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ESTIMATION OF A QUANTILE USING PARETO
SAMPLING SCHEME

Abstract. One of most common methods of utilizing available auxiliary information to
improve stochastic properties of estimates for simple population parameters such as population
total or population mean relies on drawing population units to the sample with individual inclusion
probabilities proportional to known values of auxiliary variable. This leads to the construction of
various non-simple sampling schemes. This paper focuses on properties of population quantile
estimates when Pareto sampling scheme is used. Simulation results are presented.
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I. INTRODUCTION

Consider a finite population U of size N. Let Y be some characteristic taking
fixed values yy,...,yn for population units. The aim of the survey is to estimate
various population parameters including the population total t = Zyi, the

icu
population mean Y = t, /N or the population quantile of the order p (or p-

quantile):

Qp(U) = (1-2)ymytgyae (h

where k=[r], g = r-[r], =N-p+0.5 while y(,...,yn, denote values of Y in U
arranged in increasing order and the symbol [.] represents rounding down to the
nearest integer (Gilchrist 2000). A random sample s of size n is drawn from U
according to some general sampling design p(s) determining inclusion
probabilities of the first order m; for ieU and inclusion probabilities of the
second order m;; for i£ €U. The population total may then be estimated without

bias by the well-known Horvitz-Thompson estimator fy = ZL For fixed-
ies Tci

size sampling designs its variance may be expressed by the formula (Yates and
Grundy (1953)):
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This obviously suggests that the variance will be reduced if first order
inclusion probabilities are proportional (or approximately proportional) to Y.
And hence the values of Y are unknown, it is often attempted to set w;’s
proportional to some other, observed characteristic X taking fixed values x,...,Xxn
for all population units. At the same time it is necessary to guarantee the fixed
sample size in order for the expression (2) to be valid (otherwise another term
associated with sample size variability would appear in the variance formula).
Several sampling schemes were constructed to simultaneously satisfy both these
requirements, including the scheme of Lahiri-Midzuno, Hartley-Rao,
Rao-Hartley-Cochran or Sunter (Bracha (1996)). In this paper a Pareto sampling
scheme is considered. It aims to achieve first-order inclusion probabilities equal

to T, =nx i( ZX ; )_l for ieU. If this desired inclusion probability is greater
jeu

than one for some population unit then it is set to one and inclusion probabilities
for remaining units are recomputed accordingly (this is repeated for other units if
necessary). The sampling procedure is executed in two steps. In the fist step
a pseudo-random variable u; following the uniform distribution on the <0,1>
interval is generated for each population unit. Then the following expression is
evaluated for each population unit:

u. (1-m.
q, = =) )
w,(1-u,)

In the second step n population units having lowest values of q; are selected
to the sample s. This guarantees constant sample size. It has been shown by
Rosen (1997) that such a procedure also provides true first order inclusion
probabilities approximately equal to desired ones. Let us also note that exact
inclusion probabilities of the first and second order may be computed according
to the procedure considered by Aires (2000).

II. QUANTILE ESTIMATION FOR NON-SIMPLE SAMPLES

For a simple sample an often used estimator of the population quantile is its
sample analog, computed according to the formula:
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Q, (8)=(1- g’)yzk') +g' yzk'ﬂ) “

where k' =[r'], g'=1"—[r'], t"=n-p+0.5 while y{;,..., y(,, denote values

of Y in s arranged in an increasing order (Hyndman and Fan (1996)). However,
Pareto sampling leads to underrepresentation of units with relatively low
Y-values in the sample which distorts the distribution of the sample quantile.
A positive bias is introduced that does not diminish with growing sample size.
Hence, for non-simple sample we consider another estimator of the p-quantile,
constructed following the general re-weighting approach outlined by Sérndal et
al (1992). It takes the form:

p—W(k)
Wk +1)— W(k)

Q. (s)= yzk) + (yzkﬂ) - yzk)) (5)

where

k-1

W) =D w, +0.5-w, (6)
i=l1

and W(k)<p<W(k+1) while wy,...,wm represents an arranged in increasing
order sequence of weights w,..,w, corresponding to respective sample units and

computed as:
-1
-1
W, :(ni E T J

jes

For simple sample we have wi=n"' for ieU and this estimator is equivalent to
(4). For non simple samples these estimators are generally not equivalent.

I11. SIMULATION STUDY

A simulation study was carried out to compare empirical distributions of
quantile estimators for simple random sampling without replacement and non
simple samples drawn using Pareto scheme. The well-known RMT284
population published by Sirndal et al (1992) and characterizing Swedish
municipalities represented the population under study. The variable under study
Y was the revenue from municipal taxation in 1985 (variable RMT&85) while real
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estate values in the year 1984 (variable REV84) were used as an auxiliary
variable X. Histograms illustrating the empirical distribution of 10° estimates of
the p-quantile for p=0.25 and p=0.5 are respectively shown on pic. 1. and 2.
Black vertical lines on all these graphs represent true values of the estimated
quantile.
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Pic.1 Empirical distributions of quantile estimators for p=0.25
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Pic.2 Empirical distributions of quantile estimators for p=0.5

The graphs above show the extent of distortion in the quantile estimates
when uncorrected estimator is used with Pareto sampling scheme. It is also

evident, that the correction introduced in the estimator Q .(s) substantially

reduces this unwelcome effect. It is worth noting that the empirical distribution
of estimates is quite irregular despite large number of simulated sample
replications — this is due to the irregular structure of the whole population.

The dependency of the relative bias (RB), relative root mean square error
(RRMSE) and the share of bias in overall mean square error (BS) is illustrated
on pic. 3.
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Pic. 3. Relative bias (RB), relative root mean square error (RRMSE) and the share of bias in the
total mean square error (BS) of estimators as a function of sample size n.

For the corrected estimator under Pareto sampling all the observed
parameters: RB, RRMSE and BS decrease with growing n and take lower values
than their equivalents for the uncorrected estimator. The latter is also
characterized by increasing bias share when n grows. Anyway, the simple
random sampling with replacement provided the most attractive properties of
estimators for any value of n, although its advantage over the corrected estimator
was modest or (for large samples) negligible.
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IV. CONCLUSIONS

Simulation results clearly confirm that under Pareto sampling the corrected
estimator of the p-quantile has better properties than the uncorrected one and
should be preferred. The observed relative bias of the corrected estimator and its
share in the MSE apparently tend to zero with growing sample size which
suggests consistency. However, Pareto sampling did not lead to any gains in
terms of precision when compared to simple random sampling. Instead, some
modest loss of precision was observed. The considered estimator does not utilize
explicitly any auxiliary variables. However, the application of such data could
lead to construction of better quantile estimators based on model-based approach
considered for example by Chambers and Dunstan (1986), Rao, Kovar and
Mantel (1990), or Rueda et al. (2004)
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ESTYMACJA KWANTYLI Z WYKORZYSTANIEM SCHEMATU
LOSOWANIA PARETO

Jedna z popularnych metod wykorzystywania dostgpnych informacji o wartosciach cech
pomocniczych do poprawy doktadnosci oszacowan wartosci globalnej lub $redniej w populacji jest
losowanie prob z prawdopodobienstwami inkluzji pierwszego rz¢du proporcjonalnymi do wartosci
cechy pomocniczej. Podejscie takie prowadzi do konstrukcji rozmaitych schematéw losowania,
taich jak schemat Lahiriego-Midzuno, Hartleya-Rao, Rao-Harleya-Cochrana, Suntera, czy tez
Pareto. W niniejszym artykule zbadano empirycznie, jak zastosowanie ostatniego z wymienionych
schematow losowania proby wplynie na wlasnosci stochastyczne uzyskiwanych oszacowan innego
parametru, a mianowicie kwantyla.



