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A FAMILY OF HYPERBOLAS ASSOCIATED TO A TRIANGLE

MACIEJ ZIĘBA

Abstract. In this note, we explore an apparently new one parameter family
of conics associated to a triangle. Given a triangle we study ellipses whose one
axis is parallel to one of sides of the triangle. The centers of these ellipses move
along three hyperbolas, one for each side of the triangle. These hyperbolas
intersect in four common points, which we identify as centers of incircle and
the three excircles of the triangle. Thus they belong to a pencil of conics. We
trace centers of all conics in the family and establish a surprising fact that they
move along the excircle of the triangle. Even though our research is motivated
by a problem in elementary geometry, its solution involves some non-trivial
algebra and appeal to effective computational methods of algebraic geometry.
Our work is illustrated by an animation in Geogebra and accompanied by a
Singular file.

1. Introduction

Let A = (a1, a2), B = (b1, b2), C = (c1, c2) be non-collinear points in the real
affine plane. Their coordinates satisfy thus the condition

det

a1 b1 c1
a2 b2 c2
1 1 1

 6= 0

In [8] we proved the following result.

Theorem 1.1. We consider ellipses whose one axis is parallel to a fixed side of
the triangle (the line containing its two vertices). Then

• such ellipses form a one dimensional family;
• their centers move along a hyperbola which passes through the incenter S
and the three excenters A′, B′, C ′ of the triangle.
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Remark 1.2. By a center of a conic, we understand its center of symmetry. If
the conic is degenerate and consists of two intersecting lines then its center is
the intersection point of both lines. If the lines are parallel, then we declare the
corresponding point at the infinity as their center. We are aware of the fact that for
two parallel lines there are infinitely many centers of symmetry but it is convenient
and consistent with our approach to declare the point they share at infinity as their
center.

Corollary 1.3. It follows immediately from Theorem 1.1 that taking the three
hyperbolas corresponding to each of the sides of the triangle, they all belong to a
pencil of conics determined by points S,A′, B′ and C ′. This is illustrated in Figure
1.

Figure 1.
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Remark 1.4. Note that another three hyperbolas associated to a triangle have
been identified in 1957 by Court. However his construction is not related to ours.

There are well-known formulas we allow us to compute coordinates of points
S,A′, B′ and C ′ explicitly:

S =

(
a1ã + b1b̃ + c1c̃

ã + b̃ + c̃
,
a2ã + b2b̃ + c2c̃

ã + b̃ + c̃

)
,

A′ =

(
−a1ã + b1b̃ + c1c̃

−ã + b̃ + c̃
,
−a2ã + b2b̃ + c2c̃

−ã + b̃ + c̃

)
,

B′ =

(
a1ã− b1b̃ + c1c̃

ã− b̃ + c̃
,
a2ã− b2b̃ + c2c̃

−ã− b̃ + c̃

)
,

C ′ =

(
a1ã + b1b̃− c1c̃

ã + b̃− c̃
,
a2ã + b2b̃− c2c̃

ã + b̃− c̃

)
,

where

ã =

√
(b1 − c1)

2
+ (b2 − c2)

2
,

b̃ =

√
(a1 − c1)

2
+ (a2 − c2)

2
,

c̃ =

√
(a1 − b1)

2
+ (a2 − b2)

2
.

However, since the formulas involve taking roots, they are not so convenient for
symbolic computations. We circumvent this difficulty in the next section.

2. Conics determined by four points.

Let Z = {P1, . . . , P4} be a set of four points in the plane such that no three of
them are collinear. For a subset V ⊂ R2 we denote by I(V ) its saturated ideal,
i.e., the ideal in the polynomial ring R[x, y] consisting of all polynomials vanishing
at all points of V . Then we have

I(Z) = I(P1) ∩ . . . ∩ I(P4).

Using the geometry of Z, it is easy to determine generators of I(Z). To this end
note that I(Pi ∪ Pj) for i 6= j contains a unique (up to a multiplicative factor)
element `i,j of degree 1 (namely the equation of the line through Pi and Pj). Then,
with c1 = `1,2 · `3,4 and c2 = `1,3 · `2,4 we have

I(Z) = 〈c1, c2〉.

Geometrically, the set Z is then the intersection of conics c1 and c2. This is
illustrated in Figure 2.
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Figure 2.
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Note that also c3 = `1,4 · `2,3 is an element of I(Z). It can be written down as
a linear combination of c1 and c2. In the linear system of all conics determined by
Z there are exactly three degenerate conics c1, c2 and c3.

Turning back to our situation, we consider Z = {S,A′, B′, C ′}. Then the lines
joining pairs of points in Z have additional geometric meaning: They are either
bisectors of angles of the triangle or bisectors of its exterior angles. This is depicted
in Figure 3.

Figure 3.
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Since we are interested in the union of the bisector of an angle of a triangle and
the bisector of the exterior angle rather than one of these lines separately, by a
slight abuse of the language, we introduce the folowing notion.

Definition 2.1. Let `1 and `2 be two distinct lines intersecting at a point P . The
bibisector of `1 and `2 is the union of bisectors of angles formed by the two lines.
We denote the bibisector by bibi(`1, `2), or if there is no ambiguity about the lines
just by bibi(P ).

The next Lemma shows how surprisingly easy it is to derive the equation of
bibi(`1, `2) out of equations of lines `1 and `2.

Lemma 2.2. Let `1 be given by the equation Ax+By +C = 0 and let `2 be given
by Ãx + B̃y + C̃ = 0. Then the bibisector of `1 and `2 is given by

(1)
(Ax + By + C)2

A2 + B2
=

(Ãx + B̃y + C̃)2

Ã2 + B̃2
.

Proof. A geometric property of the bibisector is that it consists of points equidistant
to both lines. In other words, we are looking for the locus of points (x, y) subject
to the condition for certain r > 0, the circle centered at (x, y) is tangent to lines `1
and `2, see Figure 4.

Figure 4.
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A point (x, y) is equidistant to lines `1 and `2 if and only if its coordinates satisfy
(1) and we are done. As expected, the equation is quadratic in x and y. �
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Corollary 2.3. In the set up of the triangle ABC, Lemma 2.2 we obtain

bibi(A) :
((a2 − b2)x + (b1 − a1) y + a1 b2 − a2 b1)

2

(a2 − b2)
2

+ (b1 − a1)
2

− ((a2 − c2)x + (−a1 + c1) y + a1 c2 − a2 c1)
2

(a2 − c2)
2

+ (a1 − c1)
2

bibi(B) :
((b2 − a2 )x + (a1 − b1 ) y + a2 b1 − a1 b2 )

2

(b2 − a2 )
2

+ (a1 − b1 )
2

− ((b2 − c2 )x + (−b1 + c1 ) y + b1 c2 − b2 c1 )
2

(b2 − c2 )
2

+ (−b1 + c1 )
2

Corollary 2.4. Since Z = {S,A′, B′, C ′} has two generators in degree 2, every
element f ∈ (I(Z))2 can be written as

f = s · bibi(A) + t · bibi(B)

for some real numbers s, t.

3. Main result

We begin with a Lemma which provides coordinates of the center of a conic.

Lemma 3.1. Let g(x, y) = ax2 + by2 + c + 2dxy + 2ex + 2fy be a polynomial of
degree 2 in an affine real plane. We assume ab − d2 6= 0, i.e., we assume that the
set of zeroes of g is not a parabola. Then g describes either an ellipse, if d2−ab < 0
or a hyperbola if d2 − ab > 0. In both cases the curves could be degenerate but in
both cases they poses a center of symmetry. More precisely, the point

(2) S =
(

df−be
ab−d2 ,

de−af
ab−d2

)
.

is the center of the conic { g = 0 }.

Proof. Since the proof is elementary but also rather technical and lengthy, we refer
to [6, Section 6.3] for details. �

From now on, it is convenient to work with projective coordinates, rather than
with affine. In particular, this approach allows us to express coordinates of the
center of a conic by polynomials in the coefficients of the conic, rather than by
rational functions of these coefficients. Indeed, we have in (2)

(3) S = (df − be : de− af : ab− d2).

We shall need also the following property of a circle viewed as a complex projective
conic.

Lemma 3.2. Let Γ be a circle. Then its complex projective completion contains
points J1 = (1 : i : 0) and J2 = (1 : −i : 0).
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Proof. Let Γ be given by the equation

(x− a)2 + (y − b)2 = r2,

where (a, b) are coordinates of its center and r is the radius. We homogenize the
equation with a new variable z and obtain

(4) (x− az)2 + (y − bz)2 = r2z2.

Computing the points at infinity, we insert z = 0 and get

x2 + y2 = 0.

It is now clear that the points J1 and J2 satisfy this equation. �

Remark 3.3. It is easy to see that Lemma 3.2 has an inverse. By this we mean
that any complex conic Γ passing through points J1 and J2 can be written down
in the form of equation (4) for some complex numbers a, b and r.

Now we are in the position to state the main result of this note. Animation [9],
prepared in Geogebra and available online, illustrates this result.

Theorem 3.4. Let S,A′, B′, C ′ be the incenter and the excenters of a triangle
ABC. Let C be the pencil of conics passing through these 4 points. Then the locus
of centers of conics in C is the excircle of the triangle ABC.

Proof. According to Corollary 2.4 any element C(s:t) of C is defined by an equation
of the form

f(s:t) = sbibi(A) + tbibi(B),

where (s : t) ∈ P1, bibi(A) and bibi(B) are conics defined in Corollary 2.3.
Using Lemma 3.1 we obtain projective coordinates of the centers Ss:t of C(s:t)

expressed as polynomials depending on parameters (s : t). Since the particular
formulas are rather obscure, we omit them in this presentation. A motivated reader
will easily recover them using any symbolic algebra system. We used Singular.

Eliminating the parameters (s : t) from the equations of the coordinates of S(s:t)

and dehomogenizing (i.e. setting z = 1) we obtain the following quadratic equation
in variables x and y.

N(x, y) =(a1b2 − a1c2 − a2b1 + a2c1 + b1c2 − b2c1)x2

+ (a1b2 − a1c2 − a2b1 + a2c1 + b1c2 − b2c1)y2

+ (−a21b2 + a21c2 − a22b2 + a22c2 + a2b
2
1 + a2b

2
2

− a2c
2
1 − a2c

2
2 − b21c2 − b22c2 + b2c

2
1 + b2c

2
2)x

+ (a21b1 − a21c1 − a1b
2
1 − a1b

2
2 + a1c

2
1 + a1c

2
2

+ a22b1 − a22c1 + b21c1 − b1c
2
1 − b1c

2
2 + b22c1)y

+ (−a21b1c2 + a21b2c1 + a1b
2
1c2 + a1b

2
2c2 − a1b2c

2
1 − a1b2c

2
2

− a22b1c2 + a22b2c1 − a2b
2
1c1 + a2b1c

2
1 + a2b1c

2
2 − a2b

2
2c1) = 0
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Thus N is the equation of a curve of degree 2 which contains all centers of conics
in the pencil C.

It remains to check that N defines the excircle of the triangle ABC. To this
end we just check that coordinates of points A,B and C satisfy N . We omit easy
calculations. Finally we check that also points J1 and J2 defined in Lemma 3.2
belong to the zero locus of N . Hence N is a circle passing through A,B and C.
But there is just one such circle, namely the excircle of the triangle ABC and we
are done. �
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