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COHERENT RISK MEASURES IN MULTIPERIOD
MODELS

Abstract. The framework of coherent risk measures has been introduced by Artzner et. al.
(1999) in a single-period setting. Here we present a similar model in a multiperiod context. We
add in axiom of dynamic consistency to the standard coherence axioms. We describe a set of
property of multiperiod model. We present recursive formulas for the computation of price bounds
and corresponding optimal hedges. We present a recursive formula for price bounds in terms of
choosing risk measures.
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I. INTRODUCTION

The seminal work of Artzner et al. (1999) on coherent risk measures is
focused primarily on supervisory applications. The axioms for acceptability that
were put forward by Artzner et al. differ from the ones that have been used
traditionally in statistical decision theory. Yet it is clear that the regulatory issues
can be formulated as decision problems, and moreover there are many other
situations where both the classical axioms of decision theory and the coherence
axioms adopted by Artzner et al. can be taken into consideration. One may for
instance think of capital budgeting decisions, the determination of premium for
insurance contracts, and the pricing of derivatives in incomplete markets.

The coherence axioms in Artzner et al. (1999) lead to risk measures of the
form

pX) = sup E(X) (L.1)

PeP

where X is a function from a (finite) set to R, and P is a class of probability
measures on Q. Actually, the paper Artzner et al. (1999) uses risk measures
rather than acceptability measures. We changed the terminology here to
facilitate comparison with common formulations in decision theory, and also to
stress the applicability of the same notion in different contexts. The difference
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between the risk measures p(X) of Artzner et al. (1999) and the acceptability
measures @ X) used here is just a change of sign (#X) = —p (X)). For simplicity
reasons we change discounting. Artzner et al. (2003) use the term “risk adjusted
values” for what we call acceptability measures. We may compare this notation
to the criterion obtained from a set of decision-theoretic axioms. This criterion
corresponds to a utility specification of the form

UX) = sup E(u(X)) (1.2)

PeP

where X and P are defined as above, and where u(*) is a utility function. The
interpretation given by Gilboa and Schmeidler to the class of probability
measures P, and which their axiom system is designed to reflect, is that this class
represents ambiguity in the sense of Ellsberg (1961). There is no explicit appeal
to ambiguity in Artzner et al. (1999).

II. SINGLE-PERIOD SETTING

Here we briefly review the axiomatic setting for risk measures that was
proposed by Artzner et al. (1999), with some (simple) modifications:
acceptability measures can be used instead of risk measures, and we do not
consider discounting. Let Q be a finite set, say with »n elements. The set of all
functions from Q to R will be denoted by X(L2). An element X of X(Q) is
thought of as a representation of the position that generates outcome X(w) when
the state @ € Q arises. An acceptability measure defined on is a mapping from
X(Q) to R.

The number p(X) that is associated to the position X € X(Q) by an
acceptability measure ¢ is interpreted as the “degree of acceptability” of the
position X. An acceptability measure ¢ is said to be coherent if it satisfies the
four axioms, similar to coherent risk measures.

Definition 2.1.

An risk measure p. L*> — (-oc,oc) is said to be coherent if it satisfies the
following four axioms '

a) translation property:forallc e R, p(X+cr)=p(X)—c

b) superadditivity:p (X + Y) < p (X) + p(Y), forall X, Y € L?

¢) monotonicity: X, Y € L, if X <Y, then p (Y) < p (X)

d) positive homogeneity:X € L? and A > 0, p (AX) = Ap (X)

2= LZ(Q, A, P) for probability space (Q, 4, P)
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Theorem 2.1 (Artzner et al. (1999)
An risk measure p defined on a finite set is coherent if and only if there
exists a family P of probability measures on such that, for all X € X(Q)

2(X) = sup E(X) (2.1)

PeP

If an acceptability measure ¢ satisfies (2.1), it is said to be represented by the
family P of probability measures, and the probability measures in the collection
P are sometimes referred to as “test measures” for ¢. The above theorem can be
generalized to the case of infinite sample spaces € if either the representation by
probability measures is replaced by a representation in terms of finitely additive
measures, or a continuity property is added to the coherence axioms (see
Delbaen (2002).

If ¢ is a coherent acceptability measure, then ¢(cl) = ¢ for all ¢ € R; this
follows from the axiom of positive homogeneity (which implies #0) = 0) and
from the translation property. For convenience we introduce a separate term for
this property.

Definition 2.2 An acceptability measure ¢ on a sample space Q is said to be
normalized if ¢ (c1) =c forall c € R.

In particular, if the set Q consists of only one element ®, then the only
normalized acceptability measure is #X) = X(w). The case in which all
uncertainty has been resolved will be used below in the multiperiod context as
a starting point for backward recursions.

III. MULTIPERIOD SETTING

We now pass to a multiperiod setting. To keep the context as simple as
possible we still work with a finite sample space (following Artzner et al.
(1999) and Carr et al. (2001)), but we consider each sample now as a discrete-
time trajectory. We begin with introducing some notation and terminology that
will be needed below.

Let T be a positive integer indicating the number of time periods over which
we consider our economy. Let A be a finite set which we shall refer to as the
“event set.” This terminology is appropriate in particular for tree models; for
instance in binomial models the event set consists of two elements (“up” and
“down”). The framework that we use below applies equally well however to
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models obtained from discretization of a continuous state space, where A would
rather be thought of as a representation of a grid in the state space.

Define Q as the set of all sequences (a, . . . , or) with a; € A; we refer to
such sequences as “full histories.” The collection of sequences (a., . . . , ot ) of
length t (1 £t <T) will be denoted by €, .

Foro=(ay,...,o0r) € Qand 1 <t < T, define the ¢ - restriction » | :as (o,
..., o). If a sequence ®” = (ay, . . ., o) is a prefix of ® € Q we write ® < ©.

The collection of all sequences beginning with a given sequence F(®’) is
denoted by F(®’) :=={® € Q| ® < o }. We denote by F, the algebra generated
by the sets F(®’) with @’ in the set €, of sequences of length exactly t ; in the
present setting in which we have a finite sample space, this is of course the same
as the o-algebra generated by these sets. We write Q’ the sum of the set of all

sequence of length at most t: Q° = UQ, and we write Q”’:= Q’;. In the

1<i<t
context of a non-recombining tree model, there is a one-one relation between the
elements of Q’ and the nodes of the tree. The elements of Q correspond to final
nodes, and those of Q’’ to pre-final nodes.

Multiperiod acceptability measures

Consider a sequence space € as defined in the previous subsection. In the
multiperiod setting, the acceptability of a given position should be considered
not only as a function of the position itself, but also as a function of available
information.

We still define a “position” as a mapping X from Q to R. Such a mapping
may be restricted to the set F(®”) consisting of all sequences beginning with ®’.
The restricted mapping X|r. defines a position on F(w’). We extend slightly
the definition by acceptability measures that was given before by allowing that
the degree of acceptability of a given position can be 1. So, an acceptability
measure on F(®’) is a mapping from F(w’) to the extended real line R U {o0}.

Definition 3.1
A multiperiod acceptability measure on the sequence space ( is a mapping
that assigns to each partial history ®’ € €0’ an acceptability measure on F(®’).

The acceptability measure on F(w’) that is provided by a multiperiod
acceptability measure will be denoted by &(- | ®’); the element of the extended
real line associated by this mapping to a position X on F(®’) is denoted by (X |
®’). When X is a position on €, we also write X | ®”) instead of K X] p | ®”).
The situation at the initial time is represented by the sequence of zero length;
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instead of p (X | 0), we write p (X). Under the normalization condition (Def.
2.2), we have g(X | ®) = X(w) forallo € Q.

We say that a multiperiod risk measure is coherent if all partial-information
acceptability measures p (- | ®”) are coherent on F(®’).

This implies in particular that, for all positions X and Y and for all partial
histories ®’, the following holds:

ifpX|o)<p(Y|w)forall® < o, then p(X|0)<p(Y]|w®). (3.1)

We shall say that a multiperiod risk measure satisfies the stepwise
monotonicity condition if the following condition holds for all positions X and Y
and for all partial histories

o e Q”

ifpX|oa)<p(Y|owa)foralla e A,then p(X |0 )< p (Y |®) (3.2)

The example below shows that there exists situations in which the
monotonicity property (3.1) is satisfied but the stepwise monotonicity property
(3.2) does not hold.

Example 3.1
Consider a two-period binomial tree; that is, let A = {u, d} and Q = {uu, ud,
du, dd}. Specify an acceptability measure for products on by

#(X |0) = inf E, (X|o)

where P, is the probability measure that is obtained by assigning probability 0.6
to a u event and 0.4 to a d event, and P, is obtained by reversing these
probabilities. Clearly, ¢ is a coherent multiperiod acceptability measure.
Consider a position X that pays 100 if ud or du occurs, and that pays nothing
otherwise (a “butterfly”). As is easily computed, we have ¢ (X) = 48 whereas ¢
(X |u) = ¢ (X |d)=40. Comparing the position X to the position Y that pays 44
in all states of nature, we see that ¢ is not stepwise monotonic.

Some of authors (see Wang (2003)) use the term “dynamic consistency” for
essentially the property that we refer to here as stepwise monotonicity. To define
the notion of dynamic consistency on the basis of a stronger premise, which may
this property easier to establish in some cases. The notions of stepwise
monotonicity and dynamic consistency are actually the same under the
coherence assumption.
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Definition 3.2

A multiperiod risk measure p defined on a sequence space Q is said to be
dynamically consistent if for all partial histories ©’ € €’ and all positions X and
Y we have

ifpX|owa)=p(Y|owa)foralla e A, then p(X|0)=p(Y|®’)

Proposition 3.1.
A coherent multiperiod acceptability measure is dynamically consistent if
and only if it is stepwise monotonic.

To each ®’ € ©’’, one can associate a single-period economy in which the
events that may occur (equivalently, the states of nature that may arise after one
time step) are parametrized by the event set A. A single-period position is
a mapping from A to R. A single-period acceptability measure assigns real
numbers to single-period positions.

Let a multiperiod acceptability measure ¢ be given. For any partial history
®’ € ’°, one can generate a position Xy on F(®’) from a given single-period
position Y : A — R by defining

Xy (@)=Y (0’a)ifo’a < o. 3.3)

In this way we can introduce for each ®’ € Q’’ a single-period acceptability
measure denoted

by ¢ o'
bo Y = d(Xy [ @) (3.4)
The following lemma is easily verified directly from the coherence axioms.

Lemma 3.1.
If ¢ is a coherent multiperiod acceptability measure, then all single-period
acceptability measures ¢, derived from ¢ are coherent as well.

Given a product X on the sequence space and a multiperiod acceptability
measure @, we can define for each partial history a single-period position #X |
®’) in the following

way:

PoXy @) 1o = ¢(X|0’'a) (3.5)
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Since this is a single-period position, its acceptability may be evaluated by
means of the p,-. If ¢ is dynamically consistent, we have

P(X[07)= g (§(X|07). (3.6)

This implies that the multiperiod acceptability measure ¢ can be described in
terms of the conditional single-period acceptability measures ¢, .

IV. PRICING IN INCOMPLETE MARKETS

The main purpose of this section is to obtain price bounds for derivative
products in incomplete markets. For this purpose we suppose that an
acceptability measure (i.e. a collection of test measures) has been selected in
a sufficiently conservative way so that, in a straightforward extension of the
standard arbitrage argument, any opportunity that is acceptable according this
measure would be quickly eliminated in the market. After this adjustment has
taken place, the price of any asset must be such that it is not possible to create
acceptable opportunities by means of any admissible portfolio strategy. We aim
to compute the resulting price bounds explicitly.

We assume that n basic assets are present in the market, whose prices are
described by a function S: Q’— R" For each 0 < t < T, an F-measurable
function S; : Q— R" is defined by S¢(®) = S(® |;). A trading strategy is a function
from Q’ to R", interpreted as a rule that assigns to each partial history ®’ € ’
a position in the basic instruments.

If g: Q’— R" is a strategy, we write g(®) = g(o |). Each trading strategy
defines a position, namely the total result of the strategy which is given by

T-1 r
H® = E)gt (St+1 _St) (41)

for a self-financing strategy with zero initial investment. Given a basic
acceptability measure ¢, we define the acceptability measure of a position X
subject to a strategy g by

¢*(X) = ¢ (X + H®) (4.2)
Let us assume that a nonempty set G of allowed hedging strategies has been

fixed. We can then define, for any position X, the optimal degree of
acceptability taking hedging into account:
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o' (X) = sup $4(X). (4.3)
geG

Consider first, as in Carr et al. (2001), a single-period economy with traded
assets S°, . .., S” and with a collection P of probability measures on the finite set
Q of states of nature. The price of asset i at time t (t =0, 1) is given by S’ ; S is
the numeraire which always has price 1.

The economy is said to allow strictly acceptable opportunities if it is
possible to form a strictly acceptable portfolio at zero cost; that is, if there exist
portfolio weights ay, . . . , a, such that

EpiaiSi >0, forallP e P
i=0

E,>asS, >0 forsomeP e P
i=0

Carr et al. (2001) have argued that if a collection of test measures is chosen
sufficiently large so as to reflect a widely held market view, it can be assumed
that there will be no strictly acceptable opportunities in the economy. The NSAO
condition (“no strictly acceptable opportunities™) is a stronger requirement than
absence of arbitrage, and in incomplete markets it therefore leads in general to
tighter bounds on prices of contingent claims than would be obtained by the no-
arbitrage condition alone.

In a multiperiod setting, we interpret the NSAO condition as the requirement
that no self-financing investment strategy with zero initial cost should produce
a strictly acceptable result. It is easily verified that a necessary condition for the
NSAO condition to hold for a given multiperiod economy is that each of the
associated single-period economies should be free of strictly acceptable
opportunities. As can be seen from simple examples, however, this condition is
not sufficient.

Example 4.1

Consider the two-period binomial tree of Example 3.1 again, with the same
collection of two test measures. Suppose there are two assets S and B. The value
of B is always 100, whereas for S we have

S(0) = 100, S(u) = 110, S(d) = 90,
S(uu) = 120, S(ud) = S(du) = 100, S(dd) = 80.
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It is easily verified that none of the single-period economies derived from
this model allows strictly acceptable opportunities. Now consider the dynamic
strategy that is defined as follows. Take no position at the initial time; at time 1,
take a position 1 in the asset S (and —1.1 in B) if an “up” movement occurs, and
take the opposite position (and 0.9 in B) if a “down” step takes place. The
expected result of this strategy under test measure P is

0.6-(06-10+04-(-10))+0.4-(0.6-(-10)+0.4-10)=0.4
while under P, we find
04-(04-10+0.6-(-10))+0.6-(0.4-(-10)+0.6-10)=0.4.

So the expected result is positive in both cases; the “momentum” strategy
creates a strictly acceptable opportunity.

CONCLUSIONS

We have considered the multiperiod extension of the notion of coherent risk
measures as introduced by Artzner et al. (1999). Our main conclusions are that
the addition of a dynamic consistency axiom leads to a simple and attractive
characterization of coherent dynamic acceptability measures, and that the
framework obtained in this way allows characterizations of price bounds for
derivative assets in incomplete markets that are natural counterparts of the well-
known results for the complete market case.

We have worked within the simplest possible setting that allows
consideration of partially revealed information and dynamic hedging.
Interpreting our results from a continuous-time perspective, one might say that
the product property would favor approaches that measure discrepancy between
models in terms of an entropy rate. In the absence of axiomatic underpinnings of
continuous-time utility specifications, however, it remains difficult to make any
definitive statements. In this paper we have worked with the axiom of positive
homogeneity, following Artzner et al. (1999).
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Grazyna Trzpiot
KOHERENTNE MIARY RYZYKA W MODELU DYNAMICZNYM

Podstawy teorii koherentnych miar ryzyka byly omowione w pracy Artzner i in. (1999)
w ujeciu statycznym. Przedstawimy analogiczny model w podejsciu dynamicznym z czasem
dysktretnym. Zapiszemy standardowe aksjomaty definiujace miary koherentne dynamicznie.
Omowimy wlasnosci przedstawionego modelu oraz pokazemy mozliwos¢ wykorzystania modelu
do zabezpieczenia pozycji finansowej wykorzystujac wybranag klas¢ miar ryzyka.



