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SIMILARITY AS DISTANCE: THREE MODELS  
FOR SCIENTIFIC CONCEPTUAL KNOWLEDGE

1. Introduction

Starting with Minsky (1975) and more widely recognized since Barsalou 
(1992), (dynamic) frames have become a well-accepted tool to model conceptu-
al knowledge. We begin our comparison with its predecessor model, the feature 
list, and trace its development into the (dynamic) frame model. Subsequently, 
we summarize extant frame-style reconstructions of taxonomic change as a par-
adigmatic application within history and philosophy of science, thus addressing 
the incommensurability of frameworks, or world-views, from a cognitive histor-
ical perspective.

We hold that a frame is a sophisticated feature list whose application central-
ly supports the claim that historically successive taxonomies are comparable. But 
we criticize that the frame model yields little insight be yond taxonomic change. 
Introducing conceptual spaces as an alternative model, we discuss dimensions, 
their combinations, how to recover frames by analogue expressions, similarity as 
geometric distance across diachronically varying spaces, and the status of scien-
tific laws.

2. Feature lists, frames, spaces

Originating in Aristotelian philosophy (Taylor, 2003), the feature list con-
stitutes both an entrenched and a somewhat outdated tool for reconstructing 
conceptual knowledge. Paradigmatically in stan tiated by taxonomic knowledge, 
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e.g., in biology, it can be summarized by three assumptions: (i) the representation 
of a concept provides a summary of the class of its instances (i.e., the things falling 
under the concept); (ii) the binary features representing a concept are individu-
ally necessary and jointly sufficient to define the concept; (iii) features are nested 
in subset relations such that, if concept X is a subset of concept Y, then the defin-
ing features of Y are nested in those of X. Such features are regularly referred to as 
defining or essential (see Kuukkanen, 2006: 88).

On the classical view, combinations of binary features (aka attributes) pro-
vide a definition of that which falls under, or instantiates, a concept if and only if 
the features are present in, or true of, the thing. Features are normally rendered 
in natural lan gu age, typically by nouns or adjectives. The classical example sees 
MAN being analyzed as [+biped, +rational, +animal]. Standardly, problems arise 
upon observing, for instance, that a Para-Olympic athlete may thus fail to instan-
tiate MAN – which is somewhat absurd. Short of allowing ad hoc modifications, 
or throwing individually necessary and jointly sufficient fea tures over board, 
however, the absurdity is not easily re me di ed. The model’s merits are worlds 
neatly cut along the patterns that such features generate, where the choice of fea-
tures may always be a matter of convention, and particular conventions may be 
contingent upon contexts. To categorize champagne, vodka, fruit juice, and soda 
water, for instance, why not borrow from che mi stry and use [+/–C6] alcohol, 
[+/–CO2] carbon-dioxide.

Barsalou and Hale (1993) demonstrate that feature lists contain rich rela-
tional information, primarily with respect to truth, as at tri butes count as true or 
false of a thing. Secondly, whatever a feature names, if true of the thing, will name 
one of its aspects. Thirdly, as set-members, a concept’s defining features obey the 
logical relation of conjunction, just as several concepts obey ex clu sive disjunc-
tion. Fourthly, contingent relational information may be read off a feature list, 
thus allowing for strict or probabilistic predictions such as: consumers of items 
in the +C6 category (likely) need a designated driver. Finally, nesting of concepts 
accounts for the analytic character of “A bachelor is a man”, as BACHELOR, 
when analyzed as [+man], [–married], is subordinate to MAN.

Exemplar and (weighed) prototype models are mathematically refined 
extensions of the feature list model that seek to remedy the absurdity of the 
Para-Olympic example, above. They are in part motivated also by empirical 
investigations into human categorization (Labov, 1973; Rosch et al., 1976; see 
Jaeger, 2010) which strongly suggest that humans do not, invariably across con-
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texts, categorize via necessary and sufficient features. Whether all models operate 
at the symbolic level, i.e., presuppose an explicit language, may be debated. Such 
refined models, at any rate, remain ground ed in feature lists, but abandon the 
strictness with which the (possibly weighed) presence of features projects into 
category-mem bership. So in principle, but see below, considerations of similarity 
rather than identity may govern concept boundaries (see Barsalou, Hale, 1993: 
103–124).

The above relations give rise to the frame model of concepts, introduced in 
the next subsection. Generally, the frame model qualifies as an extension of the 
traditional feature list, reached by allowing non-binary features (such as large, 
medium, small) and the relations of constraint and invariance. 

2.1. A frame is a sophisticated feature list

When one suspends the additional elements introduced by frames, and 
moreover restricts attributes to binary values, then the frame model collapses into 
the feature list model, rather than approximating some model analogous to it. 
This should become clear when appreciating that frames may be stepwise gener-
ated from feature lists.

The first step beyond feature lists requires understanding a feature as the 
value of some attribute. For example, [+blue], [+green] are binary values of 
the attribute “color” and [+long], [+round] are binary values of the attribute 
“shape”. The additional structure (above that of feat ure lists) consists in using 
more than two values to define an attribute, i.e., allowing such values to be n-ary. 
Therefore, an ad di tion al relation (which a feature list model does not allow to 
re pres ent) is that between an attribute and its value(s), called the type-rela-
tion (informally: the is-a relation) such as “square” is a type of shape, “blue” is 
a color, etc. In a second step, one takes attributes to display structural invari-
ants which “specify relations between attributes that do not vary often across 
instances of a concept” (Barsalou, Hale, 1993: 125). Moreover, and in con-
trast, constraints represent relations be tween attribute va lues “which instead 
vary widely across the instances of a concept” (ibid.: 125). One thus reaches 
the notion of a simple frame, defined as “a co-occurring set of multi-val ued 
attributes that are integrated by structural invariants” (ibid.: 126), such that 
constraints hold across values and “produce systematic variability in attribute 
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values” (Barsalou, 1992: 37). For instance, a com pa ra tive ly slim person will 
normally not be heavy (relative to her height). In combination with structural 
invariants, then, constraints generate structure for the purpose of re pre sent ing 
a concept(-instance), giving rise to the notion frame-pattern. Both constraints 
and structural invariants take on a pivotal role in reconstructing scientific con-
ceptual change (see below).

The main advantage that the frame model can so far claim over feature lists is 
that “the addition of ‘attribute-va lue relations’ and ‘structural invariants’ increas-
es their expressiveness substantially” (ibid.: 127), once given the means to mod-
el both stable and variable re lat ions across attributes and values. Consequently, 
one may view the representation of a con cept to proceed primarily via structural 
invariants and constraints. Structural invariants, as it were, tell us which attri-
butes (are likely to) collect, or bind, into a concept, and constrained values iden-
tify concept instances.

In a final step, by recursion, the components used in conceptual representa-
tion (i.e., attributes, values, structural invariants and constraints) are taken to be 
represented not by linguistic means (“words”), but by fra mes: “[T]his recursive 
process can continue indefinitely, with the components of these more specific 
frames being represented in turn by frames them selves” (ibid.: 133). Whenev-
er conceptual knowledge shall include not just things, but also relations (such 
as is-part-of, or requires), again, frames are employed recursively: “At any level 
of analysis, for any frame component, there is always the po tential to note new 
variability across exemplars of the component and capture it in a still more spe-
cific frame” (ibid.: 134). So there is no principled limit to finding new attributes, 
“simply by noting variance across the component’s ex em plars and representing 
this variance with a new attribute-value structure” (ibid.: 133f.). Such recursion 
results in the more specific structure representing the less specific one, while 
retaining a symbolic representation nevertheless. After all, both attributes and 
values are primarily identified through natural language terms. We return to this 
aspect when comparing frames to conceptual spaces, which is a non-symbolic 
model, below.

A frame’s attributes and values normally arise empirically from querying 
experimental participants. The choice of attri butes, supposedly, is always influ-
enced by “goals, experience and intuitive theories” (Barsalou, 1992: 34). The 
examples discussed in the literature therefore count as partial representations, 
including event frames (aka scripts), which are sequential adaptations of the ob-
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ject-frames discussed here. In the scientific case, the identification of attributes, 
values, etc. is based on the material under study, and so will draw on science his-
torical work, but itself constitutes a more a systematic contribution to the philo-
sophy of science. 

2.2. Applying frames to taxonomic change

To further appreciate the frame model, a simple example from ornithology 
may be helpful. Based on Chen (2002), it does without iteration, employs binary 
features, and concerns the late 18th century discovery of a South American spe-
cies of bird (commonly called “screamer”) that “has webbed feet like ducks but 
a pointed beak like chickens” (ibid.: 7). This particular combination of features 
was “not allowed”, and so constituted an anomaly to the then-standard taxon-
omy of Ray (1678). The misfit violated the constraint that the attributes foot 
and beak always go together. “This anomaly forced [ornithologists] to alter the 
frame of bird and the associated taxonomy, because it made a very important 
constraint relation between foot and beak invalid” (Chen, 2002: 7). Figures 1 and 
2 illustrate partial frames of the predecessor taxonomy by Ray (1678), and the 
re vised taxonomy by Sundevall (1889), respectively. Notice that, to distinguish 
WATER from LAND-BIRD, Ray’s taxonomy employs the attributes beak (val-
ues: round or pointed) and foot (webbed or clawed), connected by a structural 
invariant (double-headed arrow); see Chen (2002: 5).

Fig. 1. Partial frame for Ray’s (1678) bird concept (Chen, 2002)
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Fig. 2. Partial frame for Sundevall’s (1889) bird concept (Chen, 2002)

The historical transition between the representations in figures 1 and 2 is 
standardly interpreted as a redefinition of the con cept BIRD. To frame-theorists, 
moreover, the example demonstrates scientific taxonomic change to be recon-
structable as a motivated revision.

Sundevall’s bird no longer entails a constraint relation between beak and foot; instead, new 
constraint relations are formed between foot and plumage, as well as between foot and leg 
covering. [T]hese are physical constraints imposed by nature, resulting from the adaptation 
to the environment. The new superordinate concept inevitably alters the taxonomy by ex-
panding the conceptual field at the subordinate level. (Chen, 2002: 8)

Further contrasting fig. 2 with the successor taxonomy developed by 
Gadow (1893), in fig. 3, the subsequent transition to it may be interpreted 
as a more radical shift than that from Ray’s to Sundevall’s. After all, “Darwin 
discovered that species are not constant, and therefore affinity among species 
must be founded on their common origin” (Chen, 2002: 12). Gadow’s taxon-
omy, moreover, had been developed in response to Sundevall’s which “empha-
sized the dissimilarities between screamers and waterfowl” (ibid.: 12) rather 
than their similarities.
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Fig. 3. Partial frame for Gadow’s (1893) bird concept (Chen, 2002)

Except for the attribute feathering arrangement, Gadow’s attributes pick 
out (radically) different morphological features than those in figures 1 and 2. 
Each attribute, moreover, is connected by a constraint. Constant across the three 
taxonomies remains the use of body parts, motivated by their cog nitive salience 
(Tversky, Hemenway, 1984; see Chen, 2002: 16f.). 

2.3. Frames and historical scientific change

The reconstruction and comparison of taxonomies as partial frames has 
been carried out with particular regard to Kuhn’s (1970) in com men su ra bi lity of 
taxonomies.1 Contra Kuhn, a frame-reconstruction is said to provide some form 
of comparability. Firstly, applying the frame model facilitates a re presentation 
that helps explain why Sundevall’s and Gadow’s taxonomies are mutually incom-
men surable: the pair violates Kuhn’s no overlap-prin ciple for kind terms (Kuhn, 
1993; Chen, 1997). The no-overlap principle can be rendered as “concepts 

1 Further applications of the frame model to scientific change can be found, among others, 
in Andersen, Barker and Chen (1996); Chen et al. (1998); Chen (2003, 2005); Chen and Barker 
(2000), and the book-length Andersen et al. (2006). Cases range from the wave vs. the particle 
theory of light, over astronomy and nuclear physics, to the transition from Maxwell’s to Einstein’s 
conception of electro-dynamic action. The latter is briefly discussed below.
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belonging to the same subordinate group cannot overlap in their referents” (Bark-
er et al., 2003: 226). This, in turn, shall also help explain why “communication 
obstacles were bound to occur between the followers of the two systems […] 
who could not find an equivalent native term with referents that do not overlap 
those of the for eign one” (Chen, 2002: 9). Secondly, in developing a consensus 
on the super iority of Gadow’s taxonomy over Sundevall’s, the scientific commu-
nity of orni tho logist could chose in an instrumentally rational way – or so the re-
con structive method supports – be cause both Gadov and Sundevall used spatial 
features (body parts). Hence, contrary to the in com parability-interpretation of 
“in com men sur able” – being one the mature Kuhn had come to reject (Chen, 
1997; Kuhn, 1983; Hoyningen-Huene, 1993; Zenker, Gärdenfors, 2015) – cri-
teria could have been ra tio nal ly compared. Therefore, “the preference for spatial 
features in attribute selection could have functioned as a cognitive platform for 
the rational comparison of the Sundevall and the Gadow systems […]” (Chen, 
2002: 18).

Allegedly incommensurable taxonomies, thus, may have cut nature along 
different features, but it were spatial features nevertheless. Such cuts, therefore, 
need not result in incomparable taxonomies despite viol ating the no-overlap 
prin ciple. Consequently, historical transitions between taxonomies that prima 
facie support the in com men su ra bility thesis (because a given pair of taxono-
mies is thought to undermine choice-rationality whenever it consists of mu-
tually incomparable alternatives) may – namely upon comparing their fra me 
reconstructions – turn out to be either reconcilable with, or in violation of, one 
or more standard maxims of choice-rational action, e.g., a mini-max principle 
(see Zenker, Gärdenfors (2015) on choice-rationality vs. communicative ra-
tionality in scientific change). This result, Chen suggests, draws on distinctly 
cognitive mechanisms.

[T]axonomic change is rooted deeply in the cognitive mechanisms behind the processes 
of classification and concept representation. These cognitive mechanisms determine the 
process of mutual understanding and rational comparison during taxonomic change. In 
fact, the cognitive platforms for rational comparison identified in our historical cases, that 
is, compatible contrast sets and attribute lists, were the products of such cognitive mecha-
nisms as the relational assumptions adopted in classification and the preference for body 
parts developed in concept representation. (Chen, 2002: 19)

We now turn to some aspects of the critical reception of the frame model.
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2.4. Incomparability and non-translatability

As Stanford (2008) observes, although they are presumably fine for de-
scriptive purposes, frames do not appear to improve our understanding of in-
commensurable world-views as cognitive phe no mena. But a slightly more drastic 
consequence might obtain. As far as taxonomic knowledge is concerned, when 
we employ frames then the in com men sur ability as incomparability of world-
views is seemingly re con struct ed away, while incommen sur ability as non-trans-
latability of world-views is re con struct ive ly confirmed. After all, as we saw, the 
frame-reconstruction confirms that historically succeeding taxonomies did over-
lap in their referents; so its items are not open to a one-to-one translation.

The fact seems to be this: using a frame-model, one reaches a re pre sent a-
tion where the comparison of the conceptual structures of two or more world-
views consists in nothing but a com parison of their (partial) fra mes. This allows 
tracing the requisite constraint violation and ob ser ving if, and how, anomalies 
are resolved in a different frame, or not. If this is a fact, then one may use it in at 
least two ways. One option is to object, as Stanford did, that the frame model 
leaves the genesis and the effects of incom men su rable world views in the dark; 
frames merely facilitate a different view on the non-trans lat ability side of the 
issue – which thus speaks against what Nersessian (1995) dubbed the “cogni-
tive historical approach”. But one may also seek to mount the following more 
far-reaching claim: since the cognitive historical re con struct ion renders allegedly 
incommensurable taxonomies comparable, it follows that incommensurability 
as incomparability is false as a claim regarding the cognitive representation of 
concepts. Moreover, if insights into causes and effects of the incommensurabil-
ity of world-views are needed, then – as far as a cog nitive account of conceptual 
representation is concerned – might not such insights just as well lie outside of it?

One thus sug gests that causes and effects of this phenomenon need not be 
treated as genuine issues of con ceptual representation. Instead, incommensura-
bility as non-translatability of world-views, and the communication breakdown 
that goes along with it, may – perhaps more straightforwardly, too – be explained 
by citing human imperfections.2 Presumably, this option won’t sit well with 

2 For instance, one might cite psychological deficits, in the sense of having remained, or 
become, unable to adopt or switch between different views, or strong biases in the sense of no 
longer considering, e.g., that claims to one ultimate ontology, or a final description of the world, 
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everybody. Vis-à-vis the comparability claim, which can be supported both by 
the frame model and other models of conceptual representation, however, this 
option may be harder to resist. So, comparability being provided, translatability 
appears to be a less pressing issue. I take frame models to support that, as a thesis 
on the incomparability of conceptual structures, incommensurability is a false 
claim. And as a claim on the non-trans latability of world-views, the plausibility of 
incommensurability can largely, though perhaps not entirely, be accounted for 
by drawing on factors that do not pertain to human conceptual representation.3 

2.5. Conceptual spaces

The expressive power that frames gain over feature lists is notable, but over-
all perhaps rather meager. In support of this claim, frames will now be compared 
to conceptual spaces (Gärdenfors, 2000). The latter is argued to be a more useful 
model in application to scientific concepts, because measurement-theoretic con-
siderations that, for instance, underlie nominal, ordinal, interval, and ratio scales 
are native to the model, as it is generally “closer” to mathematics than the other 
two. Therefore alone, a spatial representation should sit much better with the in-
tu i tions of working scientists. Furthermore, reference to the empirical world is of 
lesser importance; ontological finality is neither implied, nor precluded, by the 
model. Particularly whether a measurement structure picks out a real structure, 
or not, isn’t a pressing question (see below).

Conceptual spaces provide a geometric or topological model of con ceptual 
knowledge. An as sumpt ion that seems basic to the frame model – that concepts 
are represented primarily sym bo lically, and only then through the frame-struc-
tures themselves – is here discarded. Instead, information is modeled at a level 
between the symbolic and the sub con cep tual one. The symbolic forms of math-
ematical physics, for instance, do therefore not represent concepts, but specify 
mathematical relational structures. Scientific axioms and laws can therefore be 
viewed as the symbolic expression of constraints on the distribution of points in 
a space, a view that will become clearer below.

may be dogmatic, or group-sociological/institutional, in the sense that actors are rationally un-
compelled to consider alternatives to some research program that they have been investing in, 
and have perhaps also profited from.

3 For a more upbeat review of Andersen et al. (2006), see Botteril (2007). For further crit-
icism, see Bird (2012).
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Past Stevens’ (1946) influential work (to whom the above classification of 
four differentially informative measurement scales goes back), in “mature” mea-
surement theory, mathematical relational structures are embeddable into em-
pirical relational structures, i.e., principally projectable into an ultimate ontology 
(structures may therefore be called “real”). Stevens did not, in any detail, treat the 
conditions that such empirical structures should satisfy (see Diez, 1997a: 180). 
From the point of view of the conceptual spaces model, however, this is fine. After 
all, the postulated dimensions aren’t in any good sense “out there” either.4

We now provide a non-technical summary of conceptual spaces. Rigorous 
treatments include Aisbett and Gibbon (2001) and also Adams and Raubal 
(2009), an overview of applications of conceptual spaces being provided in Zen-
ker and Gärdenfors (2015).

2.5.1. Dimensions

A conceptual space is built up from a num ber of quality dimensions. Exam-
ples include temperature, weight, bright ness, pitch, as well as the three ordinary 
spatial dimensions (height, width, depth). In science, moreover, one regular-
ly finds quality dimensions of an abstract non-sensory character such as mass, 
force, or energy. The notion of a dimension may be taken literally. Each qua lity 
dimension is assumed to be endowed with a certain geometrical structure. Figure 
4 illustrates the weight-di men sion (one-di mens ional with a zero point); it is iso-
mor phic to the half-line of the non-negative numbers. That there are no negative 
weights is a basic assumption com mon ly made, e.g., in physics, that is far from 
trivial; the non-negativity of the weight dimension is a historical contingency. 
As an ad hoc as sump tion, for instance, the fire-substance phlogiston (a theoreti-
cal entity) had for some time been assumed to have negative weight, and in the 
late 18th century gave way to the oxygen-account (McCann, 1978; Gärdenfors, 
Zenker, 2013).

Fig. 4. The weight dimension

4 Some mathematical relational structures have been claimed as being constitutive of em-
pirical relational structures, and so count as methodologically a priori (see, e.g., Friedman 2001). 
This Neo-Kantian aspect is addressed in Zenker and Gärdenfors (2015).

0
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As a second example, following Munsell (1915), the cognitive representa-
tion of color can be modeled by three di men sions (fig. 5). The first is hue, repre-
sented by the familiar color circle (red via yellow to green, blue and back to red). 
The topological struc ture of this dimension differs from the dimensions that rep-
resents time or wei ght (which are both isomorphic to the real line). The second 
dimension is sa tu ra tion (or chromaticity), ranging from grey (ze ro color inten-
sity) to increasingly greater intensities; it is iso morphic to an in ter val of the real 
line. The third dimension is brightness, varying from white to black; it is a linear 
dimension with end points. Together, these three dimensions, one with circular 
and two with linear structure, con sti tute the color domain which is a subspace of 
our per cep tual conceptual space. This domain is regularly illustrated by the color 
spindle (two cones attached at their bases). Bright ness is shown on the ver tical 
axis; saturation is represented as the distance from the center of the spindle; and 
hue is represented by the positions along the perimeter of the central circle. The 
circle at the center of the spindle, moreover, is tilted so that the distance between 
yel low and white is shorter than that between blue and white.

Fig. 5. The Munsell color system
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2.5.2. Combinations

A conceptual space can be defined as a collection of quality dimensions. How-
ever, the dimensions of a space should not be viewed as being totally independent. 
Rather, they are correlated in various ways since the properties of the objects mod-
eled in the space co-vary. For example, in the domain of fruits the ripeness and the 
color dimensions co-vary. It is presumably not possible to give a complete list of 
the quality dimensions that make up the conceptual spaces of humans. Some of 
these dimensions seem to be innate and to some extent “hardwired” (e.g. color, 
pitch, force, and probably ordinary three dimensional space). Others are presum-
ably learned, yet others are introduced by science (see Gärdenfors, Zenker, 2013).5

In modeling a scientific concept, the requisite dimensions have to be identi-
fied and values that report distances on these dimensions, i.e., a metric (see Ber-
ka, 1983: 93), must be assigned. For instance, day and nighttime are standardly 
modeled by one circular dimension with 24 equally-sized intervals called hours. 
Before the invention of mechanical clocks, however, the two points on this di-
mension that separate twelve hours of nighttime from twelve hours of daytime 
were commonly coordinated locally to sunrise and sunset. As both points shift-
ed, again locally, over the course of one year, their distance changed, thus giv-
ing rise to a variable temporal metric which, meanwhile, has given way to one of 
constant clock intervals. The same occurred in the case of ordinary space, but 
in the inverse direction – from constant to variable – when the Euclidian metric 
assumed by Newton was first replace by the Minkowskian metric (used in special 
relativity) and then the Schwarzschild metric (general relativity), both of which 
generalize the Euclidian one. It is easy to see that a change of metric leads to 
a change in the symbolic expressions used to calculate with these distances.

If it is not possible to describe an object fully by assigning a value on one 
dimension without also assigning a value on another, then such dimensions 
are said to be integral; otherwise they are called separable. For instance, an ob-
ject cannot be given a bright ness value without also giving it a hue; the pitch 
of a sound always goes along with its loudness. Or take Newtonian mechanics, 
where an object is fully described only when it is assigned values on eight dimen-
sions: 3-D space, 1-D time, 3-D force, 1-D mass.6

5 For criticism, see Gauker (2007) and, primarily as to the necessity of positing such spaces, 
Decock (2006).

6 Since F = ma holds, some values can be inferred, e.g., for the three force dimensions.
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On these distinctions, the notion of a domain can be defined as a set of inte-
gral dimensions separable from all other dimensions. More precisely, domain C 
is separable from D in a theory, if and only if the invariance transformations of 
the dimensions in C do not involve any dimension from D; and the dimensions 
of a domain C are integral, if and only if their invariance class does not involve 
any other dimension. For instance, until the advent of relativity theories in phys-
ics, the three spatial dimensions were separable from the time dimension. So, the 
spatial coordinates x, y, z were separable from the time coordinate t in Galilean, 
but not in Lorentz transformations. Moreover, mass is separable from everything 
else in Newton’s theory, but is no longer separable from energy in special relativ-
ity (see Gärdenfors, Zenker, 2013).

As the criterion for identifying a domain, we propose the independence of 
the respective measurement procedures (see Diez, 1997a: 183f.). For instance, 
in classical mechanics, the measurement of distance and duration (trigonometry 
and chronometry, respectively) are independent, as light signals are tacitly as-
sumed to propagate instantaneously rather than at finite speed. 

2.6. The conceptual spaces model recovers the frame model

A comparison between frames and conceptual spa ces in case of taxonomic 
knowledge is straightforward. The main result is that the notions attribute, value, 
structural invariance and constraint (see above) can be provided with analogues. 
In particular, the structural invariants and constraints of the frame model arise 
naturally from the geometry of the conceptual space (e.g., category membership 
is a matter of occupying regions of a space). It is therefore reasonable to view 
conceptual spaces as a refinement, or improvement, of the frame model. Using 
one or the other tool may, at times, be a mat ter of convenience, related to the 
complexity of what is to be modeled. For taxonomic knowledge, for instance, 
conceptual spaces appear over-powerful. Put differently, representing conceptu-
al knowledge at nominal level (through n-ary features) is under-com plex. 

2.6.1. Analogues

What on the frame-model is an attribute will correspond to a single di men-
sion or, as the case may be, to combinations thereof. For instance, each color 
can be represented as a sub-region of the space spanned by hue, saturation and 
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brightness, rather than by natural language terms. Further, the value of an attri-
bute cor res ponds to a point or, as the case may be, to an interval on one or sev-
eral dimensions. Generally, the metric of a dimension corresponds closest to the 
attributes’ values. On assumption of being an equal distance apart, for instance, 
the values “large”, “medium” and “small” of the attribute “size” will be modeled 
by an interval-scaled dimension, otherwise by an ordinal scaled one (when this 
assumption is relaxed), or a nominal-scaled one (when no such ordering relation 
is assumed), or, in the case of the most informative metric, an ratio scaled one 
(where the value zero is meaningful, which it is only if what could be measured 
can in fact be absent). Yet, unlike the conceptual spaces model – where between-
ness is meaningful by virtue of the dimensions’ geometric properties – nothing in 
the frame model represents in a motivated way that “medium” is between “big” 
and “small”. Model users know as much, the model doesn’t!

The purpose of a constraint, as we had seen, was to rule out, or make un-
likely, some among the logically many attribute-value combinations. Constraints 
thus result from the particular selection of values that define a subordinate cate-
gory. To mimic this in conceptual spaces, where instances of a concept are repre-
sented as points or vectors in an n-dimensional space, one may speak of a space’s 
sub-regions being comparatively unpopulated. The notion structural invariant, 
finally, corresponds to a correlation of dimensions, which means that a number 
of dimensions represent jointly.7 

2.6.2. Similarity as distance

To appreciate how distances may be exploited in accounting for similarity, 
reconsider the attributes and values of Sundevall’s taxonomy (fig. 2), with abbre-
viations in brackets:

7 Structural invariants have been interpreted to represent synthetic a priori knowledge, 
i.e. knowledge about the empirical world that originates in a (taxonomic) structure constitutive 
of experience, but itself not based in it. Structural invariants, for instance, are claimed to account 
for such synthetic a priori knowledge claims as: “There are no [normal] birds with legs that attach 
to their necks” (Barker et al., 2003: 225f.). Denial of this claim may lead a hearer to assume that 
a speaker does not understand the concept BIRD. The synthetic a priori status of such knowledge 
can, in principle, be saved in conceptual spaces, assuming one has identified it. At the same time, 
it remains unclear if singling out these rather than those elements as synthetic a priori is helpful, 
or necessary (see Zenker, Gärdenfors, 2015).
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beak (BE)   round (ro), pointed (po)
plumage (PL)  course (co), dense (de)
feather (FE)   absent (ab), present (pr)
leg (LE)   skinned (sk), scutate (sc)
foot (FO)   webbed (we), clawed (cl) 

One may here treat each attribute as a nominal-scaled dimension. All values 
are binary, e.g., the beak is either round or pointed; a third value does not apply. 
So each dimension gives rise to a scale with two parts (nominal order), yielding 
a total of five integral dimensions. The natural kinds Natarotes, Grallatores, and 
Gallinea are thus reconstituted as three distinct regions of a mostly unpopulated 
5-D space (tab. 1).

Table 1. Comparison of dimensions in Sundevall’s taxonomy

Kind terms Nominal dimensions Instances

Natarotes
Grallatores
Gallinae

BE-ro, PL-de, FE-ab, LE-sk, FO-we
BE-po, PL-de, FE-ab, LE-sk, FO-we
BE-po, PL-co, FE-pr, LE-sc, FO-cl

swans, geese, ducks
herons, screamers, storks
chickens, turkeys, quails

Table 1 readily conveys that Natarotes and Grallatores are similar up to the 
beak-dimension (BE-ro vs. BE-po). Their similarity remains rather hidden in 
a frame model, but would be immediate in a feature list, or in a conceptual space, 
here in virtue of Natarotes and Grallatores occupying neighboring regions, or 
hyperplanes, in a 5-D space. In a frame and a feature list model, moreover, it is 
unclear how to measure by virtue of the tool employed the comparative distance 
between Natarotes, Grallatores and Gallinae. In the idiom of conceptual spaces, 
in contrast, the Gallinae region is maximally distant from the Natarotes region, 
as it differs on four dimensions from Grallatores. That this distance cannot be 
expressed more informatively is a result of employing binary features. Generally, 
moreover, when seeking to express taxonomic difference as distance, then the 
conceptual space model has been invoked implicitly.

Because the attribute (read: dimension) feather is retained with identical 
values, one may describe the change from Sundevall’s to Gadow’s taxonomy as 
a replacement, or a revision, of four di mensions (cum invariants and constraints). 
This yields a somewhat trivial, but a no less correct reconstruction of concep-
tual change. Such is perhaps easier to accept when the incommensurability of 
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world-views is not treated as a genuine issue of conceptual representation (see 
above). The partial frame of Gadow’s new taxonomy, moreover, features five di-
mensions, not all of which take binary values. One may therefore say that com-
plexity, as measured by the number of dimensions, is not constant. Gadow uses 
four new dimensions; featuring also one region less, in this respect, his taxonomy 
is simpler than Sundevall’s. The types of intestines (type 3 and 5), by contrast, 
suggest that complexity has increased. The same seems to hold for the tendon 
dimension. Prima facie, these dimensions still constitute nominal scales.

By defining change-operations on the dimensions and their mode of combi-
nation, the conceptual spaces model may also be applied dynamically. In increas-
ing order of the severity of a revision, these operations are: (i) addition/deletion 
of laws,8 (ii) change in scale/metric, (iii) change in integrality/separation of di-
mensions, (vi) change in importance (or salience) of dimensions; (iv) addition/
deletion of dimensions (for examples, see Gärdenfors, Zenker, 2010; 2013). 
A more informative pre- vs. post-change reconstruction would seek to employ 
the comparative distance between taxonomic items. Relative distance between 
reconstitutions of dimensional points within (regions of) spaces would thus 
measure, for instance, whether screamers had become more similar to ducks, or 
not. Severity of scientific change then comes out as distance between spaces (rather 
than distance within one and the same space), i.e., as a function of the above 
types of changes, and some second-order distance measure.

2.7. Laws as constraints

In the following, we view scientific laws as symbolic expression of con-
straints on conceptual spaces. Consequently, historical transitions to a posterior 
space are in principle continuously reconstructable through a modification of the 
prior space’s dimensions, leaving little room for incommensurability to seriously 
trouble a cognitive account of scientific conceptual knowledge representation.

The foundations for a theory of measurement in the modern sense arise with 
Helmholtz (1887), were provided with – some say, insufficient – systematization 
by Stevens (1946), and have been further developed by Krantz, Luce, Suppes and 

8 Note that the first type of change is not strictly a change of the space; a change of law 
merely effects how the points are distributed in it.
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Tversky (1971, 1989, 1990). For an overview and the caveat in Steven’s work, see 
Diez (1997a, b), Hand (2004). When dimensions are fine grained, one approach-
es scientifically exact measurement. Here, shortcomings in the information con-
veyed by the frame model’s attribute-value structure may be observed that suggest 
a revision of this model. When attributes are not bi-, but n-ary, then any attempt at 
using frames to model ordering relations between values presumably incurs a revi-
sion towards conceptual spaces. For instance, when modelling scientific concepts, 
e.g., in physics, dimensions tend to (though they need not) be ratio-scales; one 
will want to make sense of the fact that empirical theories and their mathematical 
laws commonly depend on, and give rise to, measurement results at this level of 
scale.

As indicated above, one may also attempt to motivate the symbolic character 
of scientific laws by virtue of the representational tool. Andersen and Nerses-
sian (2000), for instance, state that they “believe that [frame] analysis can be 
extended to represent the similarity class of problem situations for nomic con-
cepts” (ibid., 230), i.e., those obeying law-like generalizations. In their electro-
magnetism example (fig. 6), the Lorentz force-treatment is distinguished from 
the electromotive force-treatment; frame-style, the attributes conductor, ether, 
and magnet (values: moving or at rest) are coordinated to the respective force 
laws, whose symbolic forms however differ strikingly, and implausibly so, as 
the application situation is identical. (In modern terms, applications pertain to 
the relative motion of a magnet vis-à-vis that of a conductor.) “[I]n Maxwellian 
electrodynamics, although the resultant electromagnetic induction is the same 
whether it is the magnet or the conductor that is moving and the other at rest, 
these are interpreted as two different kinds of problem situations” (ibid.: 237, ital-
ics added). By now, the point of their example will be familiar: by suspending the 
attribute ether, Einstein’s revision of Maxwell’s electrodynamics removed a “to-
tal overlap” (ibid.) between the two treatments.

As can be observed in fig. 6, the laws are appended, rather than motivated by 
the frame model. Frames therefore seem to apply to scientific laws without pro-
viding insight into their status as symbolic generalizations. Such strikingly differ-
ent formulae, being standardly treated as evidence of “symbolic rupture” in radical 
scientific change, however, can also be viewed as the symbolic expressions of con-
straints over different conceptual spaces. Indeed, scientific laws may be viewed 
as nothing but the symbolic forms of such constraints. This demotes the impor-
tance of laws in scientific change vis-à-vis the dominant view (e.g., Dorato, 2005). 
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Consequently, the continuity of mathematical structure that is reconstructively 
achieved in limiting case reduction (see Batterman, 2003) – an achievement that, 
following Worrall (1989), structural realists tend to cite as strong evidence in dis-
favor of incommensurability claims – need not exclusively be treated as a matter 
of scientific laws or axioms, either. Instead, if empirical theories are primarily char-
acterized through the scale-type of the dimensions – or, more contemporaneous-
ly, the admissible transformation of a scale (see Diez, 1997b) – and their mode 
of combinations (integral vs. separable), then “continuity in scientific change” 
denotes the continuous generation of a predecessor into a successor space (see 
Gärdenfors, Zenker, 2013; Zenker, Gärdenfors, 2015).

Fig. 6. Partial frame for Maxwellian “electrodynamic action”  
(Andersen, Nersessian, 2000: S238)

Zenker and Petersen (2014), for instance, have applied conceptual spaces to 
the conceptual development of 19th-century fluid dynamics, tracing the changes to 
the underlying spaces from the Euler equation to the Navier-Stokes equation. On 
their analysis, the developmental process can be viewed as an instance of normal 



  Frank Zenker  

82

science, in the sense of Kuhn (1970), because the most radical change, the dele-
tion of dimensions, did not occur. Consequently, diachronically prior successful 
applications of fluid dynamics were always retained as limiting cases of posterior 
models. (This paper also provides a spatial view on the limiting-case relation.)

To achieve a representation of scientific concepts that is sensitive to the em-
pirical theories in which the concepts feature, but also informed by their histori-
cal and potential future dynamics, similarity measures over diachronically related 
spaces remain wanting. This would hold especially for cases that witness the de-
letion of dimensions; definitions of such measures remain open to discussion. 
Extant treatments of conceptual dynamics that project, or transform, conceptual 
spaces by and large do so through synchronic (see, e.g., Raubal, 2004; Kaipainen, 
Hautamäki, 2015) rather than diachronic variation. The above types of changes, 
the definition of a domain, as well as the metric of a dimension should presum-
ably feature as building blocks of such measures. 

3. Conclusion

The frame model is presumably applicable whenever the conceptual spaces 
model is. But the latter model gains in applicability to concepts that arise from, 
and give rise to, exact measurement. Having reviewed the development of fea-
ture lists into the frame model, and how to recover frames by conceptual spaces, 
the latter model’s advantages were seen to be gained by making key notions of 
modern measurement theory native to it. Attempts at achieving as much in the 
frame model, presumably, would lead to something looking very much like the 
conceptual space model.

Correspondences between frames and conceptual spaces were pointed out, 
and it was suggested that using one or the other model may be a mere matter 
of convenience. For the representation of taxonomic knowledge, in particular, 
conceptual spaces may well appear over-complex. When addressing the question 
whether taxonomic items have become more (or less) similar through taxonom-
ical change, one should admit to implicitly presupposing the conceptual spaces 
model. After all, as we saw, neither frames nor feature lists yield a readily mean-
ingful notion of similarity as geometric distance.

By questioning the assumption that the rationality of a scientific change is 
inherently a symbolic matter, i.e., has to be demonstrated in symbols, moreover, 
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we have sought to support the claim that conceptual spaces can provide a model 
for scientific conceptual change across disciplines. Hence, the assumption that 
a conceptual space is not an intrinsically symbolic model remains indispensable.
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