
Quantum Information Processing (2019) 18:139
https://doi.org/10.1007/s11128-019-2256-z

Noise resistance of activation of the violation of the
Svetlichny inequality

Paweł Caban1 · Kamila Trzcińska2
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Abstract
In this paper, we analyze the activation of the violation of the Svetlichny inequality in
GHZ states in the presence of noise.We take into account bit flip, phase flip, amplitude
damping and depolarizing noisy channels acting on one, two or three qubits. We find
that the effect is most robust in the case of phase flip while most fragile in the case of
amplitude damping channel.
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1 Introduction

Nonlocality is one of the most fundamental properties of quantum theory. In recent
years, nonlocal correlations were found to be useful in many applications in quantum
information theory; see, e.g., [3,5,6,9–11,13,21,24]. Initially, nonlocality was consid-
ered in a bipartite case. In this scenario, violation of Bell’s inequalities is treated as an
argument that the quantum world is nonlocal. The analysis of nonlocal correlations
was extended to multipartite case by Mermin [17]. However, in this case, the structure
of nonlocal correlation is much more interesting than in a bipartite case. Indeed, for
example in the tripartite case, one can distinguish in the set of all nonlocal correlations
the subset of genuine tripartite nonlocal correlations, i.e., such nonlocal correlations
that cannot be reduced to bipartite ones. Svetlichny inequality was introduced to study
genuine tripartite nonlocality [23]. This inequality gives an upper bound to the lin-
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ear combination of the correlation of eight quantities measured by three independent
observers. The violation of the Svetlichny inequality is a sufficient condition of genuine
tripartite nonlocality.

In 1994, Popescu [20] discovered that the lack of nonlocality can be detected using
sequential measurements for one copy of the states, while Peres in 1996 [19] gave
an alternative solution by detecting violation Bell inequalities by means of collective
measurements on several identical copies of the same quantum state. The second
approach with time began to be called activation of quantum nonlocality. We deal
with activation when the lack of a certain property of each component is accompanied
by the presence of this property in a system that includes both components as elements
of a certain whole.

The activation of the Svetlichny inequality means that a single copy of a given state
does not violate the inequality for any measurement setting while two copies of this
state violate the inequality. Therefore, one has to find a class of states for which a
single copy does not violate the Svetlichny inequality while two copies of this state
violate it.

It isworth to stress here that the determinationof themaximal value of theSvetlichny
operator with the help of numerical methods is a very delicate problem, especially in
the context of the activation of the Svetlichny inequality. The reason is that when we
find a maximum by means of numerical procedure, it is very hard to prove that this
maximum is the global one. Therefore, when we show numerically that the maxi-
mal value of the Svetlichny operator is less than 4 for one copy of a state, we can
usually treat it only as an indication of the fact that the Svetlichny inequality is not
violated in this state for any measurement setting, but not as a proof. On the other
hand, to prove that two copies of the state violate the Svetlichny inequality, it is
enough to find only one instance, numerical procedures are very well suited for this
purpose.

Taking the above considerations into account in our previous paper [7,8], we have
shown that the violation of the Svetlichny inequality can be activated for a class of
GHZ states. We considered GHZ states because for these states the maximum value
of the Svetlichny operator for a single copy of the state was determined analytically
in [1]. Moreover, due to the very simple form of the white noise, we were able to
show that noisy GHZ states of the form (1 − p)ρGHZ + pI can also be activated for
nonzero values of p [8]. We could not analyze different types of noise because of
the difficulties described above. However, in the recent paper [15], Li et al. proposed
the general method of determining the maximal value of the Svetlichny operator for
arbitrary three-qubit state. Using their results in this paper, we extend the analysis of
the noise resistance of activation of the violation of the Svetlichny inequality in GHZ
states for various kinds of noise. In particular, we will analyze bit flip channels, phase
flip channels, depolarizing channels and amplitude damping channels.

Let us notice here that the influence of noise on the violation of various tripartite
Bell-type inequalities was investigated in the literature (see, e.g., [2,14,16,22]). All of
these authors consider one copy of a noisy tripartite state. For example, in the most
recent paper [22], Singh and Kumar considered the effect of phase damping and depo-
larizing noise acting on two qubits from the three-qubit GHZ state. They established an
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analytical relation between themaximum expectation value of the Svetlichny operator,
state parameter and noise parameter.1

In our work, we consider a different problem and show that the violation of the
Svetlichny inequality can be activated for a class of noisy GHZ states. We consider bit
flip, phase flip, depolarizing and amplitude damping noise acting on one, two or three
qubits. To solve this problem, it is necessary to analyze the violation of the Svetlichny
inequality for two copies of the three-qubit noisy GHZ state.

2 The Svetlichny inequality

Let us remind first the notion and meaning of the Svetlichny inequality. We follow
the notation used in our previous paper [7]. Let Alice, Bob and Charlie be three
independent and distant observers who perform measurements on a tripartite system
in a state ρ. Alice canmeasure observables X1, X2, Bob Y1, Y2, and Charlie Z1 and Z2.
Each of the observables X1, X2, Y1, Y2, Z1, Z2 has eigenvalues±1. Let P(abc|XY Z)

denote the probability that observers obtain outcomes a, b and c provided that they
measure observables X , Y and Z , respectively. Then, a tripartite correlation function
is given by

Eρ(XY Z) =
∑

a,b,c

abcP(abc|XY Z) = Tr(ρX ⊗ Y ⊗ Z). (1)

If probabilities P(abc|XY Z) cannot be written in the form

P(abc|XY Z) =
∑

λ

f (λ)Pλ(a|X)Pλ(b|Y )Pλ(c|Z), (2)

where λ is a hidden variable with the probability distribution f (λ), [ f (λ) ∈
[0, 1],∑λ f (λ) = 1] and Pλ(a|X), Pλ(b|Y ), Pλ(c|Z) are one-partite probability
distributions, then the correlation function (1) is called nonlocal.

Bell’s inequalities are a necessary and sufficient condition for detecting two-partite
nonlocality. In a tripartite case, situation is more complicated. As it was shown in [17],
local correlation functions in a three-qubit state fulfill so-calledMermin inequality (its
explicit form will be given below).

However, it is easy to see that probabilities that factorize into a product (one-party
probability)× (joint probability of two parties) are nonlocal although this nonlocality
is purely two-partite. This observation leads us to the concept of a genuine tripar-
tite nonlocality [23]. Namely, probabilities (and corresponding correlation functions)
are called genuinely tripartite nonlocal if they cannot be written in the following
form

1 It seems that Singh and Kumar did not know the results of the paper [15]. In view of the results by Li et
al. [15], the analysis of influence of noise on the violation of the Svetlichny inequality for three-qubit states
can be treated as a simple exercise.
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P(abc|XY Z) =
∑

λ

f (λ)Pλ(a|X)Pλ(bc|Y Z) +
∑

σ

f (σ )Pσ (b|Y )Pσ (ac|X Z)

+
∑

τ

f (τ )Pτ (c|Z)Pτ (ab|XY ),
(3)

where f (λ), f (σ ), f (τ ) ∈ [0, 1] and ∑
λ f (λ) + ∑

σ f (σ ) + ∑
τ f (τ ) = 1. Corre-

lation functions which arise from probabilities of the above form fulfill the Svetlichny
inequality [23]. Therefore, the violation of the Svetlichny inequality is a sufficient
condition of a genuine tripartite nonlocality.

Let us notice here that in recent years other definition of genuine tripartite nonlocal-
ity was introduced in [4,12]. Activation of such a defined nonlocality was considered
in [18]. In this paper, we restrict our attention to the standard Svetlichny notion of
genuine tripartite nonlocality.

Let us introduce the following operator

MX1X2Y1Y2Z1Z2(ρ) = Tr[ρ(X2Y1Z1 + X1Y2Z1 + X1Y1Z2 − X2Y2Z2)], (4)

where Xi ,Y j , Zk (i, j, k ∈ {1, 2}) denote observables used byAlice, Bob and Charlie,
respectively, and ρ is a three-qubit state defined in the Hilbert spaceHA⊗HB⊗HC =
C
2 ⊗C

2 ⊗C
2. The explicit form of the Mermin and the Svetlichny inequalities is the

following:
Mermin inequality:

MX1X2Y1Y2Z1Z2(ρ) ≤ 2, (5)

Svetlichny inequality:

|SX1X2Y1Y2Z1Z2(ρ)| ≡ |MX1X2Y1Y2Z1Z2(ρ) + MX2X1Y2Y1Z2Z1(ρ)| ≤ 4. (6)

As we have described it in Introduction, to analyze the activation of the violation
of the Svetlichny inequality for a given class of states, we should be able to determine
analytically themaximal value of the Svetlichny operator (6), (5) for his class of states.
Publication of the work [15] made it possible to determine the maximum value of the
Svetlichny operator for a single copy of any three-qubit state.

Li et al. in [15] proved that for any three-qubit quantum state ρ, the maximum
quantum value of the Svetlichny inequality satisfies

max |SX1,X2,Y1,Y2,Z1,Z2(ρ)| ≤ 4λ1, (7)

where the maximum is taken over all 2 × 2 observables X1, X2,Y1,Y2, Z1, Z2 with
eigenvalues {1,−1}, λ1 is the maximum singular value of the matrix M = (Mj,ik)

with Mi jk = Tr[ρ(σi ⊗ σ j ⊗ σk)], i, j, k = 1, 2, 3.
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3 Analysis of the superactivation of the Svetlichny inequality in the
presence of noise

In this chapter, we analyze the activation of the violation of the Svetlichny inequality
for the class of GHZ states in the presence of noise. We consider the GHZ states in
the following form ρGHZ = |ψGHZ〉〈ψGHZ|, where

|ψGHZ〉 = cos θ |000〉 + sin θ cos θ3|110〉 + sin θ sin θ3|111〉. (8)

Let us denote the maximum value of the Svetlichny operator in one copy of a given
three-qubit state ρ by S(1)

max(ρ) (the maximum is taken over all possible observ-
ables used by Alice, Bob and Charlie) and by S(2)

max(ρ
⊗2) the maximum value of

the Svetlichny operator attained in the state ρ⊗2 = ρ ⊗ ρ. The analytical formula for
S(1)
max(ρGHZ) as a function of parameters was found in [1]. In our previous papers [7,8],

we have shown that there exist such GHZ states for which S(1)
max(ρGHZ) < 4 while

S(2)
max(ρ

⊗2
GHZ) > 4. Moreover, due to the very simple form of white noise, we were able

to find S(1)
max(ρwnGHZ) where

ρwnGHZ = pρGHZ + 1 − p

8
I8, p ∈ [0, 1]. (9)

Using this formula for S(1)
max(ρwnGHZ), we have shown that for some GHZ states mixed

with white noise S(1)
max(ρwnGHZ) < 4 while S(2)

max(ρ
⊗2
wnGHZ) > 4. In other words, we

have shown that the activation of the violation of the Svetlichny inequality is resistant
to white noise. We could not consider other kinds of noise due to the lack of analyt-
ical formula for arbitrary noisy GHZ state. Publication of the paper [15] opened the
possibility of analyzing noise resistance of the violation of the Svetlichny inequality
to various types of noise. Now, to establish the notation, we briefly describe noise
models utilized in our paper.

3.1 Models of noise

Let ρ be a density matrix of a one-qubit state. Then, the noisy counterpart of the state
ρ in the Kraus representation reads

ρn =
k∑

i=1

EiρE
†
i , (10)

where Kraus operators Ei obey the condition

k∑

i=1

E†
i Ei = I2, (11)

with 1 ≤ k ≤ 4.
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We model various types of noise by different choices of Kraus operators. The
transformation (10) is also called a quantum channel. We will apply the following
one-qubit noisy quantum channels:

1. Bit flip

E1 = √
1 − pI , E2 = √

pσ1. (12)

2. Phase flip

E1 = √
1 − pI , E2 = √

pσ3. (13)

3. Depolarizing

E1 = √
1 − 3p/4I , E2 = √

p/4σ1, E3 = √
p/4σ2, E4 = √

p/4σ3.

(14)

4. Amplitude damping

E1 =
(
1 0
0

√
1 − p

)
, E2 =

(
0

√
p

0 0

)
. (15)

In all of the above formulas p ∈ [0, 1], σi , i = 1, 2, 3 are the standard Pauli matrices.
Now, one-qubit noisy quantum channels can be generalized to three-qubit noisy

channels in the following way:

ρnABC =
nA∑

i=1

nB∑

j=1

nC∑

k=1

Ei jk(pA, pB, pC )ρABC E
†
i jk(pA, pB , pC ), (16)

where ρABC is a three-qubit state and

Ei jk(pA, pB, pC ) = Ei (pA) ⊗ Fj (pB) ⊗ Gk(pC ). (17)

Various scenarios of noise we want to consider correspond to different choices of Ei ,
Fj and Gk . We have the following possibilities:

Noise acting on one qubit (let say qubit A) corresponds to the choice nB = 1,
nC = 1, F1(pB) = I , G1(pC ) = I and consequently

E A
i11(pA, pB, pC ) = Ei (pA) ⊗ I ⊗ I (18)

where Ei (pA) are one-qubit Kraus operators related to bit flip or phase flip or depolar-
izing or amplitude damping channel. Similarly, noise acting on qubit B corresponds
to the choice

EB
1i1(pA, pB, pC ) = I ⊗ Ei (pB) ⊗ I (19)

and analogously for the noise acting on qubit C.
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Noise acting on two qubits (let say A and B) corresponds to the choice nC = 1,
G1(pC ) = I and consequently

E AB
i j1 (pA, pB, pC ) = Ei (pA) ⊗ E j (pB) ⊗ I , (20)

where Ei (pA) and E j (pB) are Kraus operators related to one-qubit noisy
channels. Similarly, noise acting on qubits AC or BC corresponds to the following
choices:

E AC
i1 j (pA, pB, pC ) = Ei (pA) ⊗ I ⊗ E j (pC ) (21)

and

EBC
1i j (pA, pB, pC ) = I ⊗ Ei (pB) ⊗ E j (pC ), (22)

respectively.
And finally, noise acting on all of the three qubits can be modeled by the channel

with the following Kraus operators:

E ABC
i jk (pA, pB, pC ) = Ei (pA) ⊗ E j (pB) ⊗ Ek(pC ), (23)

where, as previously, Ei (pA), E j (pB), Ek(pC ) are Kraus operators related to one-
qubit noisy channels.

3.2 Noise acting on one qubit

In this subsection, we assume that noise acts on one qubit only, i.e., Kraus oper-
ators defining a noisy channel are of form (18) (or analogous if a noise acts on
qubit B or C). We consider bit flip, phase flip, depolarizing and amplitude damp-
ing noisy quantum channels acting on qubit A or C. The maximum value attained by
a Svetlichny operator for one copy of a noisy GHZ state can be calculated with the
help of Eq. (7).

Unfortunately, we cannot use this formula for two copies of the state. In this case,
we have at our disposal two approaches: Firstly, we can try to apply the numerical
optimization procedure similarly as we have done it in [7] (optimization approach).
Secondly, we can use observables found to prove the activation of the violation of
the Svetlichny inequality for pure GHZ state [7] and check whether they violate the
Svetlichny inequality for two copies of a noisy GHZ state (continuity approach). In
each of the considered cases, we tried both approaches; however, the optimization
one was successful only in the case of the bit flip noisy channel acting on qubit A.
The results obtained with the help of optimization approach are presented in Fig. 1.
Observables for which the maximal value of the Svetlichny operator is attained are
given in “Appendix.” For other kinds of noise, the numerical optimization procedure
failed to find maximum value of the Svetlichny operator greater than 4. However, in
these cases, we were able to show the activation of the violation of the Svetlichny
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Fig. 1 Bit flip on qubit A, optimization approach. The maximum of Svetlichny inequality for one Smax
ρnGHZ

and two copies Smax
ρnGHZ⊗ρnGHZ

of the noisy states GHZ state as a function of p, for θ3 = π
2 . The maximum

value of Svetlichny inequality for a single copy of this state is 3.9 for p = 0 and p = 1. Smax
ρnGHZ⊗ρnGHZ

= 4

for p = 0.97137

Fig. 2 Bit flip on qubit A, continuity approach. The maximum of Svetlichny inequality for one Smax
ρnGHZ

and

two copies Smax
ρnGHZ⊗ρnGHZ

of the noisy GHZ state as a function of p, for θ3 = π
2 . The maximum value of

Svetlichny inequality for a single copy of this state is 3.9 for p = 0. Smax
ρnGHZ⊗ρnGHZ

= 4 for p = 0.02863

inequality using continuity approach. As we have mentioned above, in this approach,
we use the same observables (Svetlichny operator) which give the violation of the
Svetlichny inequality for pureGHZstate and check forwhat values of a noise parameter
they violate the inequality for two copies of a noisy state. Results obtained in this
manner for bit flip noise are presented in Fig. 2. Similar plots for phase flip, amplitude
damping and depolarizing noisy channels can be easily obtained with the help of
observables we have given in “Appendix.” What is interesting, the range of noise
parameter p for which activation of the violation of the Svetlichny inequality occurs
is slightly bigger for observables found in optimization approach than for observables
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Fig. 3 Bit flip on two qubits A and C , continuity approach. The maximum of Svetlichny inequality for

one Smax
ρnGHZ

and two copies Smax
ρnGHZ⊗ρnGHZ

of the noisy GHZ state as a function of p, for θ3 = π
2 . The

maximum value of Svetlichny inequality for a single copy of this state is 3.9 for p = 0. Smax
ρnGHZ⊗ρnGHZ

= 4

for p = 0.01449

we apply in continuity approach. As we can see from the plots, the activation survives
up to p = 0.97137 and p = 0.02863 for bit flip, p = 0.04719 and p = 0.95281 for
phase flip, p = 0.03316 for amplitude damping, p = 0.04400 for depolarizing noisy
channel.

3.3 Noise acting on two and three qubits

In this subsection, we consider the situation when noise acts on two and three
qubits. In the case of two qubits, we assume that noise acts on qubits A and C. In
such a case, Kraus operators are of form (21). We considered a case when noise
acting on both qubits is of the same type as well as a case when on each of the
qubits act different types of noise. We have also tried to apply both approaches:
optimization and continuity one. Unfortunately, only the continuity approach was
successful. The results for bit flip noisy channel acting on qubits A and C are pre-
sented in Fig. 3; the results for bit flip channel acting on qubit A and phase flip
channel acting on qubit C are presented in Fig. 4. Plots for other noisy channels acting
on qubits A and C can be obtained with the help of observables we have given in
“Appendix”.

In the case of noise acting on three qubits, Kraus operators are of form (23). Sim-
ilarly, like in previous cases, we tried to apply optimization as well as continuity
approach but only the continuity one was successful. The results for bit flip channel
acting on all of the three qubits are presented in Fig. 5. Plots for other noisy channels
acting on three qubits including the case when different types of noise act on different
qubits can be obtained with the help of observables we have given in “Appendix.” The
results are summarized in Tables 1 and 2.
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Fig. 4 Bit flip–phase flip on qubits A and C , continuity approach. The maximum of Svetlichny inequality

for one Smax
ρnGHZ

and two copies Smax
ρnGHZ⊗ρnGHZ

of the noisy GHZ state as a function of p, for θ3 = π
2 . The

maximum value of Svetlichny inequality for a single copy of this state is 3.9 for p = 0. Smax
ρnGHZ⊗ρnGHZ

= 4

for p = 0.01784

Fig. 5 Bit flip on three qubits A, B and C , continuity approach. The maximum of Svetlichny inequality

for one Smax
ρnGHZ

and two copies Smax
ρnGHZ⊗ρnGHZ

of the noisy GHZ state as a function of p, for θ3 = π
2 . The

maximum value of Svetlichny inequality for a single copy of this state is 3.9 for p = 0. Smax
ρnGHZ⊗ρnGHZ

= 4

for p = 0.00970

Table 1 Range of noise parameter for which activation of the violation of the Svetlichny inequality for
noisy GHZ states occurs

BF PF AD D

Noise on qubit A (0,0.02863) (0,0.0472),(0.09528,1) (0,0.0332) (0,0.044)

Noise on qubits A, C (0,0.0145) (0,0.0242),(0.9758,1) (0,0.0168) (0,0.0039)

Noise on qubits A, B,C (0,0.0097) (0,0.0163),(0.9837,1) (0,0.0113) (0,0.0032)

We assume that for two and three qubits, the same noise acts on all of the qubits
BF bit flip, PF phase flip, AD amplitude damping, D depolarizing
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Table 2 Range of noise
parameter for which activation
of the violation of the Svetlichny
inequality for noisy GHZ states
occurs in the case of noise acting
on two and three qubits

Noise on A, C Noise on A, B, C

BF–PF (0,0.01784) –

BF–AD (0,0.01557) –

BF–D (0,0.01750) –

PF–AD (0,0.01940) –

PF–D (0,0.02291) –

AD–D (0,0.01907) –

BF–PF–BF – (0,0.01107)

BF–AD–BF – (0,0.01017)

BF–D–BF – (0,0.01095)

PF–BF–PF – (0,0.01304)

PF–AD–PF – (0,0.01384)

PF–D–PF – (0,0.01560)

AD–BF–AD – (0,0.01069)

AD–PF–AD – (0,0.01234)

AD–D–AD – (0,0.01223)

D–BF–D – (0,0.01259)

D–PF–D – (0,0.01514)

D–AD–D – (0,0.01338)

BF–PF–AD – (0,0.01167)

BF–PF–D – (0,0.012775)

AD–BF–D – (0,0.01155)

AD–PF–D – (0,0.013566)

We assume that different types of noise act on different qubits
BF bit flip, PF phase flip, AD amplitude damping, D depolarizing

4 Conclusions

In our paper, we have analyzed the noise resistance of activation of the violation of
the Svetlichny inequality. We have considered bit flip, phase flip, depolarizing and
amplitude damping noisy quantum channels acting on one, two and three qubits from
the pureGHZ state. The results, i.e., the ranges of noise parameters forwhich activation
survives under noisy quantum channels, are summarized in Tables 1 and 2. From those
tables, we see that noise resistance of the activation of the violation of the Svetlichny
inequality is different for different kinds of noise. For noise acting on one qubit, the
activation is most robust in the case of phase flip channel while most fragile in the case
of amplitude damping channel. For noise acting on two and three qubits, the activation
is again most robust in the case of phase flip channel but most fragile in the case of
depolarizing channel.

The noise is an inevitable component of any real experiment; therefore, we hope
that our results might be useful in experimental study on activation of the violation of
the Svetlichny inequality.

Experimental investigation of the robustness against noise for different Bell-type
inequalities in one copy of three-qubit GHZ states has been carried out in [16]. Theo-
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retical analysis of the influence of noise on violation of different Bell-type inequalities
in tripartite GHZ states has been also performed in [2,14,22].
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The explicit form of observables

Here,wegive the explicit formof observables used byAlice,Bob andCharlie forwhich
the maximal value of the Svetlichny operator on the state ρn

GHZ ⊗ ρn
GHZ, S

max
ρn
GHZ⊗ρn

GHZ
is attained. Data are given for all figures from our paper.

Continuity approach

X̃1 =

⎛

⎜⎜⎝

−1 0 −0.00001 0
0 0 −0.806841 − 0.590768i 0

−0.00001 −0.806841 + 0.590768i 0 0.000012
0 0 0.000012 1

⎞

⎟⎟⎠ ,

(24)

X̃2 =

⎛

⎜⎜⎝

−1 0.000012i 0.00001 0
−0.000012i 0 0.590777 − 0.806835i 0
0.00001 0.590777 + 0.806835i 0 0

0 0 0 1

⎞

⎟⎟⎠ , (25)

Ỹ1 =

⎛

⎜⎜⎝

−1 0 0 0
0 0 −0.26882 − 0.963191i 0
0 −0.26882 + 0.963191i 0 0
0 0 0 1

⎞

⎟⎟⎠ , (26)

Ỹ2 =

⎛

⎜⎜⎝

1 0 0.000012 0
0 0 0.963192 − 0.268815i 0.000012i

0.000012 0.963192 + 0.268815i 0 0.000012i
0 −0.000012i −0.000012i −1

⎞

⎟⎟⎠ ,

(27)

Z̃1 =

⎛

⎜⎜⎝

−1 0 0 0
0 0 −0.910812 − 0.412821i 0
0 −0.910812 + 0.412821i 0 0
0 0 0 1

⎞

⎟⎟⎠ , (28)
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Z̃2 =

⎛

⎜⎜⎝

−1 0.000011 0.000011 0
0 0 0.412814 − 0.910815i 0

0.000011 0.412814 + 0.910815i 0 0
0 0 0 1

⎞

⎟⎟⎠ . (29)

Optimization approach

X̃1 =

⎛

⎜⎜⎝

1 0 0 0
0 0 −0.15838 + 0.987378i 0.000014 + 0.000006i
0 −0.15838 − 0.987378i 0 0
0 0.000014 − 0.000006i 0 −1

⎞

⎟⎟⎠ ,

(30)

X̃2 =

⎛

⎜⎜⎝

−1 0 0 0
0 0 0.987378 + 0.158381i 0
0 0.987378 − 0.158381i 0 0
0 0 0 1

⎞

⎟⎟⎠ , (31)

Ỹ1 =

⎛

⎜⎜⎝

−1 0 0 0
0 0 −0.104931 + 0.99448i 0
0 −0.104931 − 0.99448i 0 0
0 0 0 1

⎞

⎟⎟⎠ , (32)

Ỹ2 =

⎛

⎜⎜⎝

−1 0 0 0
0 0 −0.99448 − 0.10493i 0
0 −0.99448 + 0.10493i 0 0
0 0 0 1

⎞

⎟⎟⎠ , (33)

Z̃1 =

⎛

⎜⎜⎝

−1 −0.000009 + 0.000017i 0.000005 + 0.000019i 0
−0.000009 − 0.000017i 0 0.744192 − 0.667966i 0
0.000005 − 0.000019i 0.744192 + 0.667966i 0 0

0 0 0 1

⎞

⎟⎟⎠ ,

(34)

Z̃2 =

⎛

⎜⎜⎝

−1 0 0 0
0 0 0.667966 + 0.744192i 0
0 0.667966 − 0.744192i 0 0
0 0 0 1

⎞

⎟⎟⎠ . (35)
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