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Abstract
We prove that every conformal submersion from a round sphere onto an Einstein manifold 
with fibers being geodesics is—up to an isometry—the Hopf fibration composed with a 
conformal diffeomorphism of the complex projective space of appropriate dimension. We 
also show that there are no conformal submersions with minimal fibers between manifolds 
satisfying certain curvature assumptions.
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1 Introduction

One of the common problems of Riemannian geometry and theory of foliations is the 
existence of foliations and distributions, satisfying certain geometric properties, on a given 
Riemannian manifold. Examining the natural representation of the product of orthogonal 
groups yields several interesting classes of distributions [14], described by their extrinsic 
geometry: totally geodesic, totally umbilical, and minimal. When the orthogonal distribu-
tion to the foliation belongs to one of these classes, we call the foliation Riemannian, con-
formal, or an SL(q)-foliation (respectively), where q is the dimension of the distribution. Of 
special interest are those foliations for which both distributions, tangent and orthogonal to 
the leaves, belong to one (not necessarily the same) of the families in the above classifica-
tion. The aim of this paper is to study one such case—of a conformal foliation with mini-
mal fibers, with a particular focus on conformal fibrations of spheres (here always consid-
ered “round”, i.e., equipped with the standard Riemannian metric induced from Euclidean 
space) by great circles.

Fibrations of spheres by great circles have been thoroughly examined from the topologi-
cal and differential point of view [6, 7]. It was established that they exist only on spheres 
of odd dimension, the leaf space of such fibration is diffeomorphic to the complex projec-
tive space of appropriate dimension [12], and that any such fibration deformation retracts 
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to the Hopf fibration [15]. Fibrations of spheres, satisfying additional geometric assump-
tion: giving rise to a Riemannian foliation by their fibers, were examined in [4, 18, 22]. A 
generalization of this assumption—when the fibration defines a conformal foliation, and 
its one-dimensional fibers are not necessarily great circles—was examined on the three-
dimensional sphere in [10]. Due to these works, Riemannian submersions from spheres 
and conformal submersions from the 3-sphere are fully classified from the point of view of 
Riemannian geometry. They all can be related to the Hopf fibration by a pair of isometries 
(in Riemannian foliation case) or conformal diffeomorphisms (in the case of a conformal 
foliation of S3 ) of their domain and image.

In this paper, we examine conformal submersions from round spheres of any odd dimen-
sion (greater than 3), with fibers being great circles, using direct methods of Riemannian 
geometry, introduced in [16], and applied to conformal submersions in [9]. This approach 
seems to require some assumptions on the geometry of the image of the submersion. Due 
to existence of solutions of the Yamabe problem [1, 19, 20, 23], one can freely assume that 
the image has constant scalar curvature—up to a conformal change of the metric. In this 
paper, a stronger assumption is considered—that the image of the submersion is conformal 
to an Einstein manifold. Thus, instead of conformally constant scalar curvature, we assume 
what might be viewed as a one-step stronger condition [2]—that some metric in the confor-
mal class of the image has constant Ricci curvature.

We prove that the only Einstein manifold, that can be the image of a conformal submer-
sion from the sphere with fibers being great circles, is isometric to the complex projective 
space with the Fubini-Study metric. Moreover, in this case, the submersion is the com-
position of the Hopf fibration and a conformal diffeomorphism of the complex projective 
space. In the second part of the paper, we examine conformal submersions with minimal 
fibers and find some restrictions on the scalar curvature of their image. These restrictions 
apply in particular to manifolds with metrics of constant scalar curvature, and, hence, can 
be expressed in terms of conformal classes of Riemannian metrics.

2  Definitions

Let (M, g), (B, gB) be smooth Riemannian manifolds, of dimensions m, b (resp.) satisfy-
ing inequality m ≥ b . Let � ∶ (M, g) → (B, gB) be a submersion, i.e., a smooth mapping of 
maximal rank. For every q ∈ B , the set �−1(q) is a submanifold of M, called the fiber of � 
over q. All the fibers of submersion � are submanifolds of dimension k = m − b . Elements 
of TM tangent to the fibers form the smooth, integrable vertical distribution; its orthogonal 
complement with respect to g is called the horizontal distribution. Vectors and vector fields 
with values in the horizontal (resp. vertical) distribution will be called horizontal (resp. 
vertical). Orthogonal (with respect to g) projections onto the horizontal and vertical distri-
butions will be denoted by H and V , respectively.

Definition 1 Let (M,  g), (B, gB) be smooth Riemannian manifolds. A submersion 
� ∶ (M, g) → (B, gB) is called conformal (or: horizontally conformal) if its differential �∗ 
restricted to the horizontal distribution of � is a conformal map, i.e., there exists a function 
f ∈ C∞(M) , such that for all horizontal vectors X, Y, we have:

(1)e−2f g(X, Y) = gB(�∗X,�∗Y).
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The function f in the above equation will be called the dilation of submersion � ; a confor-
mal submersion with f = 0 is called a Riemannian submersion [16].

In what follows, ∇ will always denote the Levi-Civita connection on M and R—its curva-
ture tensor, with convention R(X, Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z . For all � ∈ C∞(M) , 
we denote by ∇� the gradient (with respect to g) of the function � , i.e., g(∇�,X) = X(�) 
for all X ∈ TM , and by Hess� its hessian, Hess�(X, Y) = g(∇X∇�, Y) = g(∇Y∇�,X) for all 
X, Y ∈ TM . Following O’Neill [16], we define a (1, 2)-tensor A by the formula:

where E, F are any smooth vector fields on M (one can show that the value of A at a point 
depends only on the values of these fields at that point). Recall that for all vectors E, the 
(1,  1) tensor AE is antisymmetric with respect to g, i.e., g(AEF,G) = −g(AEG,F) for all 
E,F,G ∈ TM . For all horizontal vectors X,Y, we have the following formula [9]:

Definition 2 Let � ∶ (M, g) → (B, gB) be a submersion, let {X1,… ,Xb} be an orthonor-
mal basis of the horizontal distribution on M at the point p, {U1,… ,Uk} be an orthonormal 
basis of the vertical distribution at p, and {Y1,… , Yb} be an orthonormal basis of the tan-
gent space of B at the point q. Let RB denote the curvature tensor of the Levi-Civita con-
nection on (B, gB) . We define the quantities:

We will call Smix the mixed scalar curvature of M and KH the horizontal scalar curvature 
of M; KB is the scalar curvature of B.

For linearly independent vectors X, Y ∈ TpM , the sectional curvature of the tangent plane 
X ∧ Y is defined as:

For vectors XB, YB ∈ TqB , we analogously compute the sectional curvature of the tangent 
plane XB ∧ YB and denote it by secB(XB, YB).

For all � ∈ C∞(M) , analogously to the Laplacian:

(2)AEF = V∇HEHF +H∇HEVF,

(3)AXY =
1

2
V[X, Y] − g(X, Y)V∇f .

Smix(p) =

k∑

i=1

b∑

j=1

g(R
(
Ui,Xj

)
Xj,Ui)

KH(p) =

b∑

i,j=1

g(R(Xi,Xj)Xj,Xi)

KB(q) =

b∑

i,j=1

gB(RB(Yi, Yj)Yj, Yi).

sec(X, Y) =
g(R(X, Y)Y ,X)

g(X,X)g(Y , Y) − g(X,Y)2
.

�� =

n∑

i=1

Hess�(Ei,Ei),
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where Ei form an orthonormal basis of the tangent space at a point, we introduce the Lapla-
cian along fibers of � , defined by the formula:

where {U1,… ,Uk} form an orthonormal basis of the vertical distribution at a point.
The Ricci tensor of a manifold (B, gB) will be denoted by RicB . Recall that (B, gB) is Ein-

stein if there exists �B ∈ ℝ , such that RicB = �BgB.
In Sect. 4, we will use the following tensor, describing extrinsic geometry of the fibers 

of a submersion.

Definition 3 Let � ∶ (M, g) → (B, gB) be a submersion. We define the second fundamen-
tal form of the fibers as the (1, 2)-tensor h given by:

for all vertical U, V.

Note that h(U,V) = h(V ,U) . We define the mean curvature vector field H of the fibers, 
the value of which at p ∈ M is given by the formula H =

∑k

i=1
h(Ui,Ui) , for an orthonor-

mal basis {U1,… ,Uk} of the vertical distribution at p. We call the fibers of a submersion 
minimal if H = 0 on M. If h(U,V) =

1

k
g(U,V)H for all vertical U, V, then the fibers are 

called totally umbilical.
We will also use the following notation for the norm of a vector: ‖E‖ =

√
g(E,E) for 

every vector E on a Riemannian manifold (M, g).

3  Conformal submersions from spheres with fibers being geodesics

We consider a conformal submersion from a sphere, the fibers of which are geodesics, and 
relate this submersion to the Hopf fibration. We consider only odd-dimensional spheres, as 
by topological arguments only those admit such submersions. Indeed, by the Ehresmann 
theorem, every submersion from a sphere defines a fibration [3]. A short argument [13] 
shows that a circle fibration defines a unit vector field on a 2–1 cover of the sphere (using 
a unit vector field tangent to fibers, determined up to sign), and hence—for spheres of 
dimension at least 2—a unit vector field on the sphere itself, as it is simply connected. Due 
to the Euler characteristic, such vector field can exist on a sphere of odd-dimension only.

In this section, g will always denote the round metric on a sphere.

Lemma 1 Let � ∶ (S2n+1, g) → (B, gB) , n > 1 , be a conformal submersion with fib-
ers being geodesics and let (B, gB) be an Einstein manifold. Then, there exists a function 
� ∈ C∞(S2n+1) , such that for all unit, horizontal X ∈ TS2n+1 , we have:

Proof All the formulas in this proof will be considered at a point p ∈ M , but can be easily 
seen independent on the choice of that point. For X, Y ∈ TpM—orthonormal, horizontal 
vectors, we have: [24]

�V� =

k∑

i=1

g(∇Ui
V∇�,Ui),

h(U,V) = H∇UV

(4)� = Hessf (X,X) + (X(f ))2.
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The above equation can be obtained from the formula for a conformal change of the sec-
tional curvature and the curvature relations for a Riemannian submersion [16].

Let X1,… ,X2n be an orthonormal basis of the horizontal distribution at p ∈ S2n+1 . 
Then, for all i ∈ {1,… , 2n} , we have:

where the sums are taken over all vectors of the orthonormal basis except Xi.
Let U ∈ TpM be a unit vertical vector. Observe that since AXi

Xj is vertical and the verti-
cal distribution is spanned by U, we have:

also, since AXi
U is horizontal and AXi

 is antisymmetric, from (3), we obtain:

Since � is a conformal submersion, �∗Xi and �∗Xj are orthogonal on (B, gB) for i ≠ j . As 
(B, gB) is Einstein, we have:

while on S2n+1:

Using the above with �f =
∑2n

j=1
Hessf (Xj,Xj) + Hessf (U,U) and 

‖∇f‖2 =
∑2n

j=1
(Xj(f ))

2 + (U(f ))2 in (6), we can obtain the following:

(5)

sec(X, Y) = − Hessf (X,X) − Hessf (Y , Y)

+ ‖∇f‖2 − (X(f ))2 − (Y(f ))2

+ e−2f secB(�∗X, �∗Y) − 3‖AXY‖2.

(6)

�

j≠i

sec(Xi,Xj) = − (2n − 1)Hessf (Xi,Xi) −
�

j≠i

Hessf (Xj,Xj)

+ (2n − 1)‖∇f‖2 − (2n − 1)(Xi(f ))
2 −

�

j≠i

(Xj(f ))
2

+ e−2f
�

j≠i

secB(�∗Xi,�∗Xj) − 3
�

j≠i

‖AXi
Xj‖2,

�

j≠i

‖AXi
Xj‖2 =

�

j≠i

g(AXi
Xj,U)g(AXi

Xj,U) =
�

j≠i

g(AXi
Xj,U)2;

‖AXi
U‖2 =

�

j≠i

g(AXi
U,Xj)

2 + g(AXi
U,Xi)

2

=
�

j≠i

g(AXi
Xj,U)2 + g(AXi

Xi,U)2

=
�

j≠i

g(AXi
Xj,U)2 + (U(f ))2.

�

j≠i

secB(�∗Xi,�∗Xj) = RicB

�
�∗Xi

‖�∗Xi‖
,

�∗Xi

‖�∗Xi‖

�
= �BgB

�
�∗Xi

‖�∗Xi‖
,

�∗Xi

‖�∗Xi‖

�
= �B,

∑

j≠i

sec(Xi,Xj) = 2n − 1.
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From the curvature formula for totally geodesic fibers and directions: vertical and horizon-
tal [24], we obtain:

However, for fibers being geodesics, we have:

and on the sphere sec(Xi,U) = 1 . Using this together with (7) and (8) yields:

Note that the above equation does not depend on the choice of the unit horizontal vector Xi . 
Hence, there exists a function � ∈ C∞(S2n+1)—the right-hand side of (9)—depending only 
on the dilation of f, such that for all unit, horizontal X equation (4) holds.   ◻

Proposition 1 Let � ∶ (S2n+1, g) → (B, gB) , n > 1 , be a conformal submersion with fib-
ers being geodesics and let (B, gB) be Einstein manifold. Then, the dilation of � is constant 
along the fibers of �.

Proof Let � ∶ (S2n+1, g) → (B, gB) , n > 1 , be a conformal submersion with fibers being 
geodesics. Using Lemma 1, we can write (5) for all orthonormal, horizontal vectors 
X, Y ∈ TpM as:

Let T♯

U
 be defined by the formula g(T♯

U
X, Y) = g(

1

2
V[X, Y],U) . Then, for orthonormal, hori-

zontal X, Y, we have from (3) AXY =
1

2
V[X, Y] , and hence:

Using the fact that S2n+1 has constant curvature 1, we can write (10) as:

Let X be a unit horizontal vector at p ∈ M . Let us introduce the following notation:

(7)

2n − 1 = − (2n − 2)Hessf (Xi,Xi) − �f

+ (2n − 2)‖∇f‖2 − (2n − 2)(Xi(f ))
2

+ e−2f�B − 3‖AXi
U‖2

+ Hessf (U,U) + 4(U(f ))2.

(8)sec(Xi,U) = −g(∇UV∇f ,U) + ‖AXi
U‖2 − 2(U(f ))2.

g(∇UV∇f ,U) =g(∇U∇f ,U) − g(∇UH∇f ,U)

=Hessf (U,U) − g(∇f ,H∇UU) = Hessf (U,U),

(9)

(2n − 2)
�
Hessf (Xi,Xi) + (Xi(f ))

2
�
=(2n − 2)‖∇f‖2 − �f

− 2Hessf (U,U) − 2(U(f ))2

+ e−2f�B − (2n + 2).

(10)
sec(X, Y) = − 2� + ‖∇f‖2 − 3‖AXY‖2

+ e−2f secB(�∗X, �∗Y).

(11)‖AXY‖2 = g(AXY ,U)g(AXY ,U) = g
�
1

2
V[X, Y],U

�2

= g(T
♯

U
X, Y)2.

(12)
secB(𝜋∗X, 𝜋∗Y) =e

2f + 2e2f𝜙 − e2f‖∇f‖2

+ 3e2f g
�
T
♯

U
X, Y

�2

.
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If T♯

U
X ≠ 0 , the maximum of the right-hand side of (12) among all pairs of orthonormal, 

horizontal vectors X, Y is reached, by the Schwarz inequality, for Y = ±T
♯

U
X∕‖T♯

U
X‖ . Note 

that g(X, T♯

U
X) = g(

1

2
V[X,X],U) = 0 and for all X, Y, such that Y is orthogonal to both X and 

T
♯

U
X , both sides of (12) attain their minimum on the set of pairs of linearly independent vec-

tors from Hp . On the other hand, if T♯

U
X = 0 , then S(X) = s(X) = e2f + 2e2f� − e2f‖∇f‖2.

Hence, by the above remark:

and for all Y orthogonal to both X and T♯

U
X , we have:

It shows that s = s(X) in fact does not depend on X ∈ Hp . If T♯

U
X = 0 , we obtain that 

S(X) = s(X) = s . If T♯

U
X ≠ 0 , using the assumption that (B, gB) is Einstein and taking an 

orthonormal basis Xn of Hp where X1 = X and X2 = T
♯

U
X∕‖T♯

U
X‖ , we obtain:

and it follows that S = S(X) also does not depend on X ∈ Hp . Comparing (14) and (15), we 
obtain for all unit horizontal vectors X:

Note that from definition (13) and independence of S and s on X, it follows that:

As �∗ is an isomorphism between Hp and T�(p)B , it follows that S − s is a function on B, 
constant on the fiber �−1({p}).

Assume that T♯

U
≠ 0 at p ∈ M . In what follows, we consider an orthonormal basis of 

Hp , such that for all odd 1 ≤ i < 2n = dimB , we have Xi+1 = T
♯

U
Xi∕‖T

♯

U
Xi‖.

For a unit vertical field U, we have:

(13)S(X) = max
Y∈Hp

secB(�∗X,�∗Y), s(X) = min
Y∈Hp

secB(�∗X,�∗Y).

(14)S(X) =e2f + 2e2f𝜙 − e2f‖∇f‖2 + g(T
♯

U
X, T

♯

U
X),

(15)secB(�∗X, �∗Y) = s(X) = e2f + 2e2f� − e2f‖∇f‖2.

�B = Ric(X,X) = S(X) + (2n − 2) ⋅ s,

(16)S − s = 3e2f‖T♯

U
X‖2.

(17)S = max
X,Y∈Hp

secB(�∗X,�∗Y), s = min
X,Y∈Hp

secB(�∗X,�∗Y).

(18)

‖T♯

U
‖2 =

2n�

i,j=1

g
�
T
♯

U
Xi,Xj

�2

=

2n�

i=1

g
�
T
♯

U
Xi,Xi+1

�2

=

2n�

i=1

g
�
T
♯

U
Xi, T

♯

U
Xi∕‖T

♯

U
Xi‖

�2

=

2n�

i=1

g
�
T
♯

U
Xi, T

♯

U
Xi

�2

∕‖T♯

U
Xi‖2

=

2n�

i=1

g
�
T
♯

U
Xi, T

♯

U
Xi

�
= 6ne−2f (S − s),
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where in the last line we used (16).
Let U be a unit vertical vector field. We have for all horizontal vectors X, Y:

Since fibers are geodesic and U is a unit field, we also have for all horizontal X:

and

Let �t denote the flow of U. We have [11]:

From (20) and [U,U] = 0 , it follows that �t preserves both horizontal and vertical distribu-
tion. Hence, for X, Y ∈ Hp , we have:

Solving the above ODE, we obtain:

which we can write as:

On the other hand, (21) implies that:

Let Xi be an orthonormal basis of Hp . Then, from (22), it follows that vectors:

form an orthonormal basis at H�s(p)
 and by (23) �s∗U is unit. The norm of T♯

U
 at �s(p) can 

be computed using Yi , and thus equals to:

(19)(LUg)(X, Y) = 2g(X, Y)U(f ).

(20)(LUg)(X,U) = g(∇UU,X) + g(∇XU,U) =
1

2
X(g(U,U)) = 0,

(21)(LUg)(U,U) = 2g(∇UU,U) = U(g(U,U)) = 0.

�∗
s
(LUg) =

d

dt
(�∗

t
g)|t=s.

d

dt
(�∗

t
g(X, Y))|t=s = �∗

s
(LUg(X, Y))

= �∗
s
(2g(X, Y)U(f ))

= 2(�∗
s
g)(X, Y) ⋅ (U(f )◦�s)

= 2(�∗
s
g)(X, Y) ⋅

d

dt
(f◦�t)|t=s.

(�∗
s
g)(X, Y) = g(X, Y)e2(f◦�s−f ),

(22)g(�s∗X,�s∗Y) = g(X, Y)e2(f◦�s−f ).

(23)g(�s∗U,�s∗U) = g(U,U).

Yi = e−(f (�s(p))−f (p))�s∗Xi
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Hence, if T♯

U
X ≠ 0 for some X ∈ Hp , then along the fiber through p, we have ‖T♯

U
‖2 = ce−4f  

for some c > 0 . From (18), we obtain:

along the fiber through p, and it follows that f is constant along all fibers through points 
where T♯

U
≠ 0.

If T♯

U
= 0 at p ∈ M , then from (24), it follows that T♯

U
= 0 along the fiber through p. Let 

N ⊂ B be the set of points q ∈ B , such that T♯

U
= 0 on the fiber �−1({q}) . We will show that 

f is constant along fibers over N.
Suppose that q is an interior point of N, i.e., there exists an open set V ⊂ N with q ∈ V  . 

Then, W = �−1(V) is an open subset of S2n+1 , and at every point p ∈ W , we have T♯

U
= 0 . 

But then, the horizontal distribution H of � is integrable on the open set W, and so on W, 
there exists a foliation F  tangent to H . As � is a conformal fibration by geodesics, F  is a 
codimension one Riemannian foliation of W with all leaves totally umbilical, orthogonal to 
a disjoint family of great circles. As W ⊂ S2n+1 , leaves of F  must be intersections of S2n+1 
with parallel (2n + 1)-dimensional planes, and, hence, cannot be orthogonal to any disjoint 
family of great circles. Thus, set N has empty interior.

If q ∈ N , then it is not an interior point of N, and hence, there exists a sequence qn → q , 
where qn ∉ N . As we proved above, f is constant along all the fibers �−1({qn}) , and by con-
tinuity of f, it must be constant along the fiber �−1({q}) . Therefore, f is constant along the 
fibers over N, and, hence, along all fibers of � .   ◻

Corollary 1 Let � ∶ (S2n+1, g) → (B, gB) , n > 1 , be a conformal submersion with fib-
ers being geodesics and let (B, gB) be an Einstein manifold. Then, there exist isometries 

(24)

‖T♯

U
‖2
𝜙s(p)

=

2n�

i,j=1

g
�
T
♯

U
Yi, Yj

�2

=

2n�

i,j=1

g
�
T
♯

𝜙s∗U
e−(f (𝜙s(p))−f (p))𝜙s∗Xi, e

−(f (𝜙s(p))−f (p))𝜙s∗Xj

�2

=

2n�

i,j=1

e−4(f (𝜙s(p))−f (p))g
�
T
♯

𝜙s∗U
𝜙s∗Xi,𝜙s∗Xj

�2

=

2n�

i,j=1

e−4(f (𝜙s(p))−f (p))g
�
1

2
[𝜙s∗Xi,𝜙s∗Xj],𝜙s∗U

�2

=

2n�

i,j=1

e−4(f (𝜙s(p))−f (p))g
�
1

2
𝜙s∗[Xi,Xj],𝜙s∗U

�2

=

2n�

i,j=1

e−4(f (𝜙s(p))−f (p))g
�
1

2
[Xi,Xj],U

�2

=

2n�

i,j=1

e−4(f (𝜙s(p))−f (p))g
�
T
♯

U
Xi,Xj

�2

=

2n�

i,j=1

e−4(f (𝜙s(p))−f (p))‖T♯

U
‖2
p
.

ce−4f = 6ne−2f (S − s)
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� ∶ (ℂPn, gFS) → (B, gB) , Υ ∶ (S2n+1, g) → (S2n+1, g) and a conformal diffeomorphism Φ of 
ℂPn , such that � = �◦Φ◦�H◦Υ , where �H is the Hopf fibration and gFS is the Fubini-Study 
metric.

Proof From Proposition 1, it follows that f = h◦� for some function h ∈ C∞(B) . 
Considering metric gh = e−2hgB on B, we obtain a Riemannian submersion 
� ∶ (S2n+1, g) → (B, gh) , and by the classification from [4], it follows that there exist iso-
metries � ∶ (ℂPn, gFS) → (B, gh) and Υ ∶ (S2n+1, g) → (S2n+1, g) , such that � = �◦�H◦Υ.

Moreover, as �−1 is an isometry, gh = (�−1)∗gFS is an Einstein metric on B. As metrics 
gh and gB are conformal and both have constant scalar curvatures, it follows from [17] that 
there exists an isometry � ∶ (B, gh) → (B, gB) and since gh = e−2hgB , � is a conformal dif-
feomorphism of (B, gh) . Let Φ = �−1

◦�−1
◦� , then Φ is a conformal diffeomorphism of 

(ℂPn, gFS) , and we have:

It remains to show that � = �◦� is an isometry from (ℂPn, gFS) to (B, gB) . Indeed:

  ◻

Clearly, the same argument applies for submersions � ∶ (S2n+1, g) → (B, e2�gB) , n > 1 , 
where � ∈ C∞(B) and gB is an Einstein metric. In fact, we have the following.

Corollary 2 Let � ∶ (S2n+1, g) → (B, gB) , n > 1 , be a conformal submersion with fibers 
being geodesics, and let (B, gB) be conformal to an Einstein manifold. Then, � = Φ◦�H◦Υ , 
where �H is the Hopf fibration, Υ is an isometry of (S2n+1, g) , Φ ∶ (ℂPn, gFS) → (B, gB) is a 
conformal diffeomorphism, and gFS is the Fubini-Study metric.

Proof The proof follows from Corollary 1 for an Einstein manifold (B, gE) conformal to 
(B, gB) , by composing the map �◦Φ◦�H◦Υ obtained there with the conformal map from 
(B, gE) to (B, gB) .   ◻

4  Curvature of the image of a conformal submersion with minimal 
fibers

Unlike Riemannian submersions [16], conformal submersion do not yield any obvious 
pointwise estimates for curvatures of their images. The relations between curvatures of the 
domain and the image of a conformal submersion contain the dilation of the submersion 
and its (first and second) derivatives, which can be made arbitrary at a single point by com-
posing given submersion with a conformal diffeomorphism of its image. This part of the 
paper continues author’s previous work [24] to obtain some global curvature conditions for 
existence of conformal submersions with fibers of particular geometry.

Let � ∶ (M, g) → (B, gB) be a conformal submersion with minimal fibers. Recall the 
notation b = dimB . Using the formula from [21], we can express the mixed scalar curva-
ture Smix in the following way:

� = �◦�H = �◦�−1
◦�◦�H = �◦�◦Φ◦�H.

�∗gB = (�◦� )∗gB = � ∗�∗gB = � ∗gh = gFS.
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where h is the second fundamental form of the fibers (see Definition 3) and:

for any orthonormal basis {U1,… ,Uk} of the vertical distribution.
Let {X1,…Xb} be an orthonormal (with respect to g) basis of the horizontal distribution 

of � . Then, from (5), which holds for any conformal submersion, we obtain:

For minimal fibers and an orthonormal basis of the vertical distribution {U1,… ,Uk} , we 
have:

Using the above in (26), we obtain the following.

Proposition 2 Let � ∶ (M, g) → (B, gB) be a conformal submersion with minimal fibers 
and let {X1,… ,Xb} be an orthonormal basis of the horizontal distribution on M. Then, the 
following equality holds:

where � denotes the Laplacian on M.

Using similar formulas, some existence conditions were formulated for conformal sub-
mersions with totally umbilical fibers [24], in particular the following.

(25)Smix = −‖h‖2 − b�Vf +

b�

i,j=1

‖AXj
Xi‖2 − 2b‖V∇f‖2,

‖h‖2 =
k�

i,j=1

g(h(Ui,Uj), h(Ui,Uj))

(26)

KH = − 2(b − 1)

b�

i=1

Hessf (Xi,Xi) + b(b − 1)‖∇f‖2

− 2(b − 1)‖H∇f‖2 + e−2f (KB◦�)

− 3

b�

i,j=1

‖AXi
Xj‖2 + 3b‖V∇f‖2.

b∑

i=1

Hessf (Xi,Xi) =�f −

k∑

j=1

g(∇Uj
∇f ,Uj)

= �f − �Vf −

k∑

j=1

g(∇Uj
H∇f ,Uj)

= �f − �Vf +

k∑

j=1

g(H,H∇f )g(Uj,Uj)

= �f − �Vf .

(27)

KH =e−2f (KB◦�) − 3

b�

i,j=1

‖AXi
Xj‖2

− 2(b − 1)�f + 2(b − 1)�Vf

+ (b − 1)(b − 2)‖H∇f‖2 + b(b + 2)‖V∇f‖2,



202 Annals of Global Analysis and Geometry (2020) 58:191–205

1 3

Proposition 3 Let M be a closed manifold with non-positive sectional curvature. Then, 
there exist no conformal submersions with totally umbilical fibers from M onto a non-flat 
manifold of non-negative scalar curvature.

Below, we prove an analogous result: with the opposite signs of considered curvatures 
and for conformal submersions with minimal fibers.

Lemma 2 Let � ∶ (M, g) → (B, gB) be a conformal submersion with minimal fibers. For 
any integer c > 1 , the following differential operator acting on C∞(M) is elliptic:

If b > 2 , we have:

and if b = 2 , we have:

Proof Suppose that � ∶ (M, g) → (B, gB) is a conformal submersion with minimal fibers 
and assume that b > 1 . Then, (25) and (27) yield:

Since the fibers are minimal, we have at any point p ∈ M:

where vectors Ui , i ∈ {1,… , k} form an orthonormal basis of the vertical subspace at p. 
Hence, for all � ∈ C∞(M):

where vectors Ui , i ∈ {1,… , k} form an orthonormal basis of the vertical subspace and 
vectors Xj , j ∈ {1,… , b} form an orthonormal basis of the horizontal subspace. From (31), 
it follows that operators Lb are elliptic for b > 1 . Using the fact that for all vectors X ∈ TM , 
we have:

and rearranging terms of (30), we eventually obtain (28) for b > 2 and (29) for b = 2.

Lc = −2(c − 1)� − (c + 2)�V.

(28)

−
1

b − 2
e(b−2)fLbe

−(b−2)f =KH + 3Smix + 3‖h‖2 − e−2f (KB◦�)

+ 4(b − 1)‖V∇f‖2

+ (b − 1)(b − 2)‖∇f‖2,

(29)
L2f =KH + 3Smix + 3‖h‖2 − e−2f (KB◦�)

+ 4‖V∇f‖2.

(30)

KH + 3Smix + 3‖h‖2 − e−2f (KB◦�) = − 2(b − 1)�f − (b + 2)�Vf

+ (b − 1)(b − 2)‖H∇f‖2

+ b(b − 4)‖V∇f‖2.

�Vf =

k∑

i=1

Hessf (Ui,Ui),

(31)Lb� = −2(b − 1)

b∑

j=1

Hess�(Xj,Xj) − 3b

k∑

i=1

Hess�(Ui,Ui),

Hesse−(b−2)f (X,X) = −(b − 2)e−(b−2)fHessf (X,X) + (b − 2)2e−(b−2)f (X(f ))2,
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Proposition 4 Let (M,  g) be a closed Riemannian manifold of non-negative sectional 
curvature and let (B, gB) be a closed Riemannian manifold of non-positive scalar curva-
ture. If there exists a conformal submersion � with minimal fibers from (M, g) onto (B, gB) , 
then: 

1. (B, gB) is a flat manifold.
2. (M, g) is locally a metric product of a flat manifold and a manifold of non-negative 

curvature.
3. If b > 1 , submersion � has constant dilation.
4. If b = 1 , submersion � has dilation constant along fibers.

Proof By the assumptions on the curvatures of (M, g) and (B, gB) for b > 2 , we have from 
(28):

and for b = 2 , (29) yields:

Operators −Lb for b > 1 are elliptic and vanish on constant functions. Hence, they satisfy 
the strong maximum principle [5] and from inequality (32) or (33) and the assumption 
that M is closed, we obtain that f = const , and � ∶ (M, g) → (B, e2f ⋅ gB) is a Riemannian 
submersion. From the results on Riemannian submersions [4]—or (30) for f = 0—it fol-
lows that (B, e2f ⋅ gB) is flat, and hence, so is (B, gB) , as f = const ; fibers of � are totally 
geodesic, i.e., ‖h‖ = 0 , and all sectional curvatures on (M, g) of planes with at least one 
horizontal direction vanish.

The fundamental equation [16] for the Riemannian submersion � ∶ (M, g) → (B, e2f ⋅ gB) 
for horizontal, orthonormal vectors X and Y yields

from which it follows that A = 0 and the horizontal distribution is integrable and totally 
geodesic. Since the fibers of the submersion are totally geodesic, (M, g) is locally a metric 
product [8] of a flat manifold and a manifold of non-negative curvature.

For b = 1 , note that for a unit vector X in the only horizontal direction, we have:

Equation (25) yields:

and it follows that the dilation f is constant along the fibers of � , which implies in (34) 
that A = 0 . Again, we can consider Riemannian submersion � ∶ (M, g) → (B, e2f ⋅ gB) with 
1-dimensional (and hence integrable) geodesic horizontal distribution.   ◻

Corollary 3 There are no conformal submersions with minimal fibers from a closed mani-
fold of non-negative curvature onto a non-flat manifold with non-positive scalar curvature.

Together with Proposition 3, Corollary 3 yields the following.

(32)−
1

b − 2
e(b−2)fLbe

−(b−2)f ≥ 0,

(33)L2f ≥ 0.

sec(X, Y) = secB(�∗X,�∗Y) − 3‖AXY‖2,

(34)‖AXX‖2 = ‖V∇f‖2.

(35)�Vf = −Smix − ‖V∇f‖2 ≤ 0,
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Corollary 4 Let (M, g) be a closed Riemannian manifold and let � ∶ (M, g) → (B, gB) be 
a conformal submersion with totally geodesic fibers. If the sectional curvature of (M, g) 
and the scalar curvature of (B, gB) are of constant signs, then they are of the same sign.

If � ∶ (M, g) → (B, gB) is a conformal submersion, then � ∶ (M, g) → (B, e2�gB) is a 
conformal submersion for every � ∈ C∞(B) . For KB < 0 , inequalities (32), (33) become 
sharp and thus cannot be satisfied by any f ∈ C∞(M) on a closed manifold M. Hence, we 
obtain the following result.

Corollary 5 Let (B, gB) be a closed Riemannian manifold. If, in the conformal class 
of gB , there exists a metric with negative scalar curvature, then there are no conformal 
submersions with minimal fibers from a closed manifold (M,  g) onto (B, gB) , such that 
KH + 3Smix ≥ 0 . In particular, there are no conformal submersions with minimal fibers 
onto (B, gB) from closed manifolds with non-negative sectional curvature.

Note that from the existence of solutions to Yamabe problem, it follows that every class 
of conformal metrics has a metric of constant scalar curvature. Thus, the above corollary 
limits conformal classes of Riemannian manifolds that may be images of certain conformal 
submersions.
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