Analytic and Algebraic Geometry 3

Łódź University Press 2019, 179 – 189 DOI: http://dx.doi.org/10.18778/8142-814-9.13

FINITELY GENERATED SUBRINGS OF R[X]

ANDRZEJ NOWICKI

ABSTRACT. In this article all rings and algebras are commutative with identity, and we denote by R[x] the ring of polynomials over a ring R in one variable x. We describe rings R such that all subalgebras of R[x] are finitely generated over R.

INTRODUCTION

Let K be a field and let L be a subfield of $K(x_1, \ldots, x_n)$ containing K. In 1954, Zariski in [15], proved that if $n \leq 2$, then the ring $L \cap K[x_1, \ldots, x_n]$ is finitely generated over K. This is a result concerning the fourteenth problem of Hilbert. Today we know ([8], [9], [7]) that a similar statement for $n \geq 3$ is not true. Many results on this subject one can find, for example, in [4], [5], [10], [13], and also in the author articles ([11], [12]) published by University of Lodz in Materials of the Conferences of Complex Analytic and Algebraic Geometry.

We are interested in the case n = 1. It is well known that every K-subalgebra A of $K[x_1]$ is finitely generated over K. In this case we do not assume that A has a form $L \cap K[x_1]$. We recall it (with a proof) as Theorem 2.1. An elementary proof one can find, for example, in [6]. The assumption that K is a field is here very important. What happens in the case when K is a commutative ring and K is not a field? In this article we will give a full answer to this question.

Throughout this article all rings and algebras are commutative with identity, and we denote by R[x] the ring of polynomials over a ring R in one variable x. We say that a ring R is an *sfg-ring*, if every R-subalgebra of R[x] is finitely generated over R. We already know that if R is a field then R is an sfg-ring. We will show

²⁰¹⁰ Mathematics Subject Classification. 12E05, 13F20, 13B21.

Key words and phrases. polynomial, fourteenth oroblem of Hilbert, local rings, Noetherian rings, Artinian rings.

that the rings \mathbb{Z} and \mathbb{Z}_4 are not sfg-rings. But, for instance, the rings \mathbb{Z}_6 and \mathbb{Z}_{105} are sfg-rings.

The main result of this article states that R is an sfg-ring if and only if R is a finite product of fields. For a proof of this fact we prove, in Section 3, many various lemmas. A crucial role plays the Artin-Tate Lemma (Lemma 1.3). If R is an sfg-ring then we successively prove that R is Noetherian, reduced, that every prime ideal of R is maximal, and by this way we obtain that R is a finite product of fields. Moreover, in the last section, we present a proof that every finite product of fields is an sfg-ring.

1. Preliminary Lemmas and Notations

We start with the following well known lemma (see for example [2] Proposition 6.5).

Lemma 1.1. If R is a Noetherian ring and M is a finitely generated R-module, then M is a Noetherian module.

Let A be an algebra over a ring R. If S is a subset of A, then we denote by R[S] the smallest R-subalgebra of A containing R and S. Several times we will use the following obvious lemma.

Lemma 1.2. Let A = R[S]. If the algebra A is finitely generated over R, then there exists a finite subset S_0 of S such that $A = R[S_0]$.

The next lemma comes from [14] (Lemma 2.4.3). This is a particular case of the Artin and Tate result published in [1]. Since this lemma plays an important role in our article, we present also its simple proof.

Lemma 1.3 (Artin, Tate, 1951). Let R be a Noetherian ring, B a finitely generated R-algebra, and A an R-subalgebra of B. If B is integral over A, then the algebra A is finitely generated over R.

Proof. Let $B = R[b_1, \ldots, b_s]$, where b_1, \ldots, b_s are some elements of B. Since each b_i is integral over A, we have equalities of the form

$$b_i^{n_i} + a_{i1}b^{n_i-1} + \dots + a_{in_i} = 0$$
, for $i = 1, \dots, s$,

where all coefficients a_{ij} belong to A, and n_1, \ldots, n_s are positive integers. Let $\{a_1, \ldots, a_m\}$ be the set of all the coefficients a_{ij} , and put

$$A' = R[a_1, \ldots, a_m].$$

It is clear that A' is a Noetherian ring and B is an A'-module generated by all elements of the form $b_1^{j_1}b_2^{j_2}\cdots b_s^{j_s}$, where $0 \leq j_1 < n_1,\ldots, 0 \leq j_s < n_s$. Thus, B is a finitely generated A'-module and so, by Lemma 1.1, B is a Noetherian A'-module. This means that every submodule of B is finitely generated. In particular,

A is a finitely generated A'-module. Assume that $a_{m+1}, a_{m+2}, \ldots, a_n \in A$ are its generators. Then

$$A = A'a_{m+1} + \dots + A'a_n = R[a_1, \dots, a_n],$$

and we see that the algebra A is finitely generated over R.

Let us fix some notations. For a given subset I of a ring R, we denote by I[x] the set of all polynomials from R[x] with the coefficients belonging to I. If I is an ideal of R, then I[x] is an ideal of R[x], and then the rings R[x]/I[x] and (R/I)[x] are isomorphic.

Let $f: S \to T$ be a homomorphism of rings. We denote by \overline{f} the mapping from S[x] to T[x] defined by the formula

$$\overline{f}\left(\sum_{j} s_{j} x^{j}\right) = \sum_{j} \varphi(s_{j}) x^{j}$$

for all $\sum_j s_j x^j \in S[x]$. This mapping is a homomorphism of rings and Ker $\overline{f} = (\text{Ker } f)[x]$. We will say that \overline{f} is the homomorphism associated with f. If f a surjection, then \overline{f} is also a surjection. It is clear that if S and T are R-algebras, and $f: S \to T$ is a homomorphism of R-algebras, then $\overline{f}: S[x] \to T[x]$ is also a homomorphism of R-algebras.

In next sections we will use the following two lemmas.

Lemma 1.4. Let I be an ideal of a ring R, and let $A = R[ax; a \in I]$. If the ideal I is not finitely generated, then the algebra A is not finitely generated over R.

Proof. Assume that I is not finitely generated and suppose that A is finitely generated over R. Then, by Lemma 1.2, there exists a finite subset $\{a_1, \ldots, a_n\}$ of I such that $A = R[a_1x, \ldots, a_nx]$. Then of course $(a_1, \ldots, a_n) \neq I$ so, there exists $b \in I \setminus (a_1, \ldots, a_n)$. Since $bx \in A = R[a_1x, \ldots, a_nx]$, we have $bx = F(a_1x, \ldots, a_nx)$, where F is a polynomial belonging to $R[t_1, \ldots, t_n]$. Let

$$F = r_0 + r_1 t_1 + r_2 t_2 + \dots + r_n t_n + G$$

where $r_0, r_1, \ldots, r_n \in R$ and $G \in R[t_1, \ldots, t_n]$ is a polynomial in which the degrees of all nonzero monomials are greater than 1. Then, in the ring R[x] we have

$$bx = F(a_1x, \dots, a_nx) = r_0 + r_1a_1x + \dots + r_na_nx + hx^2,$$

where h is some element of R[x]. This implies that $b = r_1a_1 + \cdots + r_na_n \in (a_1, \ldots, a_n)$, but it is a contradiction, because $b \notin (a_1, \ldots, a_n)$.

Lemma 1.5. Let $A = R[bx, bx^2, ..., bx^n]$, where $n \ge 1$, $0 \ne b \in R$ and $b^2 = 0$. Then every element u of A is of the form $u = r_0 + r_1bx + r_2bx^2 + \cdots + r_nbx^n$ for some $r_0, r_1, \ldots, r_n \in R$.

Proof. Let $u \in A$. Then $u = F(bx, bx^2, \ldots, bx^n)$ for some n, where F is a polynomial in n variables belonging to the polynomial ring $R[t_1, \ldots, t_n]$. Let

$$F(t_1, \dots, t_n) = r_0 + r_1 t_1 + r_2 t_2 + \dots + r_n t_n + G(t_1, \dots, t_n),$$

where $r_0, \ldots, r_n \in R$ and $G \in R[t_1, \ldots, t_n]$ is a polynomial such that the degrees of all nonzero monomials of F are greater than 1. Then $G(bx, \ldots, bx^n) = b^2 H(x)$, gdzie $H(x) \in R[x]$. But $b^2 = 0$, so $u = r_0 + r_1 bx + r_2 bx^2 + \cdots + r_n bx^n$. \Box

2. Subalgebras of K[x]

Let us start with the following consequence of Lemma 1.3.

Theorem 2.1. If K[x] is the polynomial ring in one variable over a field K, then every K-subalgebra of K[x] is finitely generated over K.

Proof. Let $A \subset K[x]$ be a K-subalgebra. If A = K then of course A is finitely generated over K. Assume that $A \neq K$ and let $f \in A \setminus K$. Multiplying f by the inverse of its initial coefficient, we may assume that f is monic. Let $f = x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n$, where $n \ge 1$ and $a_1, \ldots, a_n \in K$. It follows from the equality

$$x^{n} + a_{1}x^{n-1} + \dots + a_{n-1}x + (a_{n} - f) = 0,$$

that the variable x is integral over A. This implies that the ring K[x] is integral over A and, by Lemma 1.3, the algebra A is finitely generated over K.

For the polynomial rings in two or bigger number of variables, a similar assertion is not true.

Example 2.2. Let K[x, y] be the polynomial ring in two variables over a field K, and

$$A = K \left[xy, xy^2, xy^3, \dots \right].$$

The algebra A is not finitely generated over K.

Proof. For every positive integer n, consider the ideal I_n of A, generated by the monomials xy, xy^2, \ldots, xy^n . Observe that $xy^{n+1} \notin I_n$. Indeed, suppose $xy^{n+1} = F_1xy + F_2xy^2 + \cdots + F_nxy^n$, where $F_1, \ldots, F_n \in A$. Every element of A is of the form a + Gxy with $a \in K$ and $G \in K[x, y]$. In particular $F_j = a_j + G_jxy$, where $a_j \in K, G_j \in K[x, y]$ for all $j = 1, \ldots, n$. Thus, in K[x, y] we have

$$y^{n+1} = a_1y + a_2y^2 + \dots + a_ny^n + (G_1y^2 + G_2y^3 + \dots + G_ny^n)x$$

Let $\varphi : K[x, y] \to K[y]$ be the homomorphism of K-algebras defined by $x \mapsto 0$ and $y \mapsto y$. Then in the ring K[y], we have the false equality $y^{n+1} = \varphi (y^{n+1}) = a_1y + a_2y^2 + \cdots + a_ny^n$. Hence, the infinite sequence $I_1 \subset I_2 \subset I_3 \subset \cdots$ is strictly increasing. The ring A is not Noetherian. In particular, the algebra A is not finitely generated over K. In Theorem 2.1 we assumed that K is a field. This assumption is here very important. For instance, if K is the ring of integers \mathbb{Z} , then a similar assertion is not true.

Example 2.3. Let $A = \mathbb{Z}[2x, 2x^2, 2x^3, ...]$. Then A is a subalgebra of $\mathbb{Z}[x]$ and A is not finitely generated over \mathbb{Z} .

Proof. For every positive integer n, consider the ideal I_n of A, generated by the monomials $2x, 2x^2, \ldots, 2x^n$. Observe that $2x^{n+1} \notin I_n$. Indeed, suppose $2x^{n+1} = 2xF_1 + 2x^2F_2 + \cdots + 2x^nF_n$, where $F_1, \ldots, F_n \in A$. Every element of A is of the form a + 2xG with $a \in \mathbb{Z}$ and $G \in \mathbb{Z}[x]$. In particular, $F_j = a_j + 2xG_j$, where $a_j \in \mathbb{Z}, G_j \in \mathbb{Z}[x]$ for all $j = 1, \ldots, n$. Thus, in $\mathbb{Z}[x]$ we have the equality

 $x^{n+1} = a_1 x + a_2 x^2 + \dots + a_n x^n + 2 \left(G_1 x^2 + G_2 x^3 + \dots + G_n x^{n+1} \right) \,.$

For an integer u, denote by \overline{u} the element u modulo 2. Then, in the ring $\mathbb{Z}_2[x]$ we have the false equality $x^{n+1} = \overline{a_1}x + \overline{a_2}x^2 + \cdots + \overline{a_n}x^n$. Hence, the infinite sequence $I_1 \subset I_2 \subset I_3 \subset \cdots$ is strictly increasing. The ring A is not Noetherian. In particular, the algebra A is not finitely generated over \mathbb{Z} .

3. Properties of sfg-rings

Let us recall that a ring R is said to be an *sfg-ring*, if every R-subalgebra of R[x] is finitely generated over R. We already know (by Theorem 2.1) that if R is a field then R is an sfg-ring. Moreover we know (by Example 2.3) that \mathbb{Z} is not an sfg-ring. In this section we will prove that every sfg-ring is a finite product of fields. For a proof of this fact we need the following 9 successive lemmas. In all the lemmas we assume that R is an sfg-ring.

Lemma 3.1. *R* is Noetherian.

Proof. Suppose R is not Noetherian. Then there exists an ideal I of R which is not finitely generated. Consider the R-algebra $A = R[ax; a \in I]$. It follows from Lemma 1.4 that this algebra is not finitely generated over R. But this contradicts our assumption that R is an sfg-ring.

Now we know, by this lemma, that if R is an sfg-ring, then every R-subalgebra of R[x] is a Noetherian ring.

Lemma 3.2. If I is an ideal of R, then R/I is also an sfg-ring.

Proof. Put $\overline{R} := R/I$. Let $\varphi : R \to \overline{R}, r \mapsto r+I$ be the natural ring homomorphism, and let $\overline{\varphi} : R[x] \to \overline{R}[x]$ be the homomorphism associated with φ . Let B be an \overline{R} -subalgebra of $\overline{R}[x]$. We need to show that B is finitely generated over \overline{R} . For this aim consider the R-algebra $A := \overline{\varphi}^{-1}(B)$. It is an R-subalgebra of R[x]. Since Ris an sfg-ring, the algebra A is finitely generated over R. Let $W \subset A$ be a finite set of generators of A. Then it is easy to check that $\overline{\varphi}(W)$ is a finite set of generators of B over \overline{R} .

ANDRZEJ NOWICKI

Lemma 3.3. Every non-invertible element of R is a zero divisor.

Proof. Suppose there exists a non-invertible element $b \in R$ such that b is not a zero divisor of R. Then $b \neq 0$ and b is not a zero divisor of R[x]. Consider the R-subalgebra $A = R[bx, bx^2, bx^3, ...]$. For every positive integer n, let I_n be the ideal of A, generated by the monomials $bx, bx^2, ..., bx^n$. Observe that $bx^{n+1} \notin I_n$. Indeed, suppose $bx^{n+1} = bxF_1 + bx^2F_2 + \cdots + bx^nF_n$, where $F_1, \ldots, F_n \in A$. Every element of A is of the form a + bxG with $a \in R$ and $G \in R[x]$. In particular, $F_j = a_j + bxG_j$, where $a_j \in \mathbb{R}, G_j \in R[x]$ for all $j = 1, \ldots, n$. Since the element b is not a zero divisor of R[x], we have in R[x] the following equality

$$x^{n+1} = a_1 x + a_2 x^2 + \dots + a_n x^n + b \left(G_1 x^2 + G_2 x^3 + \dots + G_n x^n \right) \,.$$

Consider the factor ring R/(b). Let $\varphi : R \to R/(b)$, $r \mapsto r + (b)$, be the natural homomorphism and $\overline{\varphi} : R[x] \to R/(b)[x]$ be the homomorphism associated with φ . Using $\overline{\varphi}$, from the above equality we obtain that $x^{n+1} = \varphi(a_1)x + \varphi(a_2)x^2 + \cdots + \varphi(a_n)x^n$. This is a false equality in the polynomial ring $\mathbb{R}/(b)[x]$. Therefore, $bx^{n+1} \notin I_n$. Hence, the infinite sequence $I_1 \subset I_2 \subset I_3 \subset \cdots$ is strictly increasing. This means that the ring A is not Noetherian. In particular, by Lemma 3.1, the algebra A is not finitely generated over R. But this contradicts our assumption that R is an sfg-ring.

It follows from the above lemma that every ring without zero divisors, which is not a field, is not an sfg-ring. Thus, we see again, for instance, that \mathbb{Z} is not an sfg-ring.

Lemma 3.4. R is a reduced ring, that is, R is without nonzero nilpotent elements.

Proof. Suppose that there exists $c \in R$ such that $c \neq 0$ and $c^m = 0$ for some $m \geq 2$. Assume that m is minimal and put $b := c^{m-1}$. Then $0 \neq b \in R$ and $b^2 = 0$. Consider the *R*-algebra $A = R[bx, bx^2, bx^3, ...]$. It is an *R*-subalgebra of R[x]. Since R is an sfg-ring, this algebra is finitely generated over R. Hence, by Lemma 1.2, $A = R[bx, bx^2, ..., bx^n]$ for some fixed n. But $bx^{n+1} \in A$ so, by Lemma 1.5,

$$bx^{n+1} = r_0 + r_1bx + r_2bx^2 + \dots + r_nbx^n$$

where $r_0, r_1, \ldots, r_n \in R$. It is an equality in the polynomial ring R[x]. This implies that b = 0 and we have a contradiction. Therefore, the algebra A is not finitely generated over R, and this contradicts our assumption that R is an sfg-ring. \Box

Lemma 3.5. $(b) = (b^2)$ for all $b \in R$.

Proof. It is clear when R is a field. Assume that R is not a field. Let $b \in R$ and suppose $(b^2) \neq (b)$. Then $b \notin (b^2)$. Consider the ideal $I := (b^2)$ and the factor ring $\overline{R} := R/I$. Let $\overline{b} = b + I$. Then $0 \neq \overline{b} \in \overline{R}$ and $\overline{b}^2 = 0$, so the ring \overline{R} has a nonzero nilpotent. Hence, by Lemma 3.4, \overline{R} is not an sfg-ring. However, by Lemma 3.2, this is an sfg-ring. Thus, we have a contradiction.

Lemma 3.6. The Jacobson radical J(R) is equal to zero.

Proof. Put J := J(R). It follows from Lemma 3.1 that J is a finitely generated R-module. If $b \in J$ then, by Lemma 3.5, $b = ub^2$ for some $u \in R$, and so, $b \in J^2$. Thus, we have the equality $J^2 = J$. Now, by Nakayama's Lemma, J = 0.

Lemma 3.7. If R is local, then R is a field.

Proof. Assume that R is local and M is the unique maximal ideal of R. Then M is the Jacobson radical of R. It follows from Lemma 3.6 that M = 0. Thus R is a field.

Lemma 3.8. Every prime ideal of R is maximal.

Proof. Let P be a prime ideal of R and suppose P is not maximal. Then there exists a maximal ideal M such that $P \subset M$ and $M \neq P$. Let $b \in M \setminus P$. It follows from Lemma 3.5 that $b = ub^2$ for some $u \in R$. Then

$$b(1-ub) = 0 \in P.$$

But $b \notin P$, so $1 - ub \in P \subset M$. Hence, $b \in M$ and $1 - ub \in M$. This implies that $1 \in M$, that is, M = R. However $M \neq R$, so we have a contradiction.

Lemma 3.9. R is Artinian.

Proof. We already know by Lemma 3.1 that R is Noetherian. Moreover we know, by Lemma 3.8 that the Krull dimension of R is equal to 0. Using a basic fact of commutative algebra (see for example [2] or [3] 99) we deduce that R is Artinian.

Now we are ready to prove the mentioned proposition which is the main result of this section.

Proposition 3.10. Every sfg-ring is a finite product of fields.

Proof. Let R be an sfg-ring. We already know (by Lemma 3.9) that R is Artinian. It is known (see for example [2] or [3]) that every Artinian ring is a finite product of some local Artinian rings. Hence,

$$R = R_1 \times R_2 \times \cdots \times R_s,$$

where R_1, \ldots, R_s are local Artinian rings. Since all projections $\pi_j : R \to R_j$ (for $j = 1, \ldots, s$) are surjections of rings, it follows from Lemma 3.2 that all the rings R_1, \ldots, R_s are sfg-rings. Moreover, they are local so, by Lemma 3.7, they are fields.

According to the above proposition we know that if R is an sfg-ring, then R is a finite product of fields. In the next sections we will prove that the opposite implication is also true.

ANDRZEJ NOWICKI

4. INITIAL COEFFICIENTS

Let us assume that R is a ring which is not a field, and A is an R-subalgebra of the R-algebra R[x]. Let us denote by \mathcal{W}_A the set of all nonzero initial coefficients of polynomials of positive degree belonging to A. Note three lemmas concerning this set.

Lemma 4.1. Let $a \in W_A$. Then the polynomial ax is integral over A.

Proof. There exists a polynomial $f(x) = ax^n + r_{n-1}x^{n-1} + \cdots + r_1x + r_0 \in A$, with $n \ge 1$ and $r_0, \ldots, r_{n-1} \in R$. Let $g(x) = a^{n-1}f(x)$. Then

$$g(x) = (ax)^{n} + r_{n-1}(ax)^{n-1} + ar_{n-2}(ax)^{n-2} + \dots + r_{1}a^{n-2}(ax) + r_{0}a^{n-1}$$

is also a polynomial belonging to A. Consider the polynomial

$$H(t) = t^{n} + r_{n-1}t^{n-1} + ar_{n-2}t^{n-2} + \dots + r_{1}a^{n-2}t + r_{0}a^{n-1} - g(x).$$

It is a monic polynomial in the variable t and all its coefficients are in A. Since H(ax) = g(x) - g(x) = 0, the element ax is integral over A.

Lemma 4.2. If R is Noetherian and W_A contains an invertible element, then the algebra A is finitely generated over R.

Proof. Let $a \in W_A$ be invertible in R. Then, by Lemma 4.1, the variable x is integral over A and this means that the ring R[x] is integral over A. Hence, by Lemma 1.3, the algebra A is finitely generated over R.

Lemma 4.3. Let $a, r \in R$. If $a \in W_A$ and $ra \neq 0$, then $ra \in W_A$.

Proof. Assume that $f = ax^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in A$ with $n \ge 1$. Then rf is a polynomial belonging to A and the initial coefficient equals $ra \ne 0$. Hence, $ra \in W_A$.

Consider for example the ring \mathbb{Z}_6 . Using the above lemmas we will show that \mathbb{Z}_6 is an sfg-ring. Let $R = \mathbb{Z}_6$, and let $A \subset R[x]$ be an R-subalgebra. We need to show that A is finitely generated over R. It is clear if $\mathcal{W}_A = \emptyset$, because in this case A = R. If \mathcal{W}_A contains an invertible element of R (in our case 1 or 5) then, by Lemma 4.2, it is also clear.

Let us assume that $\mathcal{W}_A \subset \{2, 3, 4\}$. Since $2 \cdot 2 = 4$ and $2 \cdot 4 = 2$ in \mathbb{Z}_6 , we have $4 \in \mathcal{W}_A \iff 2 \in \mathcal{W}_A$. If $3 \in \mathcal{W}_A$ and $4 \in \mathcal{W}_A$ then, by Lemma 4.1, the polynomials 4x and 3x are integral over A, and then R[x] is integral over A, because x = 4x - 3x, and in this case, by Lemma 1.3, the algebra A is finitely generated over R.

Assume that $\mathcal{W}_A = \{2, 4\}$, and let $f(x) = 4x^n + r_{n-1}x^{n-1} + \cdots + r_1x + r_0 \in A$ where $n \ge 1$ and $r_0, \ldots, r_{n-1} \in \mathbb{Z}_6$. Since $r_0 = r_0 \cdot 1 \in A$, we may assume that $r_0 = 0$. The polynomial 3f(x) also belongs to A. Hence, $3r_{n-1}x^{n-1} + \cdots + 3r_1x \in A$. Suppose that for some $j \in \{1, \ldots, n-1\}$ we have $3r_j \neq 0$. Let us take the maximal j. Then $3r_j \in \mathcal{W}_A = \{2, 4\}$, so $r_j = 0, 2$ or 4 and in every case we have a contradiction, because $3r_j \neq 0$. Therefore, all the elements $3r_1, \ldots, 3r_{n-1}$ are zeros. This means that $r_i = 4b_i$ with $b_i \in \mathbb{Z}_6$, for all $i = 1, \ldots, n-1$. Observe that 4 is an idempotent in \mathbb{Z}_6 . We have $4 = 4^m$ for every positive integer m. Hence,

$$f(x) = 4x^{n} + 4b_{n-1}x^{n-1} + 4b_{n-2}x^{n-2} + \dots + 4b_{1}x$$
$$= (4x)^{n} + b_{n-1}(4x)^{n-1} + \dots + b_{1}(4x)^{1}$$

and hence, A is a \mathbb{Z}_6 -subalgebra of the \mathbb{Z}_6 -algebra $\mathbb{Z}_6[4x]$. In this case $4 \in \mathcal{W}_A$ so, by Lemma 4.1, the monomial 4x is integral over A and so, the ring $\mathbb{Z}_6[4x]$ is integral over A. Therefore, by Lemma 1.3, the algebra A is finitely generated over $R = \mathbb{Z}_6$.

Now let us assume that $\mathcal{W}_A = \{3\}$. In this case we use a similar way, as in the previous case. We show that A is a subalgebra of \mathbb{Z}_6 -algebra $\mathbb{Z}_6[3x]$ and, using again Lemma 1.3, we see that A is finitely generated over \mathbb{Z}_6 . Therefore we proved that \mathbb{Z}_6 is an sfg-ring.

5. Finite products of fields

In this section we prove that every finite product of fields is an sfg-ring. Throughout this section

$$R = K_1 \times K_2 \times \cdots \times K_n,$$

where K_1, \ldots, K_n are fields. It is clear that the ring R is Noetherian, and even Artinian. Let A be an R-subalgebra of R[x]. We will show that A is finitely generated over R. We know, by Theorem 2.1, that it is true for n = 1. Now we assume that $n \ge 2$.

Let us fix the following notations:

$$N = \{1, 2, \dots, n\};$$

$$e_1 = (1, 0, \dots, 0), \quad e_2 = (0, 1, \dots, 0), \quad \dots, \quad e_n = (0, 0, \dots, 1);$$

$$I = \{i \in N; \ e_i \in \mathcal{W}_A\};$$

$$J = N \smallsetminus I;$$

$$\varepsilon = \sum_{i \in I} e_i.$$

Observe that if $I = \emptyset$, then A = R and nothing to prove. We know, by Lemma 4.1, that if $i \in I$, then $e_i x$ is an integral element over A. If I = N, then the variable x is integral over A, because $x = (1, 1, ..., 1)x = \sum_{i=1}^{n} e_i x$, and in this case, by Lemma 1.3, the algebra A is finitely generated over R. Hence, we will assume that $I \neq \emptyset$ and $I \neq N$. Without loss of generality we may assume that

$$I = \{1, 2, \dots, s\}, \quad J = \{s + 1, \dots, n\}, \text{ where } 1 \leq s < n,$$

and $\varepsilon = e_1 + \cdots + e_s$. Note two simple lemmas. The first one is obvious.

Lemma 5.1. Let u be an element of R such that $ue_j = 0$ for all $j \in J$. Then $u = \varepsilon u$.

Lemma 5.2. Let $u \in R$. If $u \in W_A$, then $u = \varepsilon u$.

Proof. Let $u = (u_1, \ldots, u_n)$ and assume that $u \in \mathcal{W}_A$. Suppose there exists $j \in J$ such that $ue_j \neq 0$. Then u_j is a nonzero element of the field K_j , and $vu = e_j$, where $v = (0, \ldots, 0, u_j^{-1}, 0, \ldots, 0)$. Hence, $e_j = v \cdot ue_j$ and so, by Lemma 4.3, the element e_j belongs to \mathcal{W}_A . But it is a contradiction, because $j \in J = N \setminus I$. Therefore, $ue_j = 0$ for all $j \in J$ and so, by Lemma 5.1, we have $u = \varepsilon u$.

Now consider the *R*-subalgebra *B* of R[x], defined by

$$B = R\left[e_1x, e_2x, \dots, e_sx\right]$$

We will prove that $A \subset B$, that is, that B is a subalgebra of A.

Let f be an arbitrary element of A. If deg f = 0, then obviously $f \in B$. Assume that deg $f \ge 1$ and $u \in R$ is the initial coefficient of f. Since $R \subset A$, we may assume that the constant term of f is equal to zero. Then we have

$$f = ux^{n} + d_1x^{n_1} + d_2x^{n_2} + \dots + d_px^{n_p},$$

where d_1, \ldots, d_p are nonzero elements of R, and $n > n_1 > n_2 > \cdots > n_p \ge 1$. It follows from Lemma 5.2 that $u = \varepsilon u$.

Let $j \in J$. Then $ue_j = u(\varepsilon e_j) = u0 = 0$ and then

$$e_j f = e_j d_1 x^{n_1} + e_j d_2 x^{n_2} + \dots + e_j d_p x^{n_p} \in A.$$

Suppose $e_j d_q \neq 0$ for some $q \in \{1, \ldots, p\}$. Let us take the minimal q. Then $0 \neq e_j d_q \in \mathcal{W}_A$. Put $d_q = (c_1, \ldots, c_n)$ with $c_i \in K_i$ for all $i = 1, \ldots, n$. Since $e_j d_q \neq 0$, we have $c_j \neq 0$ and so, $vd_q = e_j$, where $v = (0, \ldots, 0, c_j^{-1}, 0, \ldots, 0)$. This implies that $e_j = v(e_j d_q) \in \mathcal{W}_A$. But $e_j \notin \mathcal{W}_A$, because $j \in J = N \setminus I$. Hence, we have a contradiction.

Therefore, all the elements $e_j d_1, \ldots, e_j d_p$ are zeros, and such situation is for all $j \in J$. This means, by Lemma 5.1, that $d_1 = \varepsilon d_1, \ldots, d_p = \varepsilon d_p$. Observe that the element ε is an idempotent of R, so $\varepsilon = \varepsilon^m$ for $m \ge 1$. Hence,

$$f = ux^{n} + d_{1}x^{n_{1}} + d_{2}x^{n_{2}} + \dots + d_{p}x^{n_{p}}$$

$$= u\varepsilon x^{n} + d_{1}\varepsilon x^{n_{1}} + d_{2}\varepsilon x^{n_{2}} + \dots + d_{p}\varepsilon x^{n_{p}}$$

$$= u\varepsilon^{n}x^{n} + d_{1}\varepsilon^{n_{1}}x^{n_{1}} + d_{2}\varepsilon^{n_{2}}x^{n_{2}} + \dots + d_{p}\varepsilon^{n_{p}}x^{n_{p}}$$

$$= u(\varepsilon x)^{n} + d_{1}(\varepsilon x)^{n_{1}} + d_{2}(\varepsilon x)^{n_{2}} + \dots + d_{p}(\varepsilon x)^{n_{p}}$$

and hence, the polynomial f belongs to the ring $R[\varepsilon x]$. But

$$R[\varepsilon x] \subset R[e_1 x, e_2 x, \dots, e_s x] = B$$
,

so $f \in B$. Thus, we proved that A is an R-subalgebra of B. Let us recall that all the monomials e_1x, \ldots, e_sx are integral over A. Hence, the ring B is integral over A. It follows from Lemma 1.3 that A is finitely generated over R. Therefore, we proved the following proposition. **Proposition 5.3.** Every finite product of fields is an sfg-ring.

Immediately from this proposition and Proposition 3.10 we obtain the following main result of this article.

Theorem 5.4. A ring R is an sfg-ring if and only if R is a finite product of fields.

Now, by this theorem and the Chinese Remainder Theorem, we have

Colorary 5.5. The ring \mathbb{Z}_m is an sfg-ring if and only if m is square-free.

References

- [1] E. Artin, J. T. Tate, A note of finite ring extensions, J. Math. Soc. Japan, 3(1951) 74-77.
- [2] M. F. Atiyah, I. G. Macdonald, Introduction to Commutative Algebra, Addison Wesley Publishing Company, 1969.
- [3] S. Balcerzyk, T. Józefiak, Commutative Noetherian and Krull Rings, Horwood-PWN, Warszawa 1989.
- [4] A. van den Essen, Polynomial automorphisms and the Jacobian Conjecture, Progress in Mathematics 190, 2000.
- [5] G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations, Encyclopaedia of Mathematical Sciences 136, Springer, Berlin, 2006.
- [6] M. Karaś, Elementary proof of finitely generateness of a subring of K[t], Materials of the XXI Conference of Complex Analytic and Algebraic Geometry, Publisher University of Lodz, Lodz (2000), 79-86.
- [7] S. Kuroda, The infiniteness of the SAGBI bases for certain invariant rings, Osaka J. Math. 39(2002), 665-680.
- [8] M. Nagata, Lectures on the Fourteenth Problem of Hilbert, Lecture Notes 31, Tata Institute, Bombay, 1965.
- [9] M. Nagata, On the fourteenth problem of Hilbert, Proc. Intern. Congress Math., 1958, 459-462, Cambridge Univ. Press, New York, 1966.
- [10] A. Nowicki, Polynomial derivations and their rings of constants, Nicolaus Copernicus University, Toruí 1994.
- [11] A. Nowicki, The example of Roberts to the fourteenth problem of Hilbert (in polish), Materials of the XIX Conference of Complex Analytic and Algebraic Geometry, Publisher University of Lodz, Lodz (1998), 19-44.
- [12] A. Nowicki, The example of Freudenburg to the fourteenth problem of Hilbert (in polish), Materials of the XX Conference of Complex Analytic and Algebraic Geometry, Publisher University of Lodz, Lodz (1999), 7-20.
- [13] A. Nowicki, The fourteenth problem of Hilbert for polynomial derivations, Differential Galois Theory, Banach Center Publications 58 (2002), 177-188.
- [14] T. A. Springer, Invariant Theory, Lecture Notes 585, 1977.
- [15] O. Zariski, Interprétations algébraico-géometriques du quatorziéme probléme de Hilbert, Bull. Sci. Math., 78 (1954), 155-168.

NICOLAUS COPERNICUS UNIVERSITY, FACULTY OF MATHEMATICS AND COMPUTER SCIENCES, UL. CHOPINA 12/18, 87-100 TORU, POLAND

E-mail address: anow@mat.uni.torun.pl