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Abstract
Weapply themodifiedBrodutch andModimethod of constructing geometricmeasures
of correlations to obtain analytical expressions for measurement-induced geometric
classical and quantum correlations based on the trace distance for two-qubit X states.
Moreover, we study continuity of the classical and quantum correlations for these
states. In particular, we show that these correlations may not be continuous.

Keywords Geometric measures of correlations · Classical and quantum correlations ·
Trace distance · Continuity of measures of correlations · X states

1 Introduction

In quantum information science, the problem of classification and quantification of
correlations present in quantum systems has been extensively studied over the past few
decades [1–5]. In this regard, the most substantial progress was achieved in the case
of bipartite systems that have been studied initially in the entanglement-separability
paradigm, formalized by Werner [6]. Under this paradigm, the correlations can be
classified as either classical or quantum, where the latter ones are identified with
entanglement that can be quantified by different entanglement measures [1].

However, due to the discovery that some quantum information processing tasks
can be performed without entanglement [7–14], it has become clear that some separa-
ble states can have quantum correlations, other than entanglement, and therefore the
entanglement-separability paradigm should be replaced by a new one.
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The paradigm shift was triggered independently by Ollivier and Zurek [15] who
introduced quantum discord as an information-theoretic measure of quantum cor-
relations present in bipartite quantum systems and by Henderson and Vedral [16]
who studied the problem of separation of classical and quantum correlations in such
systems from an information-theoretic perspective. Under the information-theoretic
paradigm, the problem of classification and quantification of correlations has been
extensively studied [2,4,5], due to the discovery [17] that quantum discord may be the
key resource in the deterministic quantum computation with one qubit (DQC1) [7].
It is worth emphasizing that both quantum entanglement and quantum discord have
been also investigated in the framework of special and general relativity as well as
quantum field theory [1,2,18] (for recent advances see, e.g., [19–22]).

Since quantum discord cannot be computed analytically even for arbitrary two-
qubit states [2,4,5], an alternative information-theoretic approach to the problem of
quantification of different types of correlations was proposed [23]. This approach
is based on the idea that a distance from a given state to the closest state without
the desired property is a measure of that property. The first measure of quantum
correlations in which this idea has been implemented was geometric quantum discord
[24], where the Schatten 2-norm was applied as the distance measure between a given
state and the closest zero discord state. Since geometric quantum discord can be
computed analytically for arbitrary two-qubit states [24], it has attracted considerable
attention [2–5]. However, it was shown that geometric quantum discord based on the
Schatten 2-norm cannot be regarded as a bona fide measure of quantum correlations
[25] because of the lack of contractivity of this norm under trace-preserving quantum
channels [26]. Moreover, it turned out that among all geometric quantum discords
based on the Schatten p-norms [27] only the one based on the Schatten 1-norm is a
bona fide measure of quantum correlations [26].

The problem with geometric quantum discord based on the Schatten 2-norm has
emphasized the need for a general method of constructing bona fide measures of
correlations under the information-theoretic paradigm.

Recently, Brodutch and Modi [28] proposed a method based on the idea that a
measurement performed on one subsystem of a multipartite system in a given state, in
general, may disturb the state of the system and this disturbance can be used to quantify
correlations present in the system. According to this method, quantum correlations are
quantified by a distance between a given state and the classical-quantum state emerg-
ing from a measurement performed on the considered state, where the measurement is
chosen according to a specific strategy. Moreover, classical correlations are quantified
by a distance between the classical-quantum state and the completely separable state
resulting from the same measurement performed on the tensor product of the states of
the individual subsystems. Furthermore, Brodutch andModi [28] identified two strate-
gies that provide bona fide measures of classical and quantum correlations that satisfy
the following conditions: (i) product states have no correlations, (ii) all correlations are
invariant under local unitary operations, (iii) all correlations are non-negative, and (iv)
classical states have no quantum correlations. Moreover, Brodutch and Modi showed
that the first strategy always provides continuous measures of quantum correlations,
while the second one always provides continuous measures of classical correlations.
An open problem, interesting from both theoretical and experimental points of view,
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is the continuity of measures of classical and quantum correlations provided by the
first and the second strategy, respectively [28]. The lack of the continuity of measures
of correlations would imply that probing these correlations in the laboratory would
be extremely misleading, because a small uncertainty of the state of the system could
cause a big difference in the amount of the correlations present in this system, as
measured by these measures of correlations.

More recently, it was shown that the Brodutch andModimethod should bemodified
as in the case of measurement-induced geometric classical and quantum correlations
based on the trace distance for two-qubit Bell diagonal states1 one of two possible
strategies results in the non-uniqueness of classical correlations [29]. Moreover, the
modification of the Brodutch and Modi method was proposed to avoid the problem of
non-unique results in the general case [29].

The purpose of this paper is twofold. First, we apply the modified Brodutch and
Modi method to obtain measurement-induced geometric classical and quantum corre-
lations based on the trace distance for two-qubit X states using two possible strategies
of constructing bona fidemeasures of correlations. Second, we solve the open problem
of continuity of measures of classical and quantum correlations provided by the first
and the second strategy, respectively.

2 Measurement-induced geometric measures of correlations based
on the trace distance and their continuity

In the framework of the modified Brodutch and Modi method, measurement-induced
geometric classical and quantum correlations present in a multipartite state ρ are
quantified by:

C(ρ) = K [M(ρ), M(πρ)], (1)

Q(ρ) = K [ρ, M(ρ)], (2)

where K [η, τ ] is a non-negative real-valued function of states η and τ that vanishes
for η = τ , M(ρ) is the classical-quantum state emerging from a measurement M
performed on ρ, M(πρ) is the completely separable state resulting from the same
measurementM performedonπρ being the tensor product of the states of the individual
subsystems, and the measurement M is chosen according to one of the following
strategies:

• M is a non-selective rank-1 projective measurement performed on one subsystem
of the multipartite system in a state ρ, and M minimizes the quantum correlations
Q(ρ) [28], but if the classical correlations C(ρ) are not uniquely determined by
the minimization procedure, then the classical correlations C(ρ) are additionally
maximized over the all measurements M that minimize the quantum correlations
Q(ρ) [29],

1 That is, in the case of classical and quantum correlations present in two-qubit Bell diagonal states as
quantified by measurement-induced geometric measures of correlations based on the trace distance.
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• M is a non-selective rank-1 projective measurement performed on one subsystem
of the multipartite system in a state ρ, and M maximizes the classical correlations
C(ρ) [28], but if the quantum correlations Q(ρ) are not uniquely determined by
the maximization procedure, then the quantum correlations Q(ρ) are additionally
minimized over the all measurements M that maximize the classical correlations
C(ρ) [29].

In the framework of this method, measurement-induced geometric classical and
quantum correlations based on the trace distance are quantified by:

C(ρ) = dT [M(ρ), M(πρ)], (3)

Q(ρ) = dT [ρ, M(ρ)], (4)

with dT [η, τ ] = ||η − τ ||1 = Tr[√(η − τ)†(η − τ)] being the trace distance between
states η and τ [30], adopted as a function K [η, τ ], and the measurement M is chosen
according to one of the above-mentioned strategies.

In the computational basis {|00〉, |01〉, |10〉, |11〉}, the density matrix of a two-qubit
X state has the following form [31]:

ρ =

⎛

⎜⎜
⎝

ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ∗

23 ρ33 0
ρ∗
14 0 0 ρ44

⎞

⎟⎟
⎠ , (5)

where the normalization and the positive semidefiniteness of ρ require
∑4

i=1 ρi i = 1
and ρ11ρ44 ≥ |ρ14|2, ρ22ρ33 ≥ |ρ23|2, respectively [32,33]. Let us note that the antidi-
agonal elements of the density matrix (5) can always be brought into real non-negative
numbers by local unitary transformations [32,33], which preserve the correlations (3)
and (4) [28]. Therefore, a two-qubit X state can be represented by [32]:

ρ = 1

4

(

I ⊗ I +
3∑

i=1

ci σi ⊗ σi + c4 I ⊗ σ3 + c5 σ3 ⊗ I

)

, (6)

where I is the identity matrix, σi are the Pauli matrices, and

c1 = Tr[(σ1 ⊗ σ1)ρ] = 2(ρ23 + ρ14), (7a)

c2 = Tr[(σ2 ⊗ σ2)ρ] = 2(ρ23 − ρ14), (7b)

c3 = Tr[(σ3 ⊗ σ3)ρ] = 1 − 2(ρ22 + ρ33), (7c)

c4 = Tr[(I ⊗ σ3)ρ] = 2(ρ11 + ρ33) − 1, (7d)

c5 = Tr[(σ3 ⊗ I )ρ] = 2(ρ11 + ρ22) − 1. (7e)

In the Fano–Bloch representation (6), the positive semidefiniteness of ρ requires [32]

(1 + c3)
2 ≥ (c1 − c2)

2 + (c4 + c5)
2, (8a)

(1 − c3)
2 ≥ (c1 + c2)

2 + (c4 − c5)
2, (8b)
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with the coefficients (7) taking values in the interval [−1, 1]. The above inequalities
describe a region ofR5. Thus, there is a one-to-one correspondence between two-qubit
X states and points within region (8).

It is worth mentioning here that two-qubit X states contain a few important classes
of states, such as Bell diagonal states [34], maximally nonlocal mixed states [35] and
maximally entangled mixed states [36].

Let us note that if the measurement M , described by a complete set of one-
dimensional orthogonal projectors {�±}, is performed on the first qubit of the
two-qubit system in a X state, then the classical-quantum state M(ρ) and the com-
pletely separable state M(πρ) have the form:

M(ρ) =
∑

m=+,−
(�m ⊗ I )ρ(�m ⊗ I ), (9)

M(πρ) =
∑

m=+,−
(�m ⊗ I )(ρA ⊗ ρB)(�m ⊗ I ), (10)

where �± = 1
2 (I ± n · σ ), n = (n1, n2, n3) is a real three-dimensional unit vector

and σ = (σ1, σ2, σ3).
In order to compute the correlations (3) and (4) for two-qubit X states, we first need

to find the trace distance between states M(ρ) and M(πρ) and then the trace distance
between states ρ and M(ρ). One can show that in the case of two-qubit X states and
the measurement M described by {�±} the trace distance between states M(ρ) and
M(πρ) is given by:

||M(ρ) − M(πρ)||1 =
(
c21n

2
1 + c22n

2
2 + (c3 − c4c5)

2 n23

) 1
2
, (11)

while the trace distance between states ρ and M(ρ) is given by:

||ρ − M(ρ)||1 = 1

2

(
c21 + c22 + c23 + c25 − c21n

2
1 − c22n

2
2 − c23n

2
3 − c25n

2
3

− 2
(
c23c

2
5 + c22c

2
3n

2
1 + c21c

2
3n

2
2 + c21c

2
2n

2
3

− 2c23c
2
5n

2
3 + c21c

2
5n

2
1n

2
3 + c22c

2
5n

2
2n

2
3 + c23c

2
5n

4
3

) 1
2
) 1

2

+ 1

2

(
c21 + c22 + c23 + c25 − c21n

2
1 − c22n

2
2 − c23n

2
3 − c25n

2
3

+ 2
(
c23c

2
5 + c22c

2
3n

2
1 + c21c

2
3n

2
2 + c21c

2
2n

2
3

− 2c23c
2
5n

2
3 + c21c

2
5n

2
1n

2
3 + c22c

2
5n

2
2n

2
3 + c23c

2
5n

4
3

) 1
2
) 1

2

. (12)

The analytical expressions for ||M(ρ)−M(πρ)||1 and ||ρ −M(ρ)||1 make it possible
to obtainmeasurement-induced geometric classical and quantumcorrelations based on
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the trace distance for two-qubit X states under the two possible strategies of choosing
the measurement M . In what follows, it is assumed without loss of generality that
c21 ≥ c22 since the sign of ρ14 in the density matrix (5) can always be changed by a
local unitary transformation [32].

2.1 Strategy 1

In the framework of the first strategy, for a given two-qubit X state (6) we first identify
all measurements M that minimize the quantum correlations (4) and then we use
these measurements to compute the classical correlations (3). However, if the classical
correlations are not uniquely determined by the minimization procedure, then they
are additionally maximized over the all measurements that minimize the quantum
correlations.2 In other words, for a given point (c1, c2, c3, c4, c5) of region (8) we first
identify all unit vectors (n1, n2, n3) that minimize ||ρ − M(ρ)||1 given by Eq. (12)
and then we use these vectors to compute ||M(ρ) − M(πρ)||1 given by Eq. (11).
However, if (11) is not uniquely determined by the minimization procedure, then it is
additionally maximized over the all unit vectors that minimize (12).

It can be shown that under this strategy the following cases occur:

1. If c21 = c22 and c21 − c23 + c25 < 0, then only measurements M with n21 = n22 = 0
and n23 = 1 minimize (12) and uniquely determine (11). Therefore, in this case
only measurements M with n21 = n22 = 0 and n23 = 1 are optimal, and the
classical and quantum correlations are given by:

C(ρ) = |c3 − c4c5|, (13a)

Q(ρ) = |c1|. (13b)

2. If c21 = c22, c
2
1 − c23 + c25 ≥ 0 and c25 > 0, then only measurements M with

n21 = n22 = 0 and n23 = 1 minimize (12) and uniquely determine (11). Therefore,
in this case only measurements M with n21 = n22 = 0 and n23 = 1 are optimal,
and the classical and quantum correlations are given by Eqs. (13).

3. If c21 = c22, c
2
1 = c23 and c25 = 0, then all measurements M minimize (12) and

uniquely determine (11). Therefore, in this case all measurements M are optimal,
and the classical and quantum correlations are given by Eqs. (13).

4. If c21 = c22, c
2
1 > c23 and c

2
5 = 0, then all measurementsM minimize (12), but they

do not uniquely determine (11). Thus, the additional maximization procedure is
required. It turns out that among the all measurements M that minimize (12) only
those with n21 + n22 = 1 and n23 = 0 maximize (11). Therefore, in this case only
measurements M with n21 + n22 = 1 and n23 = 0 are optimal, and the classical
and quantum correlations are given by:

C(ρ) = |c1|, (14a)

Q(ρ) = |c1|. (14b)

2 Hereafter, the measurements M for which the classical and quantum correlations are uniquely determined
will be called the optimal measurements M .
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5. If c21 > c22, c
2
1 − c23 + c25 < 0 and c25 > 0, then only measurements M with

n21 = n22 = 0 and n23 = 1 minimize (12) and uniquely determine (11). Therefore,
in this case only measurements M with n21 = n22 = 0 and n23 = 1 are optimal,
and the classical and quantum correlations are given by Eqs. (13).

6. If c21 > c22, c
2
1 < c23 and c25 = 0, then only measurements M with n21 = 0,

0 ≤ n22 ≤ (c22 − c21)/(c
2
2 − c23 + c25) and n23 = 1 − n22 minimize (12), but they

do not uniquely determine (11). Thus, the additional maximization procedure is
required. It turns out that among the all measurements M that minimize (12) only
those with n21 = n22 = 0 and n23 = 1 maximize (11). Therefore, in this case only
measurements M with n21 = n22 = 0 and n23 = 1 are optimal, and the classical
and quantum correlations are given by Eqs. (13).

7. If c21 > c22, c
2
1 − c23 + c25 = 0 and c25 > 0, then only measurements M with

n21 = n22 = 0 and n23 = 1 minimize (12) and uniquely determine (11). Therefore,
in this case only measurements M with n21 = n22 = 0 and n23 = 1 are optimal,
and the classical and quantum correlations are given by Eqs. (13).

8. If c21 > c22, c
2
1 = c23 and c

2
5 = 0, then all measurementsM minimize (12), but they

do not uniquely determine (11). Thus, the additional maximization procedure is
required. It turns out that among the all measurements M that minimize (12) only
those with n21 + n23 = 1 and n22 = 0 maximize (11). Therefore, in this case only
measurements M with n21 + n23 = 1 and n22 = 0 are optimal, and the classical
and quantum correlations are given by Eqs. (13).

9. If c21 > c22, c
2
1 > c23 and c22 − c23 + c25 < 0, then only measurements M with

(c21−c23+c25)/(c
2
1−c22) ≤ n21 ≤ 1, n22 = 1−n21 and n

2
3 = 0minimize (12), but they

do not uniquely determine (11). Thus, the additional maximization procedure is
required. It turns out that among the all measurements M that minimize (12) only
those with n21 = 1 and n22 = n23 = 0 maximize (11). Therefore, in this case only
measurements M with n21 = 1 and n22 = n23 = 0 are optimal, and the classical
and quantum correlations are given by:

C(ρ) = |c1|, (15a)

Q(ρ) = |c3|. (15b)

10. If c21 > c22, c
2
1 = c23, c

2
2 − c23 + c25 < 0 and c25 > 0, then only measurements M

with n21 +n23 = 1 and n22 = 0 or (c21 − c23 + c25)/(c
2
1 − c22) ≤ n21 ≤ 1, n22 = 1−n21

and n23 = 0 minimize (12), but they do not uniquely determine (11). Thus, the
additional maximization procedure is required. It turns out that among the all
measurements M that minimize (12) only those with:

• n21 = n22 = 0 and n23 = 1 maximize (11) if c21 < (c3 − c4c5)2; therefore, in
this case only measurements M with n21 = n22 = 0 and n23 = 1 are optimal,
and the classical and quantum correlations are given by Eqs. (13),

• n21 + n23 = 1 and n22 = 0 maximize (11) if c21 = (c3 − c4c5)2; therefore, in this
case only measurements M with n21 + n23 = 1 and n22 = 0 are optimal, and the
classical and quantum correlations are given by Eqs. (13),
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• n21 = 1 and n22 = n23 = 0 maximize (11) if c21 > (c3 − c4c5)2; therefore, in
this case only measurements M with n21 = 1 and n22 = n23 = 0 are optimal,
and the classical and quantum correlations are given by Eqs. (14).

11. If c21 > c22, c
2
1 < c23, c

2
1 − c23 + c25 > 0 and c22 − c23 + c25 < 0, then only

measurements M with n21 = n22 = 0 and n23 = 1 minimize (12) and uniquely
determine (11). Therefore, in this case only measurements M with n21 = n22 = 0
and n23 = 1 are optimal, and the classical and quantum correlations are given by
Eqs. (13).

12. If c21 > c22, c
2
1 > c23 and c22 − c23 + c25 = 0, then only measurements M with

n21 = 1 and n22 = n23 = 0 minimize (12) and uniquely determine (11). Therefore,
in this case only measurements M with n21 = 1 and n22 = n23 = 0 are optimal,
and the classical and quantum correlations are given by Eqs. (15).

13. If c21 > c22, c
2
1 = c23, c

2
2 − c23 + c25 = 0 and c25 > 0, then only measurements M

with n21 + n23 = 1 and n22 = 0 minimize (12), but they do not uniquely determine
(11). Thus, the additional maximization procedure is required. It turns out that
among the all measurements M that minimize (12) only those with:

• n21 = n22 = 0 and n23 = 1 maximize (11) if c21 < (c3 − c4c5)2; therefore, in
this case only measurements M with n21 = n22 = 0 and n23 = 1 are optimal,
and the classical and quantum correlations are given by Eqs. (13),

• n21 + n23 = 1 and n22 = 0 maximize (11) if c21 = (c3 − c4c5)2; therefore, in this
case only measurements M with n21 + n23 = 1 and n22 = 0 are optimal, and the
classical and quantum correlations are given by Eqs. (13),

• n21 = 1 and n22 = n23 = 0 maximize (11) if c21 > (c3 − c4c5)2; therefore, in
this case only measurements M with n21 = 1 and n22 = n23 = 0 are optimal,
and the classical and quantum correlations are given by Eqs. (14).

14. If c21 > c22, c
2
1 < c23, c

2
1 − c23 + c25 > 0 and c22 − c23 + c25 = 0, then only

measurements M with n21 = n22 = 0, n23 = 1 minimize (12) and uniquely
determine (11). Therefore, in this case only measurements M with n21 = n22 = 0,
n23 = 1 are optimal, and the classical and quantum correlations are given by
Eqs. (13).

15. If c21 > c22, c
2
1 > c23, c

2
2 > c23 and c25 = 0, then only measurements M with

(c21 − c22)/(c
2
1 − c23 + c25) ≤ n21 ≤ 1, n22 = 0 and n23 = 1− n21 minimize (12), but

they donot uniquely determine (11). Thus, the additionalmaximization procedure
is required. It turns out that among the all measurements M that minimize (12)
only those with n21 = 1 and n22 = n23 = 0 maximize (11). Therefore, in this
case only measurements M with n21 = 1 and n22 = n23 = 0 are optimal, and the
classical and quantum correlations are given by:

C(ρ) = |c1|, (16a)

Q(ρ) = |c2|. (16b)

16. If c21 > c22, c
2
1 > c23, c

2
2 − c23 + c25 > 0 and c25 > 0, then only measurements M

with n21 = (c21 − c22)/(c
2
1 − c23 + c25), n

2
2 = 0 and n23 = 1 − n21 minimize (12)

123



Measurement-induced geometric measures of correlations… Page 9 of 17 190

and uniquely determine (11). Therefore, in this case only measurements M with
n21 = (c21 − c22)/(c

2
1 − c23 + c25), n

2
2 = 0 and n23 = 1 − n21 are optimal, and the

classical and quantum correlations are given by:

C(ρ) =
√
c21

(
c21 − c22

) + (c3 − c4c5)2
(
c22 − c23 + c25

)

c21 − c23 + c25
, (17a)

Q(ρ) =
√
c21

(
c22 + c25

) − c22c
2
3

c21 − c23 + c25
. (17b)

17. If c21 > c22, c
2
1 = c23, c

2
2−c23+c25 > 0 and c25 > 0, then onlymeasurementsM with

0 ≤ n21 ≤ (c21−c22)/(c
2
1−c23+c25), n

2
2 = 0 andn23 = 1−n21 minimize (12), but they

do not uniquely determine (11). Thus, the additional maximization procedure is
required. It turns out that among the all measurements M that minimize (12) only
those with:

• n21 = n22 = 0 and n23 = 1 maximize (11) if c21 < (c3 − c4c5)2; therefore, in
this case only measurements M with n21 = n22 = 0 and n23 = 1 are optimal,
and the classical and quantum correlations are given by Eqs. (13),

• 0 ≤ n21 ≤ (c21 − c22)/(c
2
1 − c23 + c25), n

2
2 = 0 and n23 = 1 − n21 maximize

(11) if c21 = (c3 − c4c5)2; therefore, in this case only measurements M with
0 ≤ n21 ≤ (c21 − c22)/(c

2
1 − c23 + c25), n

2
2 = 0 and n23 = 1− n21 are optimal, and

the classical and quantum correlations are given by Eqs. (13),
• n21 = (c21 − c22)/(c

2
1 − c23 + c25), n

2
2 = 0 and n23 = 1 − n21 maximize (11) if

c21 > (c3 − c4c5)2; therefore, in this case only measurements M with n21 =
(c21 −c22)/(c

2
1 −c23 +c25), n

2
2 = 0 and n23 = 1−n21 are optimal, and the classical

and quantum correlations are given by Eqs. (17).

18. If c21 > c22, c
2
1 < c23, c

2
1 − c23 + c25 > 0, c22 − c23 + c25 > 0 and c25 > 0, then only

measurements M with n21 = n22 = 0 and n23 = 1 minimize (12) and uniquely
determine (11). Therefore, in this case only measurements M with n21 = n22 = 0
and n23 = 1 are optimal, and the classical and quantum correlations are given by
Eqs. (13).

Let us note that the classical and quantum correlations are uniquely determined
under the first strategy, despite the fact that for a wide class of two-qubit X states
there is more than one optimal measurement M , which means that for those states the
classical-quantum state M(ρ) cannot be uniquely determined.

The above results regarding to measurement-induced geometric quantum correla-
tions based on the trace distance for two-qubit X states can be summarized as follows:

• if c21 > c22, c
2
1 > c23, then

Q(ρ) = H
(
c22 − c23 + c25

)
√
c21

(
c22 + c25

) − c22c
2
3

c21 − c23 + c25
+ H

(
−

(
c22 − c23 + c25

))
|c3|,
(18a)
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• and otherwise

Q(ρ) = |c1|, (18b)

where H(x) is the Heaviside step function with the half-maximum convention. This
result coincides with that obtained in [37], where the trace distance geometric quantum
discord for two-qubit X states was considered.3 Recently, measurement-induced geo-
metric quantum correlations based on the trace distance were computed analytically
for some specific classes of two-qudit states [39].

Moreover, the above results regarding to measurement-induced geometric classical
correlations based on the trace distance for two-qubit X states can be summarized as
follows:

• if c21 > c22, c
2
1 > c23, c

2
5 > 0 or c21 > c22, c

2
1 = c23, c

2
1 > (c3 − c4c5)2, c25 > 0, then

C(ρ) = H
(
c22 − c23 + c25

)
√
c21

(
c21 − c22

) + (c3 − c4c5)2
(
c22 − c23 + c25

)

c21 − c23 + c25

+ H
(
−

(
c22 − c23 + c25

))
|c1|, (19a)

• if c21 ≥ c22, c
2
1 > c23, c

2
5 = 0, then

C(ρ) = |c1|, (19b)

• and otherwise

C(ρ) = |c3 − c4c5|. (19c)

Let us note that the quantum correlations given by Eqs. (18) are continuous because
the first strategy always provides continuous measures of quantum correlations [28].
Remarkably, it is not the case for the classical correlations given by Eqs. (19). As
an illustrative example, let us consider two-qubit X states with c1 = 1/3, c2 = 1/3,
c3 = 1/4, c4 = 0 and −√

17/12 ≤ c5 ≤ √
17/12. For this one-parameter class of X

states the following cases occur:

• if c25 = 0, then only measurements M with n21 + n22 = 1 and n23 = 0 are optimal
(see Case 4), and the classical correlations are given by Eq. (19b) (see Fig. 1),

• if 0 < c25 ≤ 17/144, then only measurements M with n21 = n22 = 0 and n23 = 1
are optimal (see Case 2), and the classical correlations are given by Eq. (19c) (see
Fig. 1).

Thus, we see that the classical correlations cannot change continuously because the
optimal measurements M do not change in a continuous way. Therefore, we have

3 If ρ is a bipartite state and the measurement M is chosen according to the first strategy, then the quantum
correlations (4) coincide with the trace distance geometric quantum discord introduced in [26] if and only
if the measured subsystem is a qubit [38].
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Fig. 1 The measurement-induced geometric classical correlations based on the trace distance for two-qubit
X states with c1 = 1/3, c2 = 1/3, c3 = 1/4, c4 = 0 and −√

17/12 ≤ c5 ≤ √
17/12 (under the first

strategy) (Color online)

shown that, in general, measures of classical correlations provided by the modi-
fied Brodutch and Modi method under the first strategy may not be continuous. It
is worth emphasizing that experimental investigation of classical correlations present
in quantum systems by employing discontinuous measures of correlations may give
misleading results. For example, if quantum state tomography is used to determine the
state of the investigated system, then any small uncertainties could cause a big differ-
ence between the measured and actual classical correlations present in the system.

2.2 Strategy 2

In the framework of the second strategy, for a given two-qubit X state (6) we first
identify all measurements M that maximize the classical correlations (3) and then
we use these measurements to compute the quantum correlations (4). However, if the
quantum correlations are not uniquely determined by the maximization procedure,
then they are additionally minimized over the all measurements that maximize the
classical correlations. In other words, for a given point (c1, c2, c3, c4, c5) of region (8)
we first identify all unit vectors (n1, n2, n3) that maximize ||M(ρ) − M(πρ)||1 given
by Eq. (11) and then we use these vectors to compute ||ρ −M(ρ)||1 given by Eq. (12).
However, if (12) is not uniquely determined by the maximization procedure, then it is
additionally minimized over the all unit vectors that maximize (11).

It can be shown that under this strategy the following cases occur:

1. If c21 = c22 = c23 and c
2
5 = 0, then all measurementsM maximize (11) and uniquely

determine (12). Therefore, in this case all measurements M are optimal, and the
classical and quantum correlations are given by Eqs. (13).

2. If c21 = c22 = (c3−c4c5)2 and c25 > 0, then allmeasurementsM maximize (11), but
they do not uniquely determine (12). Thus, the additional minimization procedure
is required. It turns out that among the all measurements M that maximize (11)
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only those with n21 = n22 = 0 and n23 = 1 are optimal, and the classical and
quantum correlations are given by Eqs. (13).

3. If c21 > c22 = (c3 − c4c5)2, then only measurements M with n21 = 1 and n22 =
n23 = 0 maximize (11) and uniquely determine (12). Therefore, in this case only
measurements M with n21 = 1 and n22 = n23 = 0 are optimal, and the classical and
quantum correlations are given by:

C(ρ) = |c1|, (20a)

Q(ρ) = Max

[
|c3|,

√
c22 + c25

]
. (20b)

4. If (c3 − c4c5)2 > c21 = c22, then only measurements M with n21 = n22 = 0 and
n23 = 1 maximize (11) and uniquely determine (12). Therefore, in this case only
measurements M with n21 = n22 = 0 and n23 = 1 are optimal, and the classical and
quantum correlations are given by Eqs. (13).

5. If c21 = c22 > (c3 − c4c5)2, then only measurements M with n21 + n22 = 1 and
n23 = 0 maximize (11) and uniquely determine (12). Therefore, in this case only
measurements M with n21 + n22 = 1 and n23 = 0 are optimal, and the classical and
quantum correlations are given by Eqs. (20).

6. If c21 = (c3 − c4c5)2 > c22, then only measurements M with n21 + n23 = 1
and n22 = 0 maximize (11), but they do not uniquely determine (12). Thus, the
additional minimization procedure is required. It turns out that among the all
measurements M that maximize (11) only those with:

• n21 = n22 = 0 and n23 = 1 minimize (12) if (i) c21 − c23 + c25 ≤ 0 and c25 > 0 or
(ii) c21 < c23 and c

2
1 − c23 + c25 > 0; therefore, in these cases only measurements

M with n21 = n22 = 0 and n23 = 1 are optimal, and the classical and quantum
correlations are given by Eqs. (13),

• n21+n23 = 1 and n22 = 0minimize (12) if (i) c21 = c23 and c
2
5 = 0 or (ii) c21 = c23,

c22 − c23 + c25 ≤ 0 and c25 > 0; therefore, in these cases only measurements
M with n21 + n23 = 1 and n22 = 0 are optimal, and the classical and quantum
correlations are given by Eqs. (13),

• n21 = 1 and n22 = n23 = 0 minimize (12) if (i) c21 = c23 and c
2
2 − c23 + c25 = 0 or

(ii) c21 > c23 and c
2
2 − c23 + c25 < 0; therefore, in these cases only measurements

M with n21 = 1 and n22 = n23 = 0 are optimal, and the classical and quantum
correlations are given by Eqs. (20),

• n21 = (c21 − c22)/(c
2
1 − c23 + c25), n

2
2 = 0 and n23 = 1 − n21 minimize (12) if

c21 > c23 and c22 − c23 + c25 > 0; therefore, in this case only measurements M
with n21 = (c21 − c22)/(c

2
1 − c23 + c25), n

2
2 = 0 and n23 = 1− n21 are optimal, and

the classical and quantum correlations are given by:

C(ρ) = |c1|, (21a)

Q(ρ) =
√
c21

(
c22 + c25

) − c22c
2
3

c21 − c23 + c25
, (21b)

123



Measurement-induced geometric measures of correlations… Page 13 of 17 190

• 0 ≤ n21 ≤ (c21 − c22)/(c
2
1 − c23 + c25), n

2
2 = 0 and n23 = 1− n21 minimize (12) if

c21 = c23 and c22 − c23 + c25 > 0; therefore, in this case only measurements M
with 0 ≤ n21 ≤ (c21 − c22)/(c

2
1 − c23 + c25), n

2
2 = 0 and n23 = 1− n21 are optimal,

and the classical and quantum correlations are given by Eqs. (13).

7. If c21 > c22 > (c3 − c4c5)2, then only measurements M with n21 = 1 and n22 =
n23 = 0 maximize (11) and uniquely determine (12). Therefore, in this case only
measurements M with n21 = 1 and n22 = n23 = 0 are optimal, and the classical and
quantum correlations are given by Eqs. (20).

8. If c21 > (c3 − c4c5)2 > c22, then only measurements M with n21 = 1 and n22 =
n23 = 0 maximize (11) and uniquely determine (12). Therefore, in this case only
measurements M with n21 = 1 and n22 = n23 = 0 are optimal, and the classical and
quantum correlations are given by Eqs. (20).

9. If (c3 − c4c5)2 > c21 > c22, then only measurements M with n21 = n22 = 0,
n23 = 1 maximize (11) and uniquely determine (12). Therefore, in this case only
measurements M with n21 = n22 = 0, n23 = 1 are optimal, and the classical and
quantum correlations are given by Eqs. (13).

Let us note that the classical and quantum correlations are uniquely determined
under the second strategy, despite the fact that for a wide class of two-qubit X states
there is more than one optimal measurement M , which means that for those states the
classical-quantum state M(ρ) cannot be uniquely determined.

Recently, measurement-induced geometric classical and quantum correlations
based on the Bures distance, the trace distance and the Hellinger distance for two-qubit
Bell diagonal states4 under the two possible strategies of choosing the measurement
M were studied [29,40]. Remarkably, it turns out that for a given two-qubit Bell
diagonal state the optimal measurements M are exactly the same for measurement-
induced geometric classical and quantum correlations based on the Bures distance,
the trace distance and the Hellinger distance under the both strategies of choosing the
measurement M .

The above results regarding to measurement-induced geometric quantum correla-
tions based on the trace distance for two-qubit X states can be summarized as follows:

• if c21 ≥ c22 > (c3 − c4c5)2 or c21 > (c3 − c4c5)2 ≥ c22 or
c21 = (c3 − c4c5)2 > c22, c

2
1 > c23, c

2
2 − c23 + c25 < 0, then

Q(ρ) = Max

[
|c3|,

√
c22 + c25

]
, (22a)

• if c21 = (c3 − c4c5)2 > c22, c
2
1 > c23, c

2
2 − c23 + c25 > 0, then

Q(ρ) =
√
c21

(
c22 + c25

) − c22c
2
3

c21 − c23 + c25
, (22b)

4 A class of two-qubit X states with c4 = c5 = 0.
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Fig. 2 The measurement-induced geometric quantum correlations based on the trace distance for two-qubit
X states with c1 = 1/5, c2 = 0, c3 = 0, c4 = 3/5 and −(2

√
6 − 3)/5 ≤ c5 ≤ (2

√
6 − 3)/5 (under the

second strategy) (Color online)

• and otherwise

Q(ρ) = |c1|. (22c)

Moreover, the above results regarding to measurement-induced geometric classical
correlations based on the trace distance for two-qubit X states can be summarized as
follows:

C(ρ) = Max [|c1|, |c2|, |c3 − c4c5|] . (23)

Let us note that the classical correlations given by Eq. (23) are continuous because
the second strategy always provides continuous measures of quantum correlations
[28]. Remarkably, it is not the case for the quantum correlations given by Eqs. (22).
As an illustrative example, let us consider two-qubit X states with c1 = 1/5, c2 = 0,
c3 = 0, c4 = 3/5 and −(2

√
6 − 3)/5 ≤ c5 ≤ (2

√
6 − 3)/5. For this one-parameter

class of X states the following cases occur:

• if c25 = 0, then only measurements M with n21 = 1 and n22 = n23 = 0 are optimal
(see Case 3), and the quantum correlations are given by Eq. (22a) (see Fig. 2),

• if 0 < c25 < 1/9, then only measurements M with n21 = 1 and n22 = n23 = 0 are
optimal (see Case 8), and the quantum correlations are given by Eq. (22a) (see
Fig. 2),

• if c25 = 1/9, then only measurements M with n21 = 9/34, n22 = 0 and n23 = 25/34
are optimal (see the penultimate item of Case 6), and the quantum correlations are
given by Eq. (22b) (see Fig. 2),

• if 1/9 < c25 ≤ (33 − 12
√
6)/25, then only measurements M with n21 = n22 = 0,

n23 = 1 are optimal (see Case 9), and the quantum correlations are given by
Eq. (22c) (see Fig. 2).
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Thus, we see that quantum correlations cannot change continuously because the opti-
mal measurements M do not change in a continuous way. Therefore, we have shown
that, in general, measures of quantum correlations provided by the modified Brodutch
andModi method under the second strategy may not be continuous. It is worth empha-
sizing that experimental investigation of quantum correlations present in quantum
systems by employing discontinuous measures of correlations may give misleading
results.

3 Conclusion

We have applied the modified Brodutch and Modi method to obtain analytical expres-
sions for measurement-induced geometric classical and quantum correlations based
on the trace distance for two-qubit X states using two possible strategies of construct-
ing bona fide measures of correlations. Moreover, we have addressed the problem of
continuity of measures of classical and quantum correlations provided by this method
under the first and the second strategy, respectively. In particular, we have shown that,
in general, thesemeasures of correlations may not be continuous, contrary tomeasures
of quantum and classical correlations provided by the modified Brodutch and Modi
method under the first and the second strategy, respectively.

Acknowledgements This work was supported by University of Lodz.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys.
81, 865 (2009)

2. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for corre-
lations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

3. Roga, W., Spehner, D., Illuminati, F.: Geometric measures of quantum correlations: characterization,
quantification, and comparison by distances and operations. J. Phys. A 49, 235301 (2016)

4. Adesso, G., Bromley, T.R., Cianciaruso, M.: Measures and applications of quantum correlations. J.
Phys. A 49, 473001 (2016)

5. Bera, A., Das, T., Sadhukhan, D., Roy, S.S., Sen(De), A., Sen, U.: Quantum discord and its allies: a
review of recent progress. Rep. Prog. Phys. 81, 024001 (2018)

6. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable
model. Phys. Rev. A 40, 4277 (1989)

7. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)
8. Braunstein, S.L., Caves, C.M., Jozsa, R., Linden, N., Popescu, S., Schack, R.: Separability of very

noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett. 83, 1054 (1999)

123

http://creativecommons.org/licenses/by/4.0/


190 Page 16 of 17 Z. Walczak, J. H. Bauer

9. Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters,
W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070 (1999)

10. Lloyd, S.: Quantum search without entanglement. Phys. Rev. A 61, 010301 (1999)
11. Meyer, D.A.: Sophisticated quantum search without entanglement. Phys. Rev. Lett. 85, 2014 (2000)
12. Biham, E., Brassard, G., Kenigsberg, D., Mor, T.: Quantum computing without entanglement. Theor.

Comput. Sci. 320, 15 (2004)
13. Datta, A., Flammia, S.T., Caves, C.M.: Entanglement and the power of one qubit. Phys. Rev. A 72,

042316 (2005)
14. Datta, A., Vidal, G.: Role of entanglement and correlations in mixed-state quantum computation. Phys.

Rev. A 75, 042310 (2007)
15. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev.

Lett. 88, 017901 (2001)
16. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)
17. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100,

050502 (2008)
18. Hu,M.L., Hu, X.,Wang, J., Peng, Y., Zhang, Y.R., Fan, H.: Quantum coherence and geometric quantum

discord. Phys. Rep. 762–764, 1 (2018)
19. Qiang, W.C., Sun, G.H., Dong, Q., Dong, S.H.: Genuine multipartite concurrence for entanglement of

Dirac fields in noninertial frames. Phys. Rev. A 98, 022320 (2018)
20. Qiang, W.C., Dong, Q., Mercado Sanchez, M.A., Sun, G.H., Dong, S.H.: Entanglement property of

the Werner state in accelerated frames. Quantum Inf. Process. 18, 314 (2019)
21. Torres-Arenas, A.J., Dong, Q., Sun, G.H., Qiang,W.C., Dong, S.H.: Entanglementmeasures ofW-state

in noninertial frames. Phys. Lett. B 789, 93 (2019)
22. Liao, X.P., Wen, W., Rong, M.S., Fang, M.F.: Effect of partial-collapse measurement on quantum

entanglement in noninertial frames. Quantum Inf. Process. 19, 106 (2020)
23. Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical

correlations. Phys. Rev. Lett. 104, 080501 (2010)
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