and (2) there are understory plant species
which may indicate the microsites suitable for natural re-
generation of P. abies.

2 Materials and methods

2.1 Study area

We conducted our study in the Czerwona Woda River
Valley in the Stołowe Mountains National Park (SW
Poland; 50.47° N, 16.35° E). The Czerwona Woda River
is the longest river in the Stołowe Mountains National Park
(13.4 km long), and its width ranges from less than 0.5 m
in the upper course to ca. 3 m in the lower course. The river

91 Page 2 of 13 Annals of Forest Science (2018) 75: 91



valley covers an area of 91.2 ha (as confined by clear to-
pographic features), and elevations range from ca. 800 m
a.s.l (source) to 600 m a.s.l (border of the national park).
Within the study area, most of the river course flows at a
115° azimuth (EES), and over 90% of study plots were
located on flat sites (slopes less than 5°). For that reason,
our study did not account for microtopography. Mean an-
nual temperature in 1951–2000 was 7.1 °C (Kłodzko, ca.
20 km from the study site; Trouet and Van Oldenborgh
2013) and mean annual precipitation measured at seven
stations (years 1976–2005, stations: Pasterka, Słoszów,
Lewin Kłodzki, Chocieszów, Kudowa Zdrój, Polanica
Zdrój, and Gajów) was 773 mm (Tarka et al. 2011). The
dominant bedrock types in the study area are turonian
marls and sandstones (Migoń et al. 2011). Soils in the
upper course of the river are haplic cambisols and haplic
luvisols; in the middle course, histic gleysols; and in the
lower course, gleyic fluvisols and gleyic cambisols
(Kabała et al. 2011). Forests of the Stołowe Mountains
National Park are mostly transformed by human activity,
via replacement of natural, broadleaved forests by conifer-
ous monocultures. Most of the forests are dominated by
P. abies, with an admixture of Acer pseudoplatanus,
Alnus incana, Betula pendula, Fagus sylvatica, Larix
decidua, Larix kaempferi, and Sorbus aucuparia. The most
frequent ages of forest stands in the Czerwona Woda River
Valley range from 80 to 120 years.

Our preliminary vegetation survey revealed that within the
Czerwona Woda River Valley, forests dominated by P. abies
cover an area of 67.6 ha (73.4% of the study area), while the
coverage of other forest types is only 0.4 ha (Pielech et al.
2018; Wierzcholska et al. 2018). Other forest ecosystems
(remnants of riparian forests) compose ca. 1%, while the re-
mainder of the area is covered by meadows or grasslands. The
P. abies forests are diverse and represented by different plant
communities, including Picea abies-Avenella flexuosa
(51.8 ha—56.8%), Vaccinio uliginosi-Piceetum abietis
Schubert 1972 (14.8 ha—16.2%), and Equiseto sylvatici-
Piceetum abietis (0.4 ha—0.4%). Understories of these forests
are dominated by Vaccinium myrtillus, Calamagrostis villosa,
Avenella flexuosa, and Oxalis acetosella in the herb layer and
Polytrichastrum formosum, Dicranum scoparium, and
Pleurozium schreberi in the moss layer.

According to forest structure measurements (all trees >
1.3 m height) conducted in nine plots (0.1 ha each), the basal
area of forest stands ranged from 23.9 to 74.9 m2 ha−1 (aver-
age 51.6 ± 5.8 m2 ha−1), the mean tree-stand height ranged
from 20.0 to 27.8 m (average 25.4 ± 0.9 m), the top height
(heights of the 10% of trees with the largest diameters) ranged
from 16.7 to 31.7 m (average 26.7 ± 1.7 m), the tree-stand
density ranged from 710 to 6830 trees ha−1 (average 2145 ±
733 trees ha−1), and the tree-stand volume ranged from 303.9
to 977.6 m3 ha−1 (average 606.4 ± 83.2 m3 ha−1).

2.2 Data collection

The study was conducted in early September 2017, when
current-year natural regeneration was completely developed
and canopy cover was maximal (in conditions of minimal
light availability). For assessment of natural regeneration, we
used a set of study sites, located at 100-m intervals along a 9-
km segment (excluding non-forest areas) of the river course.
Within each study site, we established two square 25-m2 study
plots—the first was established 1 m from the riverbank and
the second at a distance from 5 to 50 m from the riverbank
(measured using a tape measure). Distance between plots var-
ied from 1 to 45 m (mean 17.1 ± 1.1 m) to ensure that two
plots were not pseudoreplications and to account for vegeta-
tion diversity within the study area. This system is not ideal,
due to non-systematic design of distances from the river,
which limits inference about the influence of this parameter.
To prevent subjectivity in locating plots, we decided to always
establish the first plot at a fixed distance from the riverbank
(i.e., 1 m) and the second plot in a different vegetation patch.
We determined the differences by visual estimation of domi-
nant understory plant species, which indicate environmental
conditions and microsites (Ellenberg and Leuschner 2010). To
avoid the observer effect, one person did all the estimations for
all study plots. In total, 160 study plots were established along
the river (Dyderski et al. 2018a).

In each plot, we investigated only natural regeneration of
P. abies within three age-height classes (Jagodziński et al.
2017): seedlings (plants germinated in the current year), short
saplings (plants ≥ 1 year old and < 0.5 m tall), and tall saplings
(plants 0.5–1.3 m tall). Data on other woody plant species
(which rarely occurred) was collected but not analyzed. We
also listed understory species and assessed their abundance
using a modified, nine-degree Braun-Blanquet cover scale.
Vascular plant nomenclature follows the Euro+Med
PlantBase (Euro+Med 2006); mosses, Ochyra et al. (2003);
and liverworts, Szweykowski (2006). Phytosociological no-
menclature for plant associations follows Chytrý (2013). We
also measured topsoil (upper 5–10 cm of soil) pH in distilled
water solution after 24 h, using an electronic pH meter. We
treated soil pH as a proxy for soil fertility (Bigelow and
Canham 2002). As a proxy for light availability, we used
diffuse non-interceptance (DIFN; fraction of the open sky)
obtained by a LAI-2200 plant canopy analyzer (Li-Cor Inc.,
Lincoln, NE, USA) 50 cm above the forest floor (understory
height). For each study plot, we obtained a mean from ten
samples. DIFN is literally the ratio of photon flux densities
captured by five lenses in an open area (control) and beneath
the forest canopy (measurement). The lenses are oriented at 7,
23, 38, 53, and 68° angles to characterize light interception at
different heights. DIFN is a direct measurement of the amount
of indirect light availability and serves as a common proxy for
light availability for plants (Stenberg et al. 1994;Machado and
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Reich 1999; Knight et al. 2008;Mueller et al. 2016). Although
DIFN may be less informative for some researchers, it can be
recalculated into leaf area index (LAI, m2 m−2) using the for-
mula LAI = 1.9092*DIFN−0.2528 (R2 of the linearized form =
0.82). However, this proxy does not account for either direct
light or photosynthetically active radiation, as the LAI-2200
registers only ultraviolet to blue wavelengths (< 490 nm),
which are also important for plant growth (e.g., Ozolinčius
et al. 1996; Curt et al. 2005; Löf et al. 2005).

In the study area, soil pH ranged from 3.40 to 6.21, with an
average of 4.03 ± 0.04 (lower quartile 3.75, upper quartile
4.22); DIFN ranged from 0.003 to 0.399, with an average of
0.047 ± 0.004 (lower quartile 0.017, upper quartile 0.064).
LAI ranged from 2.408 to 8.292 m2 m−2, with an average of
4.723 ± 0.093 m2 m−2 (lower quartile 3.821, upper quartile
5.369). Distance to the riverbank ranged from 1 to 50 m, with
an average of 8 ± 1m (lower quartile 1 m, upper quartile 15m;
Dyderski et al. 2018a).

2.3 Data analysis

We conducted all analyses using R software (R Core Team
2017). All mean values are followed by the standard error
(SE). Prior to modeling, we log-transformed dependent
variables (natural regeneration densities) and we centered
and scaled independent variables (DIFN, soil pH, and dis-
tance from the riverbank) using the base::scale() function.
These transformations were used to stabilize variance, in-
crease normality of distributions, and overcome problems
with different magnitudes of variables. To account for a
high number of zero values, we used hurdle models imple-
mented in the pscl package (Zeileis et al. 2008). These
models are combinations of two parts: the first part of the
model predicts the probability of a non-zero value of the
parameter studied, and the second predicts the value using
an adequate distribution type. For natural regeneration
density, we used the Poisson distribution (with log link
function) for count model coefficients and binomial distri-
bution (with logit link function) for zero-inflation model
coefficients. We developed these models using the
pscl::zeroinfl() function (Zeileis et al. 2008). To predict
the proportion of each age-height class in the natural
P. abies regeneration, we used zero- and one-inflated beta
regression models implemented in the gamlss package
(Rigby and Stasinopoulos 2005). This type of model al-
lows for separate estimation of numerous distribution types
by separate estimation of estimated value μ, variance σ,
and two distribution shape parameters: ν and τ (Ospina
and Ferrari 2010). In the case of zero- and one-inflated
models, we used beta distributions with a logit link func-
tion for μ and σ estimation and the log function for ν and τ
estimation. This procedure was implemented in the
gamlss::gamlss() function with family = BEINF argument

(Rigby and Stasinopoulos 2005). For each age-height
class, we started from a model with three potential predic-
tors (DIFN, distance to the riverbank, and soil pH) and we
tried to reduce the variable number to decrease Akaike’s
information criterion (AIC). The model with the lowest
AIC was chosen as the final model.

For visualization of relationships between environmen-
tal parameters studied (soil pH, DIFN, and distance from
the river), natural P. abies regeneration density, and un-
derstory vegetation, we used detrended correspondence
analysis (DCA; Hill and Gauch 1980). This technique of
unconstrained ordination reveals the main gradients in
v e g e t a t i o n . DCA w a s p e r f o rm e d u s i n g t h e
vegan::decorana() function (Oksanen et al. 2018). To ex-
plain correlations of gradients with measured parameters,
we used the vegan::envfit() function (Oksanen et al.
2018). We used DCA instead of other ordination tech-
niques due to long gradients (> 3 SD units). To identify
the significant relationships between cover of understory
plant species and natural P. abies regeneration, we used
Spearman’s rank correlation, as abundance was recorded
in an unequal interval scale. These analyses were carried
out only for understory plant species which occurred in at
least ten plots. We did not adjust p values for multiple
hypothesis testing, as such adjustments (e.g., Bonferroni
correction) in cases of multiple species testing may cause
artificial rejection of biologically important results and
each chi-squared test for a particular species should be
treated as a separate case (Moran 2003).

3 Results

3.1 Variability of natural regeneration densities

Natural regeneration of P. abies was found in 119 of 160
study plots (Dyderski et al. 2018a). Seedlings were pres-
ent in 67 study plots, short saplings in 104, and tall sap-
lings in 57. Density of seedlings ranged from 0 to 41,200
ind. ha−1, with an average of 1695.2 ± 405.6 ind. ha−1

(lower quartile 0, upper quartile 900). Densities of short
and tall saplings ranged from 0 to 94,000 ind. ha−1 (aver-
age 6862.0 ± 1021.4, lower quartile 0, upper quartile
8800) and from 0 to 34,800 ind. ha−1 (average 1180.0 ±
322.2, lower quartile 0, upper quartile 400), respectively.
No correlations among densities of particular age-height
classes were found, with the exception of positive corre-
lation between seedlings and tall saplings (p < 0.001, r2 =
0.12, y = 689.54 + 0.29x). The proportion of short saplings
was negatively correlated with the proportion of seedlings
(p = 0.001, r2 = 0.05, y = 0.5214 − 0.3451x) and tall sap-
lings (p = 0.037, r2 = 0.02, y = 0.4951 − 0.2782x), and the
proportion of seedlings was negatively correlated with the
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proportion of tall seedlings (p = 0.025, r2 = 0.02, y =
0.1915 − 0.2154x).

3.2 Impact of resource availability on regeneration
density and structure of age-height classes

Zero-inflated Poisson models of natural regeneration den-
sities explained low amounts of variance in seedlings,
short saplings, and tall saplings (Table 1). In the model
of seedling density, the statistically significant parameters
were distance from the riverbank and soil pH: seedling
density increased with increasing distance from the river-
bank and decreased with increasing soil pH (Fig. 1). Short
sapling density decreased with increasing soil pH and in-
creased with increasing DIFN and distance from the riv-
erbank. Tall sapling density increased with increasing dis-
tance from the riverbank but decreased with increasing
DIFN and soil pH.

Analysis of proportions among age-height classes revealed
that seedling proportions depended only on distance from the
riverbank (Table 2). This relationship was negative (Fig. 2). In
the cases of short and tall saplings, final models included only
a relationship with soil pH. The proportion of short-sapling

regeneration decreased with increasing pH while the propor-
tion of tall saplings increased.

3.3 Relationships with understory vegetation

Understory vegetation was composed of 136 taxa of plants, and
36 of them occurred in more than ten plots. Species composi-
tion of understory vegetation was organized mainly along a soil
pH gradient (Fig. 3; Table 3), while the importance of other
factors was lower. The second gradient (DCA2) was correlated
with seedling density, whereas densities of short saplings were
correlated with DCA1. Density of tall saplings was not corre-
lated with either gradient. Abundance of 22 species was statis-
tically significantly correlated with natural regeneration density
of P. abies (Table 4). Most of the species were positively asso-
ciated with density of natural P. abies regeneration, especially
species typical of natural, acidophilous coniferous forests
(Vaccinio-Piceetea class) and other bryophytes. In the latter
group, the exceptions were species typical of more fertile
forests: Atrichum undulatum and Mnium hornum. The highest
correlations were with Dicranum polysetum for seedlings
(0.391), with Vaccinium myrtillus for short saplings (0.594),
and with Avenella flexuosa for tall saplings (0.371).

Table 1 Zero-inflated Poisson
generalized linear models of
natural regeneration of Picea
abies density for three age-height
classes: seedlings (germinated in
the current year), short saplings
(≥ 1 year old, < 50 cm height),
and tall saplings (50–130 cm
height). AIC of final models:
seedlings 1552.0 (AIC0 =
1674.0), short saplings 3785.7
(AIC0 = 4246.6), and tall saplings
1113.9 (AIC0 = 1271.5)

Seedlings

Term Estimate SE z P(>|z|)

Count model coefficients (Poisson with log link)

(Intercept) 2.176 0.046 47.428 < 0.001

Distance to the riverbank 0.295 0.035 8.519 < 0.001

Soil pH − 0.221 0.069 − 3.199 0.001

Zero-inflation model coefficients (binomial with logit link)

(Intercept) 0.323 0.161 2.012 0.044

Short saplings

Term Estimate SE z P(>|z|)

Count model coefficients (Poisson with log link)

(Intercept) 2.969 0.028 107.166 < 0.001

Distance to the riverbank 0.106 0.017 6.214 < 0.001

DIFN 0.042 0.017 2.403 0.016

Soil pH − 0.578 0.036 − 16.110 < 0.001

Zero-inflation model coefficients (binomial with logit link)

(Intercept) − 0.640 0.168 − 3.817 < 0.001

Tall saplings

Term Estimate SE z P(>|z|)

Count model coefficients (Poisson with log link)

(Intercept) 1.680 0.076 22.214 < 0.001

Distance to the riverbank 0.202 0.036 5.563 < 0.001

DIFN − 0.103 0.052 − 1.982 0.048

Soil pH − 0.663 0.087 − 7.595 0.000

Zero-inflation model coefficients (binomial with logit link)

(Intercept) 0.519 0.170 3.058 0.002
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4 Discussion

4.1 Study limitations

The limited amount of variance explained by our models
seems to be the most important drawback of this study. This
reflects the high variability of natural regeneration and sug-
gests that other factors are also involved in environmental
controls of P. abies regeneration, e.g., deer browsing, which
is difficult to account for in models using small study plots.
However, P. abies is rarely browsed by ungulates (Pröll et al.
2015; Bodziarczyk et al. 2017; Vacek 2017); thus, the lack of
deer browsing proxy in the analyses should not have
undermined the results. Another factor may be microsite het-
erogeneity, e.g., local hollows, microrelief, and logs. Local
hollows were microsites colonized mainly by sphagna, which
are correlated with natural regeneration density of P. abies
(Table 2) and indicators of increased moisture (Rydin et al.
2006). Microrelief modifies height growth by impacts on wa-
ter retention and exposure to soil erosion (Jonášová and Prach
2004; Vacek et al. 2017) as well as light availability Czortek
et al. (2018a). Logs are also suitable regeneration niches, due
to their ability of water storage (Holeksa et al. 2007; Chećko
et al. 2015). Although spatial distribution of microsites was
not accounted for in the models, due to systematic sampling,
we may assume that their effects were randomly distributed

within the data, or—at least—not affected by an observer’s
preferences.

Although our study represents a typical empirical analysis
of site-specific observations, our conclusions can be applied to
other sites. In Central Europe, there are a lot of P. abies forests
growing in low elevations outside the species’ ecological op-
timum (Ellenberg 1988; Caudullo et al. 2016). These sites
have usually been under long-term forest management, which
influences soil conditions. We providedmeasurements of con-
ditions in which the study was conducted, which allows our
models to be applied in different conditions. Our study was
not an experiment and some unknown factors could have in-
fluenced the results (see paragraph above). However, due to
the high number of study sites characterized in a systematic
way and low possibility of systematic biases, we may assume
high confidence for transferability of our results (Schweiger
et al. 2016; Bhatta et al. 2012). The least transferable conclu-
sions are related to distance from the riverbank, as its ecolog-
ical effects are strongly dependent on river morphology. For
that reason, this part of the conclusions is the most site
specific.

Another disadvantage of our study might be connected
with the type of light availability measurements. Because we
used DIFN (Machado and Reich 1999), we only evaluated
indirect light, not regarding which part of the photon flux
was photosynthetically active. We also did not measure direct

Fig. 1 Relationships between density of natural regeneration of Picea
abies and three environmental variables for three age-height classes: seed-
lings (germinated in the current year), short saplings (≥ 1 year old, <
50 cm height), and tall saplings (50–130 cm height). Lines represent fitted

generalized linear models with Poisson distribution for visualization of
general trends. See Table 1 for zero-inflated regression models and their
parameters. Note log-scale on the y axis
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irradiation, which could also influence the growth of saplings.
Regarding models explaining proportions of age-height clas-
ses in P. abies regeneration, the best-fit model was for short
saplings, which were the most well represented. Despite zero-
and one-inflation accounting, low abundance of seedlings and
tall saplings influenced model quality. Although our results
came from a relatively long river valley, extrapolation of the
conclusions has to account for site conditions such as climate,
elevation, and soil properties.

4.2 Impact of resource availability

Our study revealed the importance of resource availability for
natural regeneration of P. abies. Light availability was of the
highest importance for tall saplings, which confirmed the ob-
servations of Dovčiak et al. (2008). The persistence of young

P. abies in deep shade strongly influences its morphology and
leads to Bumbrella^ forms (Metslaid et al. 2007). Short sap-
lings depended less on DIFN than tall saplings. P. abies is a
late-successional, shade-tolerant species (Niinemets and
Valladares 2006) with seedlings usually exhibiting higher
shade tolerance than mature trees because of a more favorable
ratio of carbohydrate-producing vs. carbohydrate-consuming
biomass. Thus, light availability has no importance for seed-
lings, which germinate in all possible sites, although only a
small proportion of them are able to survive. Probably for that
reason, DIFN had no influence on proportions of age-height
classes. A similar trend was reported by Jonášová and Prach
(2004), who found similar amounts of natural P. abies regen-
eration in both uncleared and cleared forest patches. Our pre-
vious study (Jagodziński et al. 2017) on natural regeneration
of pioneer species (Pinus sylvestris and Betula pubescens)

Table 2 Zero- and one-inflated
beta regression models of natural
regeneration of Picea abies age-
height class proportions in the re-
generation layer: seedlings (ger-
minated in the current year), short
saplings (≥ 1 year old, < 50 cm
height), and tall saplings (50–
130 cm height). AIC of final
models: seedlings 245.0 (AIC0 =
247.5), short saplings 293.3
(AIC0 = 299.4), and tall saplings
207.4 (AIC0 = 210.0)

Seedlings

Term Estimate SE t P(>|t|)

μ estimation, link function: logit

(Intercept) − 0.438 0.186 − 2.354 0.020

Distance to the riverbank − 0.026 0.013 − 2.075 0.040

σ estimation, link function: logit

(Intercept) 0.205 0.126 1.625 0.106

ν estimation, link function: log

(Intercept) 0.438 0.166 2.647 0.009

τ estimation, link function: log

(Intercept) − 2.148 0.399 − 5.379 < 0.001

Short saplings

Term Estimate SE t P(>|t|)

μ estimation, link function: logit

(Intercept) 4.467 1.375 3.248 0.001

pH − 1.002 0.351 − 2.855 0.005

σ estimation, link function: logit

(Intercept) 0.051 0.105 0.490 0.625

ν estimation, link function: log

(Intercept) − 0.393 0.173 − 2.274 0.024

τ estimation, link function: log

(Intercept) − 1.374 0.244 − 5.626 < 0.001

Tall saplings

Term Estimate SE t P(>|t|)

μ estimation, link function: logit

(Intercept) − 4.763 1.705 − 2.794 0.006

pH 0.956 0.434 2.202 0.029

σ estimation, link function: logit

(Intercept) − 0.035 0.138 − 0.251 0.802

ν estimation, link function: log

(Intercept) 0.684 0.170 4.018 < 0.001

τ estimation, link function: log

(Intercept) − 2.342 0.468 − 5.001 < 0.001
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also revealed that seedlings differ in ecological requirements
from short saplings. Metslaid et al. (2005) also found that
further development stages (i.e., saplings over 1.3 m height)
are more prone to competition.

Soil pH affected the density of all age-height classes.
Moreover, regression coefficients for soil pH increased with
age-height classes and there was a negative trend. Dovčiak
et al. (2008) also found a negative relationship between soil
pH and young sapling density and a positive relationship for
taller saplings. Miina and Saksa (2013) also found lower den-
sities of natural P. abies regeneration in more fertile site types
(Oxalis-Maianthemum and Oxalis-Myrtillus) than in less fer-
tile ones (Vaccinium and Calluna). In contrast, in the lowlands
of northern Poland, Szydlarski and Modrzyński (2015) found
natural regeneration of P. abiesmore frequently in more fertile
sites of mixed-deciduous forests than in mixed-coniferous for-
ests, typical of P. abies. As P. abies is a species typical of
higher latitudes and elevations (Caudullo et al. 2016), it is a
better competitor in poorer sites. For that reason, low pH is
unfavorable for most of P. abies competitors. Soil pH also had
low impacts on proportions of tall saplings and short saplings.
Higher proportion of short saplings was connected with lower
numbers of seedlings and tall saplings. This may indicate suit-
able sites for regeneration, but not for growth of saplings. In
the case of tall saplings, this may be an artifact caused by a low
number of plots with numerous tall saplings.

Our study also revealed a low but positive impact of
distance from the riverbank on P. abies regeneration den-
sity. This result seems to contradict the low drought resis-
tance of P. abies (Ellenberg and Leuschner 2010; Gutowski
and Jaroszewicz 2015; Caudullo et al. 2016) and its better
performance in wetland sites during bark beetle outbreaks
(Jaroszewicz et al. 2017). However, P. abies is also prone
to waterlogging (Niinemets and Valladares 2006). This ef-
fect may also be connected with higher abundance of un-
derstory plants typical of more fertile sites near the river-
bank. These species are better competitors, and the nearest
neighborhood is a local refugium for them, similar to river
valleys in urban ecosystems (Dyderski et al. 2017).
Moreover, in the study area, there are local hollows with
small peatlands, which are not in the nearest closure to the
bank (Pielech et al. 2018). These hollows are usually cov-
ered by mosses indicating high moisture (e.g., Polytrichum
commune, Sphagnum fallax, Sphagnum girgensohnii) and
typical of acidic, poor wetlands (Gunnarsson et al. 2002;
Rydin and Jeglum 2006; Wierzcholska et al. 2018), which
shows compound effects of soil moisture and acidity. In the
age of global changes and predicted contraction of the
P. abies range (Sykes et al. 1996; Hanewinkel et al. 2013;
Dyderski et al. 2018a), our results indicate conditions of
local refugia, where P. abies may still regenerate in a non-
natural elevational belt. However, further growth of

Fig. 2 Relationships between proportion of age-height classes of natural
regeneration of Picea abies and three environmental variables. Classes:
seedlings (germinated in the current year), short saplings (≥ 1 year old, <
50 cm height), and tall saplings (50–130 cm height). Lines represent fitted

generalized linear models with binomial distribution for visualization of
general trends. See Table 2 for zero- and one-inflated regression models
and their parameters
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naturally regenerated P. abies will require control of com-
petition (Metslaid et al. 2005).

4.3 Relationships with understory

Our study revealed mostly positive relationships between
natural regeneration of P. abies and understory species
cover. Similarly, Dovčiak et al. (2008) also reported pos-
itive association of natural regeneration of P. abies and
moss and Vaccinium cover, but they found a negative
association with grass cover. This may be explained by
different grass species—in our study, dominant grasses
were Avenella flexuosa and Calamagrostis villosa, non-
clump-forming species with relatively thin leaves. In the
study of Dovčiak et al. (2008), there were mostly clump-
forming species. Negative effects of grasses on natural
P. abies regeneration were also found in other studies
(Jonášová and Prach 2004; Pröll et al. 2015). Although
Jonášová and Prach (2004) found that V. myrtillus cover
was negatively correlated with natural P. abies density, the
positive correlation between P. abies regeneration density

and boreal species cover may confirm its predicted dy-
namic tendencies.

In conditions of low soil fertility and high acidity,
competition, which is typical of more fertile sites, is low-
er (Tilman 1986). In our study, natural regeneration den-
sity of P. abies was negatively correlated with the cover
of species typical of deciduous temperate forests

Fig. 3 Detrended correspondence analysis (DCA) of understory vegeta-
tion. Points represent species; labels (four first letters from genus and
species names) are provided for species occurring in at least ten plots.

Eigenvalues of axes: DCA1 = 0.4458 and DCA2 = 0.2157. Fitness of
vectors representing natural P. abies regeneration density and environ-
mental parameters studied are presented in Table 3

Table 3 Parameters of environmental variables fitted to the DCA
analysis results

Parameter DCA1 DCA2 R2 p value

Distance from river − 0.6487 0.7611 0.106 0.002

DIFN − 0.8949 0.4463 0.017 0.278

Soil pH 0.9986 − 0.0530 0.522 0.001

Seedling density − 0.0293 0.9996 0.003 0.789

Short sapling density − 0.9847 0.1741 0.072 0.023

Tall sapling density − 0.5804 0.8143 0.036 0.088

Determination coefficients R2 and p values were obtained based on per-
mutation tests with 999 iterations
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(Carpino-Fagetea sylvaticae class), which usually grow
on more fertile soils (Ellenberg 1988; Mucina et al.
2016). These species are effective competitors, due to
high specific leaf area (Jagodziński et al. 2016), one of
the adaptations for light acquisition (Westoby 1998). This
speculation is in line with the study of Holeksa et al.
(2007), who found increasing density of P. abies saplings
with increasing elevation, which is also a proxy for de-
creasing competition in mountain plant communities
(Czortek et al. 2018b).

5 Conclusions

Our study highlighted that in lower mountain sites, natural
regeneration of P. abies may reach high densities (higher
than plantation norms in Poland—4500 ind. ha−1), despite
the fact that P. abies forest is not a potential natural vege-
tation type on these sites. This indicates that natural regen-
eration may be an alternative to P. abies planting. In
Central Europe, natural low-elevation mountain forests
are usually replaced by P. abies plantations. P. abies is
capable of self-replacement here, and this fact should be

accounted for in cases when the next generation of forest
would be coniferous (as a consequence of existing man-
agement) or broadleaved (restoration). We found the
highest densities of natural regeneration of P. abies on sites
with moderate (0.1–0.2) light availability and low pH (3.5–
4.5). However, these parameters describe the regeneration
niche for short saplings of P. abies rather than conditions
suitable for tall saplings and further growth of this species.
In the study area, most understory species were typical of
poor forest sites and thus did not compete with P. abies
regeneration. The exceptions were species typical of more
fertile forests, showing affiliation of young P. abies regen-
eration to the less fertile sites.

Our study showed that in less fertile sites in lower
mountain elevations, replacement of mature P. abies may
be achieved using natural regeneration. However, for suc-
cessful regeneration, one needs to maintain moderate can-
opy closure. If thinning is too intensive, understory herbs
may develop excessively and decrease abundance and sur-
vival of P. abies seedlings and saplings. These results sug-
gest that maintaining moderate canopy closure may be
suitable for natural P. abies regeneration in low-elevation
mountain belts.

Table 4 Spearman’s correlations
(ρ) between abundances of
understory plant species and
natural regeneration densities of
Picea abies for three age-height
classes: seedlings (germinated in
the current year), short saplings
(≥ 1 year old, < 50 cm height),
and tall saplings (50–130 cm
height). Italicized values represent
statistically significant correla-
tions (p<0.05)

Species Seedlings Short saplings Tall saplings Number of
occurrences

p value ρ p value ρ p value ρ

Athyrium filix-femina* 0.200 − 0.102 0.024 − 0.179 0.800 − 0.020 14

Atrichum undulatum* 0.302 0.082 0.016 − 0.190 0.027 − 0.174 24

Avenella flexuosa 0.010 0.202 0.000 0.474 0.000 0.371 119

Brachythecium salebrosum 0.095 − 0.132 0.047 − 0.157 0.498 − 0.054 18

Calamagrostis villosa 0.077 0.140 0.003 0.232 0.050 0.155 103

Dicranum polysetum 0.000 0.391 0.000 0.376 0.079 0.139 53

Dicranum scoparium 0.462 0.059 0.000 0.462 0.001 0.249 64

Dryopteris carthusiana 0.004 0.227 0.017 0.188 0.990 − 0.001 79

Homogyne alpina 0.010 0.203 0.748 − 0.026 0.812 − 0.019 11

Hypnum cupressiforme 0.473 0.057 0.003 0.231 0.668 − 0.034 71

Lophocolea bidentata 0.384 0.069 0.000 0.299 0.002 0.246 39

Maianthemum bifolium 0.003 0.235 0.068 0.145 0.108 0.128 53

Mnium hornum 0.012 0.198 0.297 0.083 0.008 − 0.211 66

Plagiomnium undulatum* 0.047 0.157 0.325 0.078 0.440 − 0.061 12

Pleurozium schreberi 0.950 0.005 0.000 0.289 0.002 0.239 53

Polytrichastrum formosum 0.011 0.200 0.000 0.324 0.967 0.003 125

Polytrichum commune 0.004 0.227 0.078 0.140 0.011 0.200 18

Rhytidiadelphus squarrosus 0.701 0.031 0.135 0.119 0.001 0.261 20

Sphagnum fallax 0.091 0.134 0.014 0.193 0.138 0.118 25

Sphagnum girgensohnii 0.033 0.168 0.021 0.183 0.004 0.227 42

Trientalis europaea 0.179 0.107 0.053 0.153 0.047 0.157 21

Vaccinium myrtillus 0.015 0.192 0.000 0.594 0.000 0.328 126

*Belong to the Carpino-Fagetea class (Mucina et al. 2016)
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