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ABSTRACT 

The bacterial pan-genome is a relatively new concept that refers to the 

number of genes observed in a given set of bacterial genome sequences, 

either at the intra- or inter-species level. Determining the pan-genome of a 

given species of bacteria using a large number of strains allows one to 

compare multiple genes and to determine evolutionary links between 

isolates. This information can help to determine population structure, 

diversity in terms of prevalence in a given environment and pathogenicity 

of microorganisms. Within this review, we explain the most important 

issues related to pan-genome studies. We also include a brief description 

of some selected bacterial pan-genomes. Finally, we propose an easy-to-

perform workflow to study bacterial pan-genomes that will facilitate non-

experts in a pan-genome-based investigation. 
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Introduction 

A bacterial pan-genome can be 

defined as the total number of genes 

observed in a certain group of micro-
organisms. The pan-genome of individual 

bacterial species is most often analysed, 

but some studies focus on broader groups 

of microorganisms, for example, a genus. 

The term pan-genome was proposed 

in 2005 by Tettelin and co-workers 

(Guimarães et al. 2015, Mira et al. 2010). 

Next, Rouli et al. (2015) clearly defined 

a pan-genome, or supragenome, as ‘the 

entire gene repertoire of the study group’.

Pan-genome research has become pos-

sible due to the development of next-

generation sequencing (NGS) techno-
logy, which has allowed the sequencing 

of bacterial genomes (Guimarães et al. 

2015, Rouli et al. 2015). 

On the other hand, the idea that the 

genome of individual strains may differ 

significantly within a species was born in 

the 1980s, when using Escherichia coli 

and the technique of electrophoresis in a 

variable pulse field revealed that the size 

of the genome of strains of this species 

was between 4.5 and 5.5 mega base pairs 
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(Mbp). A relationship was also observed 

between the genome size and strain 

differentiation using the multilocus 

enzyme electrophoresis (MLEE) method 

(Mira et al. 2010). This method allows 

bacteria to be differentiated based on 

the relative migration rate pattern of a 

large group of intracellular enzymes. The 

different patterns result from mutations 

in the genes coding for these enzymes, 

which change the amino acid sequence of 

the proteins (Caierão et al. 2016). 

Types of genes in the pan-genome 

The pan-genome is a pool of genes 

that may occur with different frequency 

among the studied group of micro-

organisms (Costa et al. 2020; Guimarães

et al. 2015). Based on the frequency of 

their occurrence, genes are assigned to 

one of three groups. The genes found in 

the genomes of all the microorganisms 

analysed are called core genes. The genes 

found in only some of the genomes 

studied are termed accessory genes. The 

third group of genes that make up 

the pan-genome are unique genes, the 

presence of which is found only in single 

genomes (see Figure 1). Depending on 

the scope of the analysis, unique genes 

may be strain specific (in the pan-geno-

me analysis of one species) or species 

specific (when the analysis is carried out 

at the inter-species level) (Costa et al. 

2020; Guimarães et al. 2015; Mira et al.

2010; Rouli et al. 2015).

The genes of the aforementioned 

subtype found during the pan-genome 

analysis play different roles in the 

development of microorganisms. It is 

believed that the core is made of genes 

responsible for the basic functions of the 

bacterial cells, including housekeeping, 

cell division (replication) and homeo-

stasis. Meanwhile, accessory and unique 

genes play a supporting role in relation 

to core genes. These genes are related to 

the growth environment of a bacterial 

species as well as the virulence of patho-
genic bacteria. These genes are acquired 

through horizontal gene transfer, a 

phenomenon that can confer an adaptive 

advantage, and their presence can be 

a factor that facilitates development 

relative to strains lacking them (Costa 

et al. 2020; Mira et al. 2010; Rouli et al.

2015). 

Types of pan-genomes 

After determining the number of 

genes in the pan-genome and assigning 

them to individual subtypes, the next step 

to characterise it is to determine the ratio 

of the number of core genes to others. In 

Figure 1. A Venn diagram that represents the three types of genes present in the pan-genome: A – core genes 

present in all analysed genomes; B – accessory genes, present only in some of the genomes studied; 

C – unique genes, characterising individual genomes. 
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addition, the number of new unique 

genes is observed when adding more 

genomes to the analysed pool. Based on 

the results of the second analysis, pan-

genomes are divided into open and 

closed. An open pan-genome refers to 

when another genome added to the 

analysed pool increases the number of 

unique genes. Conversely, when adding 

more genomes does not increase the pool 

of unique genes, the pan-genome is 

termed closed (Rouli et al. 2015). 

A simple way to determine whether 

the pan-genome is closed or open is to 

construct rarefaction curves. This tool is 

normally used by ecologists to determine 

graphically when further sampling would 

not increase the number of newly 

identified species. Using similar appro-

aches, genes are counted as additional 

genomic sequences are added to the 

analysis. The results are presented in a 

graph of the total number of genes in 

a pan-genome versus the number of 

analysed genomes. If the curve reaches a 

plateau, the pan-genome is termed 

closed. Open pan-genomes are charac-

terised by the fact that with each genome 

added, the number of genes increases at a 

constant rate (see Figure 2) (Mira et al. 

2010). 

Another tool is to apply Heap’s law to 

determine the openness of an analysed 

pan-genome. Heap’s law describes the 

number of distinct words in a document 

as a function of the document length. It is 

represented by the formula n = k × N
–α

. 

In a pan-genome studies: 

 n is the expected number of genes

for a given number of genomes,

 N is the number of genomes and

 k and α are free parameters that are

determined empirically.

According to Heap’s law, when α is > 1, 

the pan-genome is considered to be 

closed, and when α is < 1, the pan-

genome is considered to be open 

(Guimarães et al. 2015). 

Examples of pan-genomes of selected 

bacteria 

Within this paper we describe briefly 

some pan-genome studies of selected 

gram-negative and gram-positive bacte-

ria. The presented information shows that 

utilisation of the pan-genome approach in 

microbiology could extend our under-

standing of molecular aspects of bacterial 

diversity, evolution and pathogenesis. 

E. coli is an important urinary track 

pathogen; strain ST131 is becoming a 

serious problem due to its multi-drug 

resistance. Decano and Downing (2019) 

studied a cohort of 4,071 genomes of the 

ST131 strain to investigate the genetic 

diversity of the group based on the core 

and accessory genes. Their analysis 

indicated that the average number of 

genes in the pan-genome of ST131 

increased as more genomes were added, 

indicating the open nature of the pan-

genome of the entire collection. The 

authors found 26,479 genes, of which 

3,712 genes present in all isolates formed 

the core. The tested strains formed three 

clades: A, B and C; these classifications 

were based on phylogenetic analyses of 

the ST131 fimH gene. Clade C was the 

largest group. The pan-genome was also 

tested as an independent sets of genomes. 

In all sets, the pan-genome was described 

as open. This comparison revealed inter-
Figure 2. Rarefaction curves for open (green) and 

closed (blue) pan-genomes. 
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clade but not intra-clade accessory 

genome divergence, which might result 

from ecological specialisation of the 

strains (Decano and Downing 2019).  

In another study, the authors employ-

yed inter-species pan-genome analysis to 

compare the pan-genomes of E. coli and 

Shigella spp. to Salmonella enterica. 

This analysis indicated that Shigella 

should not be considered an independent 

genus – based on pan-genome diversity 

– because, after examining its genome, it

turned out that it did not contain any 

specific genes not present in E. coli. This 

would mean that there are no barriers 

in the gene pool between the species. At 

the same time, E. coli and S. enterica 

maintained stable, species-restricted gene 

pools, despite intensive horizontal gene 

transfer between the species. Importantly, 

pan-genome analysis allowed the re-
searchers to complement the current 

classification of the studied species, 

providing a new perspective to the 

understanding of bacterial evolution. 

Consequently, it can allow researchers to 

understand the interactions between 

strains in the environment, to track the 

evolution of individual lines, to predict 

the probability of certain diseases after 

infection with a given microorganism 

and to improve the treatment process and 

diagnostic tools (Gordienko et al. 2013). 

Pseudomonas aeruginosa is the third 

most frequent opportunistic pathogen 

found in hospitals. The bacterium is 

resistant to most classes of antibiotics 

and causes major infections in im-
munocompromised patients, including 

individuals with cystic fibrosis. Under-
standing evolutionary processes and 

molecular mechanisms of P. aeruginosa 

on the pan-genome scale could help to 

explain the ineffectiveness of the 

designed vaccines against this pathogen 

and to understand the mechanisms by 

which P. aeruginosa strains avoid the 

human immune system. 

Recently, Freschi et al. (2018) used 

1,311 strains to update the pan-genome 

of this opportunistic pathogen. This 

approach allowed them to define the 

structure of the population and to 

determine the number of primary genes 

and to assign functions to them. Based on 

their data, the P. aeruginosa pan-genome 

comprises 54,272 genes: 665 core genes, 

26,420 flexible genes and 27,187 unique 

genes. Overall, 33.1% of pan-genomic 

genes have not been assigned a function, 

and core genes account for only 1% 

of the total pan-genome. These findings 

demonstrated that determining pan-

genomes or updating existing ones with 

larger data sets provides a better under-
standing of the population structure and 

evolution of microbes (Freschi et al. 

2019). In contrast to the above-mentio-

ned study, a previous analysis of 181 

P. aeruginosa genomes showed that the 

pan-genome comprises 2,503 core genes 

(15%), 9,108 additional genes (54%) and 

5,209 unique genes and is closed 

(Mosquera-Rendón et al. 2016). 

Burkholderia cepacia is a gram-

negative bacterium that does not produce 

spores and cannot ferment glucose. It is 

common in humid environments (e.g. 

around plant roots) and is a common 

cause of opportunistic nosocomial infec-

tions, with cystic fibrosis patients being 

the most vulnerable to infection (Mahent-

hiralingam et al. 2008). Recombination 

and positive selection are two funda-

mental evolutionary forces that can be 

studied by performing comparative 

genomic analyses. B. cepacia species are 

very difficult to distinguish genotypically 

and phenotypically due to their high level 

of recombination, which is strongly 

supported by about 5.8% of the basic 

orthologous genes, while 1.1% of these 

genes support positive selection (Zhou 

et al. 2020). This problem can be solved 

by using combined methods that ensure 

proper recognition of species, even those 
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that are closely related to each other. It is 

suggested to combine the core-gene-

based phylogenetic study with the 

analysis of digital DNA-DNA hybridi-

zation and Average Nucleotide Identity 

(dDDH/ANI) clusters and the formation 

of species trees (Jin et al. 2020). 

The analysis of the genomes of 

bacteria isolated from cystic fibrosis 

patients is often a source of valuable 

information about changes in genomes 

under the influence of the host’s immune 

system and the therapies used. Phylo-
genetic analysis of 2,148 ortholo-gous 

gene clusters from Burkholderia 

cenocepacia isolates collected from 16 

cystic fibrosis patients confirmed 

compliance with patient-specific clades 

and allowed the observation of pathogen 

transmission among patients (there was 

evidence of shared clonal lines), as well 

as frequent repeated loss of genes and 

the entire chromosome III (Lee et al. 

2017). Based on the above-mentioned 

studies, the analysis of the Burkholderia 

spp. genome has contributed to a more 

indepth understanding of the phylo-
genetic tree of these microorganisms, 

and thus to the development of more 

effective treatment methods and im-
proved diagnosis of infections. 

Staphylococcus aureus often causes 

hospital- and community-acquired 

infections that, due to the presence of 

methicillin-resistant strains, are very 

difficult to treat and can lead to sepsis 

and death (Guo et al. 2020). Strain 

antibiotic resistance is one of the major 

problems of modern medicine; this 

phenomenon may be better understood 

by examining the evolutionary pathway 

and origin of resistance genes in common 

bacterial pathogens. Indeed, an analysis 

comparing 152 fully sequenced S. aureus 

strains with 7,529 reference genomes of 

other bacteria found that 55% of known 

resistance genes for this bacterium 

belong to its accessory genome and 27% 

of them were located in Staphylococcal 

Cassette Chromosome mec (SCCmec), 

and in most cases they were acquired 

laterally from other species (John et al. 

2019). S. aureus co-exists on the skin, 

throat and nose alongside Staphylococcus 

epidermidis. Approximately half of their 

genomes are shared, and homologous 

recombination between the species is 

rare. However, they contain a significant 

proportion of interspecific mobile ele-
ments, which are genes responsible for 

metal detoxification, methicillin resistan-

ce (SCCmec island) and are associated 

with the pathogenicity island (SaPIn1) 

(Méric et al. 2015). Genome sequencing 

allows for the analysis of the structural 

and evolutionary changes of micro-

organisms over the years. The analysis of 

S. aureus USA300, which represents a 

line of methicillin-resistant S. aureus 

strains in the United States, revealed that 

pan-genome evolved from 2004 to 2010 

(Jamrozy et al. 2016).  

Staphylococcus lugdunensis has 

unique properties among Staphylococcus 

and occurs on the human skin. This 

coagulase-negative microorganism can 

produce various virulence factors and has 

the ability to cause severe infections, 

especially in hospital conditions. Interes-

tingly, it is easily treated with antimicro-

bials, a feature that is quite unheard of 

for this type of bacteria. Phylogenetic 

studies of the S. lugdunensis genome 

have shown its high conservation in 

terms of antibiotic sensitivity and 

extremely rare methicillin resistance even 

in hospital conditions, which distingu-

ishes it from all other staphylococci. To 

investigate the S. lugdunensis genome, 

researchers used 16 different strains from 

Europe, Asia and North America, 

isolated between 1988 and 2015. They 

found S. lugdunensis has a very closed 

pan-genome with a fairly limited number 

of new genes. This is an infrequent 

feature for Staphylococcus spp., which 
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have an open pan-genome (Argemi et al. 

2018). 

Bacillus cereus sensu lato is a diverse 

group of bacteria containing many 

species found in different environments 

and exhibiting a variety of phenotypes. 

Many species of this genus have medical 

or agricultural significance. The pan-

genome of B. cereus s.l. consists of ap-
proximately 60,000 genes, 598 of which 

are core genes. The accessory pan-

genome consists of 32,324 genes, of 

which 27,067 are unique. Gene analyses 

indicate the presence of open pan-

genome for B. cereus s.l. (Bazinet 2017). 

Pan-genome study workflow 

With the increased number of studies 

focused on bacterial pan-genomes, new 

in silico tools have been developed. Most 

of them are command-line-based soft-
ware programs that allow testing the pan-

genome-based diversity. The majority of 

the software programs have been re-
viewed by Guimarães et al. (2015). The 

major disadvantages of the software 

programs is that they require computing 

skills, which might be problematic for 

users who cannot code. Therefore, within 

this chapter we propose a simple 

workflow that allows performing solid 

pan-genomic and phylogenetic invest-
igation of bacterial species of interest 

(Figure 3). This workflow should be used 

as a guide for beginners. It reviews tools 

and briefly describe their usage, but we 

advise that one should expand their 

computational skills. 

For the purposes of this workflow, we 

recommend installing the latest version 

of Ubuntu, which is a Linux program 

based on Debian recommended for 

beginners (Möller et al. 2010). Ubuntu 

can be installed as a dual boot with 

Windows or on a Windows 10 machine 

by downloading the Ubuntu application 

(Lloyd 2018). 

STEP 1: pan-genome 

This workflow is based on the use of 

Roary, a standalone pipeline allowing 

the calculation of a pan-genome. The 

installation is relatively easy but there are 

some requirements (Page et al. 2015;
Sitto and Battistuzzi 2020). For begin-
ners, we recommend to install Conda first 

and to work with Roary as a Bioconda 

package. To install conda, run the 

following command in the Linux 

Terminal (Grüning et al. 2018): 

curl -O https://repo.anaconda.com/ 

miniconda/Miniconda3-latest-Linux-

x86_64.sh 

sh Miniconda3-latest-Linux-x86_64.sh 

Then one need to set up channels: 

conda config --add channels r 

conda config --add channels defaults 

conda config --add channels bioconda 

conda config --add channels conda-forge 

And install Roary: 

conda install roary 

Roary requires the annotated as-
semblies in the GFF3 format and there 

are a few steps required to generate such 

files. We recommend that the GFF3 files

Figure 3. Scheme for a pan-genome analysis workflow. 

https://repo.anaconda.com/
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be generated by Prokka (Seemann 2014, 
Page et al. 2015). The use of complete 

and finished genome sequences will give 

the best annotation results, but it is 

expected that the typical input will be a 

set of scaffold sequences. Prokka can be 

easily installed and used locally. Prokka 

is also available online within the Galaxy 

server (https://usegalaxy.org/); this ap-
proach might facilitate analysis in the 

case of beginners. 

After installation of Roary, the user 

must optimise just a few parameters, but 

some additional options might be 

considered for more in-depth analysis. 

The simple command roary *.gff will 

run Roary with default parameters. The 

basic options to optimise the program are 

presented in Figure 4. 

The major advantage of Roary is it is 

relatively simple to use and a pan-

genome of even thousands of samples 

can be analysed on a standard desktop 

PC. In addition to the basic performance, 

Roary offers the query_pan_genome 

scripts, which perform set operations on

 

the pan-genome to see the gene dif-
ferences between groups of isolates 

(Sitto and Battistuzzi 2020). 

Roary generates a set of output files, 

of which the most important and useful 

are (Sitto and Battistuzzi 2020): 

 summary_statistics.txt – a text file

that summarises the number of genes

founded in the studied data, where

genes are grouped into core, soft-

core, shell and cloud based on the

frequency within the studied

genomes;

 gene_presence_absence.csv;

 gene_presence_absence.Rtab;

 accessory_binary_genes.fa.newick

– a maximum likelihood tree gene-

rated based on the gene presence 

absence; and 

 core_gene_alignment.aln – a file that

contains the alignment of all core

genes.

These files could be used for data 

visualisation as well as for downstream 

analysis with additional software. 

Figure 4. List of Roary options available with the command roary -h. 



FOLIA BIOLOGICA ET OECOLOGICA 

BACTERIAL PAN-GENOME 91 

STEP 2: data visualisation 

Data obtained from Roary analysis 

could be easily visualised using local and 

online applications. The core_gene_

alignment.aln file could be used to 

generate the phylogenetic tree based on 

core gene single nucleotide polymorph-
isms (SNPs). This tree can be prepared 

by using the online version of PhyML 3.0 
(http://www.atgc-montpellier.fr/phyml/)

(Guindon et al. 2010), but it needs to be 

converted to the PHYLIP format. Trees 

based on accessory_binary_genes.fa.

newick and core genes can be visualised 

and modified using FigTree (http://tree.

bio.ed.ac.uk/software/figtree/) (Rambaut 

2013). FigTree is designed as a graphical 

viewer of phylogenetic trees and as a 

program for producing publiccation-

ready figures. It can be used on a desktop 

PC running Mac, Windows or Linux OS. 

The gene_presence_absence.csv file 

together with any phylogenetic tree can 

be display using the Phandango website. 

One can simply drag and drop the Roary 

results into the web browser and then 

interactively play around with the data. 

Phandango can also be used to visualise 

the metadata for the samples, but it needs 

to be collected within a single file (csv 

format file). The sample IDs must be the 

same for all types of data used, or 

Phandango will not compile the data 

accurately (Hadfield et al. 2018).  

The R script implemented in Roary 

allows one to generate two additional 

graphs: rarefaction curves, to conclude 

whether the analysed pan-genome is 

open or closed, and a plot of the number 

of new genes as a function of the number 

of studied sequences (Page et al. 2015;
Sitto and Battistuzzi 2020). 

STEP 3: downstream analysis 

We propose the use of four additional 

software programs that will expand the 

pan-genome results obtained with Roary.

PANINI 

When the number of samples in a 

pan-genome analysis exceeds 100, one 

can use PANINI (Pangenome Neighbour 

Identification for Bacterial Populations). 

PANINI is a web-based tool that allows a 

user to identify the neighbours for each 

isolate in a data set. The tool is integrated 

with the Microreact platform for rapid 

online visualisation and exploration of 

pan-genomes, together with relevant 

epidemiological, geographical, temporal 

and other metadata (Abudahab et al. 

2019). 

The tool requires three types of input 

data: the gene_presence_absence.Rtab 

file (Roary output), any phylogenetic 

tree and a file containing the metadata 

of interest. After introducing the 

gene_presence_absence.Rtab file (drag 

and drop), the network file (DOT format) 

can be sent to Microreact when the other 

files are uploaded. The result will be 

displayed online, and Microreact allows a 

user to browse and to select data of 

interest (Abudahab et al. 2019). 

The file containing metadata should 

be prepared in the csv format. It could 

include any relevant data. The geograph-
ical distribution of isolates could be 

displayed against a world map; this in-
formation must be specified by latitude 

and longitude columns. The file requires 

an ID column and each ID must be the 

same as in the other input files and must 

be unique. The metadata will be dis-
played against a phylogenetic tree com-
prised of coloured dots (default mode). 

The colour can be defined by user by the 

additional column maned: data_ name 

_colour. The colour must be defined by 

hex triplet number (Abudahab et al. 

2019). The use of PANINI is intuitive 

and well described by the tool’s authors, 
and there is also a video walkthrough. 

These programs are the PANINI, Scoary,
Coinfinder and Piggy pipelines. 
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Scoary 

Roary output data could be used 

for a pan-genome wide association study. 

For this purpose, we recommend 

Scoary (Brynildsrud et al. 2016). Scoary 

is designed to take the gene_presence_

absence.csv file from Roary and a traits 

file created by the user. It calculates 

the associations between all genes in the 

accessory genome and the traits. A traits 

file is a binary table (csv format) in 

which individual isolates are described 

with 1 or 0, sequentially with or without 

a trait. For example, when analysing the 

relationship between genetic diversity 

and the source of isolation, if the strain 

was isolated from a particular source of 

interest, the value is 1, while the 

remaining isolates receive the value 0 

(Brynildsrud et al. 2016). The easiest 

way to install Scoary is with the pip 

package manager: 

pip install scoary 

The use of Scoary requires the following 

basic command: 

scoary -g <gene_presence_absence.csv> -

t <traits.csv> 

The user can also modify the parameters 

by additional flags, as shown at Figure 5. 

Scoary outputs a single csv file per 

trait in the traits file. The file contains a 

list of genes with additional statistical 

characteristics. The output data need to 

be filtered manually. Candidate genes 

can be determined to be significantly 

related to a trait if they have achieved a 

‘naïve’ p value < 0.05, a Benjamini-

Hochberg corrected p value < 0.05 and 

an empirical p value < 0.05. A particular 

gene is considered to be positively 

related to a trait when the odds ratio is 

> 1 and to be negatively related when the 

odds ratio is < 1 (Espadinha et al. 2019, 

Touchon et al. 2020). 

Coinfinder 

Coinfinder allows one to assess the 

occurrence of interactions between genes 

in the pan-genome. The software tests for 

the occurrence of gene association and 

dissociation events among the accessory 

genes. The algorithm on which the 

program is based assumes the rejection of 

core genes and strongly unique genes to 

increase the precision of the analysis. 

The application uses the output (the 

gene_presence_absence.csv table) gene-

rated by Roars (Whelan et al. 2020). We 

recommend installing Coinfinder with 

Conda: 

conda install -c defaults -c bioconda -

c conda-forge coinfinder 

Coinfinder requires gene information 

(the gene_presence_absence.csv table)

and a phylogeny as input. The phylogeny 

should be Newick formatted; we recom-
mend using the core SNP-based phylo-
geny from the Roary output (Whelan 

et al. 2020). To run Coinfinder with de-
fault parameters, use the following line: 

Figure 5. List of Scoary options available with the command scoary -h. 
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coinfinder -i <gene information> [-I] 

|-p <phylogeny> -o <output prefix> 

[--associate|--dissociate] 

One might also change some options (see 

Figure 6). 

Coinfinder produces a number of 

output files, with the default prefix of 

coincident_, which have been well 

described by (Whelan et al. 2020). The 

tool identifies pairs of associating/disso-

ciating genes that are clustered in 

components or sets of genes that are 

related to each other. In addition, the 

results obtained with Coinfinder can be 

visualised using the Gephi graphics 

program. The produced charts should be 

interpreted as follows. Individual genes 

are represented by individual points on 

the plot (nodes). The lines connecting 

these points (edges) indicate the presence 

of interactions between the genes of the 

studied genomes. The groups of genes 

for which the presence of statistically 

significant correlations were found are 

depicted with different colours; these 

groups are called components. Genes 

within a given component show an 

association or dissociation. Occasional 

relationships between genes from dif-
ferent components can also be observed 

(Whelan et al. 2020). 

Piggy 

The above-mentioned tools allow for 

a detailed description of a pan-genome. 

All are focused on genes: their distri-
bution, interaction and importance. To 

gain better insight into the phylogeny of a 

particular species, one can use the Piggy 

pipeline. Piggy works similarly to Roary, 

except it is focused on the intergenomic 

regions (termed IGRs) rather than genes. 

Piggy also detects and specifies highly 

divergent (‘switched’) intergenic regions 

(IGRs) upstream of genes. Similarly to 

Roary, IGRs can be described as core, 

present in all samples, accessory or 

unique. Based on a core IGR alignment 

file, a user can create the phylogenetic 

tree. Therefore, the use of this tool allows 

a user to understand not only the gene-

based phylogeny, but also phylogeny 

based on non-coding regions. This in-
formation could be useful to better under-
stand the evolution of tested strains. On 

the other hand, this tool provides insight 

into regions of genome sequences that 

might play a regulatory role (Thorpe 

et al. 2018).  

Piggy can be easily obtained from 

github (https://github.com/), by a simple 

command line: 

Figure 6. List of Coinfinder options available with the command coinfinder -h. 
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git clone https://github.com/harry-

thorpe/piggy.git 

After cloning the Piggy repository, its 

directory should be either added to user 

$PATH or one can run Piggy by 

specifying its location in the terminal. 

For Piggy to work, Roary must be run 

first. The output folder produced by 

Roary is required as an input to Piggy. 

We recommend running Roary with the 

-s flag to keep paralogs together, so 

secondary Roary analysis can be 

performed (Thorpe et al. 2018).  

To run Piggy, a user must specify the 

direction to files containing annotated 

assemblies in the GFF3 format, Roary 

output files and the output direction. The 

list of options are shown in Figure 7. 

Piggy produces several output files: 

 cluster_intergenic_alignment_files,

 switched_region_alignment_files

and

 IGR_presence_absence.csv.

The IGR_presence_absence.csv file 

can be visualised with Phandango, as can 

the gene_presence_absence.csv file gene-

rated by Roary. Piggy also generates two 

additional graphs, one presenting gene 

and IGR accumulation curves, and a 

histogram showing the frequency of 

genes and IGR regions identified within 

the tested set of samples (Thorpe et al. 

2018). 

Conclusions 

The bacterial pan-genome is a 

relatively new concept for microbial 

genomics, but in recent years the number 

of studies focused on its investigation has 

increased rapidly. This approach allows 

one to better understand the diversity and 

evolution of bacteria, both at the inter- 

and intra-species levels. The results 

might help to improve taxonomy and 

ultimately lead to the development of 

more specific and sensitive methods of 

bacteria identification. On the other hand, 

knowing the relationship of the pan-

genomic diversity of bacteria isolated 

from different sources (and/or time 

points) can be used as a basis to design 

new therapeutics. Hence, it is worth 

developing the area of pan-genome 

research. 

Within this paper, we have reviewed 

some in silico tools that could be used by 

beginners who have an interest in pan-

genome investigation. Each of them 

covers important features of pan-genome 

studies, namely core genes and pan-

genome-based phylogeny, pan-genome-

level diversity of strains, pan-genome 

wide association study and, in contrast 

to gene-focused studies, the diversity of 

non-coding sequences. When used in 

combination, the reviewed tools allow 

solid pan-genome investigation of bac-
terial species of interest. 

Figure 7. List of Piggy options available with the command piggy -h. 
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