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FINITELY GENERATED SUBRINGS OF R[X]

ANDRZEJ NOWICKI

Abstract. In this article all rings and algebras are commutative with iden-
tity, and we denote by R[x] the ring of polynomials over a ring R in one

variable x. We describe rings R such that all subalgebras of R[x] are finitely
generated over R.

Introduction

Let K be a field and let L be a subfield of K(x1, . . . , xn) containing K. In
1954, Zariski in [15], proved that if n 6 2, then the ring L∩K[x1, . . . , xn] is finitely
generated over K. This is a result concerning the fourteenth problem of Hilbert.
Today we know ([8], [9], [7]) that a similar statement for n > 3 is not true. Many
results on this subject one can find, for example, in [4], [5], [10], [13], and also in
the author articles ([11], [12]) published by University of Lodz in Materials of the
Conferences of Complex Analytic and Algebraic Geometry.

We are interested in the case n = 1. It is well known that every K-subalgebra A
of K[x1] is finitely generated over K. In this case we do not assume that A has a
form L ∩K[x1]. We recall it (with a proof) as Theorem 2.1. An elementary proof
one can find, for example, in [6]. The assumption that K is a field is here very
important. What happens in the case when K is a commutative ring and K is not
a field ? In this article we will give a full answer to this question.

Throughout this article all rings and algebras are commutative with identity,
and we denote by R[x] the ring of polynomials over a ring R in one variable x. We
say that a ring R is an sfg-ring, if every R-subalgebra of R[x] is finitely generated
over R. We already know that if R is a field then R is an sfg-ring. We will show
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that the rings Z and Z4 are not sfg-rings. But, for instance, the rings Z6 and Z105

are sfg-rings.

The main result of this article states that R is an sfg-ring if and only if R is
a finite product of fields. For a proof of this fact we prove, in Section 3, many
various lemmas. A crucial role plays the Artin-Tate Lemma (Lemma 1.3). If R is
an sfg-ring then we successively prove that R is Noetherian, reduced, that every
prime ideal of R is maximal, and by this way we obtain that R is a finite product
of fields. Moreover, in the last section, we present a proof that every finite product
of fields is an sfg-ring.

1. Preliminary lemmas and notations

We start with the following well known lemma (see for example [2] Proposition
6.5).

Lemma 1.1. If R is a Noetherian ring and M is a finitely generated R-module,
then M is a Noetherian module.

Let A be an algebra over a ring R. If S is a subset of A, then we denote by R[S]
the smallest R-subalgebra of A containing R and S. Several times we will use the
following obvious lemma.

Lemma 1.2. Let A = R[S]. If the algebra A is finitely generated over R, then
there exists a finite subset S0 of S such that A = R [S0].

The next lemma comes from [14] (Lemma 2.4.3). This is a particular case of the
Artin and Tate result published in [1]. Since this lemma plays an important role
in our article, we present also its simple proof.

Lemma 1.3 (Artin, Tate, 1951). Let R be a Noetherian ring, B a finitely gen-
erated R-algebra, and A an R-subalgebra of B. If B is integral over A, then the
algebra A is finitely generated over R.

Proof. Let B = R[b1, . . . , bs], where b1, . . . , bs are some elements of B. Since each
bi is integral over A, we have equalities of the form

bni
i + ai1b

ni−1 + · · ·+ aini = 0, for i = 1, . . . , s,

where all coefficients aij belong to A, and n1, . . . , ns are positive integers. Let
{a1, . . . , am} be the set of all the coefficients aij , and put

A′ = R[a1, . . . , am] .

It is clear that A′ is a Noetherian ring and B is an A′-module generated by all
elements of the form bj11 b

j2
2 · · · bjss , where 0 6 j1 < n1, . . . , 0 6 js < ns. Thus,

B is a finitely generated A′-module and so, by Lemma 1.1, B is a Noetherian A′-
module. This means that every submodule of B is finitely generated. In particular,
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A is a finitely generated A′-module. Assume that am+1, am+2, . . . , an ∈ A are its
generators. Then

A = A′am+1 + · · ·+A′an = R[a1, . . . , an] ,

and we see that the algebra A is finitely generated over R. �

Let us fix some notations. For a given subset I of a ring R, we denote by I[x]
the set of all polynomials from R[x] with the coefficients belonging to I. If I is an
ideal of R, then I[x] is an ideal of R[x], and then the rings R[x]/I[x] and (R/I)[x]
are isomorphic.

Let f : S → T be a homomorphism of rings. We denote by f the mapping from
S[x] to T [x] defined by the formula

f

∑
j

sjx
j

 =
∑
j

ϕ(sj)x
j

for all
∑

j sjx
j ∈ S[x]. This mapping is a homomorphism of rings and Ker f =

(Ker f) [x]. We will say that f is the homomorphism associated with f . If f a
surjection, then f is also a surjection. It is clear that if S and T are R-algebras,
and f : S → T is a homomorphism of R-algebras, then f : S[x] → T [x] is also a
homomorphism of R-algebras.

In next sections we will use the following two lemmas.

Lemma 1.4. Let I be an ideal of a ring R, and let A = R [ax; a ∈ I]. If the ideal
I is not finitely generated, then the algebra A is not finitely generated over R.

Proof. Assume that I is not finitely generated and suppose that A is finitely gen-
erated over R. Then, by Lemma 1.2, there exists a finite subset {a1, . . . , an}
of I such that A = R[a1x, . . . , anx]. Then of course (a1, . . . , an) 6= I so,
there exists b ∈ I r (a1, . . . , an). Since bx ∈ A = R[a1x, . . . , anx], we have
bx = F (a1x, . . . , anx), where F is a polynomial belonging to R[t1, . . . , tn]. Let

F = r0 + r1t1 + r2t2 + · · ·+ rntn +G

where r0, r1, . . . , rn ∈ R and G ∈ R[t1, . . . , tn] is a polynomial in which the degrees
of all nonzero monomials are greater than 1. Then, in the ring R[x] we have

bx = F (a1x, . . . , anx) = r0 + r1a1x+ · · ·+ rnanx+ hx2,

where h is some element of R[x]. This implies that b = r1a1 + · · · + rnan ∈
(a1, . . . , an), but it is a contradiction, because b 6∈ (a1, . . . , an). �

Lemma 1.5. Let A = R
[
bx, bx2, . . . , bxn

]
, where n > 1, 0 6= b ∈ R and b2 = 0.

Then every element u of A is of the form u = r0 + r1bx+ r2bx
2 + · · ·+ rnbx

n for
some r0, r1, . . . , rn ∈ R.
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Proof. Let u ∈ A. Then u = F (bx, bx2, . . . , bxn) for some n, where F is a polyno-
mial in n variables belonging to the polynomial ring R[t1, . . . , tn]. Let

F (t1, . . . , tn) = r0 + r1t1 + r2t2 + · · ·+ rntn +G(t1, . . . , tn),

where r0, . . . , rn ∈ R and G ∈ R[t1, . . . , tn] is a polynomial such that the degrees
of all nonzero monomials of F are greater than 1. Then G(bx, . . . , bxn) = b2H(x),
gdzie H(x) ∈ R[x]. But b2 = 0, so u = r0 + r1bx+ r2bx

2 + · · ·+ rnbx
n. �

2. Subalgebras of K[x]

Let us start with the following consequence of Lemma 1.3.

Theorem 2.1. If K[x] is the polynomial ring in one variable over a field K, then
every K-subalgebra of K[x] is finitely generated over K.

Proof. Let A ⊂ K[x] be a K-subalgebra. If A = K then of course A is finitely
generated over K. Assume that A 6= K and let f ∈ A r K. Multiplying f by
the inverse of its initial coefficient, we may assume that f is monic. Let f =
xn + a1x

n−1 + · · ·+ an−1x+ an, where n > 1 and a1, . . . , an ∈ K. It follows from
the equality

xn + a1x
n−1 + · · ·+ an−1x+ (an − f) = 0,

that the variable x is integral over A. This implies that the ring K[x] is integral
over A and, by Lemma 1.3, the algebra A is finitely generated over K. �

For the polynomial rings in two or bigger number of variables, a similar assertion
is not true.

Example 2.2. Let K[x, y] be the polynomial ring in two variables over a field K,
and

A = K
[
xy, xy2, xy3, . . .

]
.

The algebra A is not finitely generated over K.

Proof. For every positive integer n, consider the ideal In of A, generated by the
monomials xy, xy2, . . . , xyn. Observe that xyn+1 6∈ In. Indeed, suppose xyn+1 =
F1xy + F2xy

2 + · · · + Fnxy
n, where F1, . . . , Fn ∈ A. Every element of A is of the

form a + Gxy with a ∈ K and G ∈ K[x, y]. In particular Fj = aj + Gjxy, where
aj ∈ K, Gj ∈ K[x, y] for all j = 1, . . . , n. Thus, in K[x, y] we have

yn+1 = a1y + a2y
2 + · · ·+ any

n +
(
G1y

2 +G2y
3 + · · ·+Gny

n
)
x.

Let ϕ : K[x, y] → K[y] be the homomorphism of K-algebras defined by x 7→ 0
and y 7→ y. Then in the ring K[y], we have the false equality yn+1 = ϕ

(
yn+1

)
=

a1y+ a2y
2 + · · ·+ any

n. Hence, the infinite sequence I1 ⊂ I2 ⊂ I3 ⊂ · · · is strictly
increasing. The ring A is not Noetherian. In particular, the algebra A is not finitely
generated over K. �
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In Theorem 2.1 we assumed that K is a field. This assumption is here very
important. For instance, if K is the ring of integers Z, then a similar assertion is
not true.

Example 2.3. Let A = Z
[
2x, 2x2, 2x3, . . .

]
. Then A is a subalgebra of Z[x] and

A is not finitely generated over Z.

Proof. For every positive integer n, consider the ideal In of A, generated by the
monomials 2x, 2x2, . . . , 2xn. Observe that 2xn+1 6∈ In. Indeed, suppose 2xn+1 =
2xF1 + 2x2F2 + · · · + 2xnFn, where F1, . . . , Fn ∈ A. Every element of A is of the
form a + 2xG with a ∈ Z and G ∈ Z[x]. In particular, Fj = aj + 2xGj , where
aj ∈ Z, Gj ∈ Z[x] for all j = 1, . . . , n. Thus, in Z[x] we have the equality

xn+1 = a1x+ a2x
2 + · · ·+ anx

n + 2
(
G1x

2 +G2x
3 + · · ·+Gnx

n+1
)
.

For an integer u, denote by u the element u modulo 2. Then, in the ring Z2[x]
we have the false equality xn+1 = a1x + a2x

2 + · · · + anx
n. Hence, the infinite

sequence I1 ⊂ I2 ⊂ I3 ⊂ · · · is strictly increasing. The ring A is not Noetherian.
In particular, the algebra A is not finitely generated over Z. �

3. Properties of sfg-rings

Let us recall that a ring R is said to be an sfg-ring, if every R-subalgebra of
R[x] is finitely generated over R. We already know (by Theorem 2.1) that if R is
a field then R is an sfg-ring. Moreover we know (by Example 2.3) that Z is not
an sfg-ring. In this section we will prove that every sfg-ring is a finite product of
fields. For a proof of this fact we need the following 9 successive lemmas. In all
the lemmas we assume that R is an sfg-ring.

Lemma 3.1. R is Noetherian.

Proof. Suppose R is not Noetherian. Then there exists an ideal I of R which is
not finitely generated. Consider the R-algebra A = R [ax; a ∈ I]. It follows from
Lemma 1.4 that this algebra is not finitely generated over R. But this contradicts
our assumption that R is an sfg-ring. �

Now we know, by this lemma, that if R is an sfg-ring, then every R-subalgebra
of R[x] is a Noetherian ring.

Lemma 3.2. If I is an ideal of R, then R/I is also an sfg-ring.

Proof. PutR := R/I. Let ϕ : R→ R, r 7→ r+I be the natural ring homomorphism,
and let ϕ : R[x] → R[x] be the homomorphism associated with ϕ. Let B be an
R-subalgebra of R[x]. We need to show that B is finitely generated over R. For this
aim consider the R-algebra A := ϕ−1(B). It is an R-subalgebra of R[x]. Since R
is an sfg-ring, the algebra A is finitely generated over R. Let W ⊂ A be a finite set
of generators of A. Then it is easy to check that ϕ(W ) is a finite set of generators
of B over R. �
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Lemma 3.3. Every non-invertible element of R is a zero divisor.

Proof. Suppose there exists a non-invertible element b ∈ R such that b is not a
zero divisor of R. Then b 6= 0 and b is not a zero divisor of R[x]. Consider the
R-subalgebra A = R

[
bx, bx2, bx3, . . .

]
. For every positive integer n, let In be the

ideal of A, generated by the monomials bx, bx2, . . . , bxn. Observe that bxn+1 6∈ In.
Indeed, suppose bxn+1 = bxF1 +bx2F2 + · · ·+bxnFn, where F1, . . . , Fn ∈ A. Every
element of A is of the form a + bxG with a ∈ R and G ∈ R[x]. In particular,
Fj = aj + bxGj , where aj ∈ R, Gj ∈ R[x] for all j = 1, . . . , n. Since the element b
is not a zero divisor of R[x], we have in R[x] the following equality

xn+1 = a1x+ a2x
2 + · · ·+ anx

n + b
(
G1x

2 +G2x
3 + · · ·+Gnx

n
)
.

Consider the factor ring R/(b). Let ϕ : R → R/(b), r 7→ r + (b), be the natural
homomorphism and ϕ : R[x] → R/(b)[x] be the homomorphism associated with
ϕ. Using ϕ, from the above equality we obtain that xn+1 = ϕ(a1)x + ϕ(a2)x2 +
· · ·+ ϕ(an)xn . This is a false equality in the polynomial ring R/(b)[x]. Therefore,
bxn+1 6∈ In. Hence, the infinite sequence I1 ⊂ I2 ⊂ I3 ⊂ · · · is strictly increasing.
This means that the ring A is not Noetherian. In particular, by Lemma 3.1, the
algebra A is not finitely generated over R. But this contradicts our assumption
that R is an sfg-ring. �

It follows from the above lemma that every ring without zero divisors, which is
not a field, is not an sfg-ring. Thus, we see again, for instance, that Z is not an
sfg-ring.

Lemma 3.4. R is a reduced ring, that is, R is without nonzero nilpotent elements.

Proof. Suppose that there exists c ∈ R such that c 6= 0 and cm = 0 for some
m > 2. Assume that m is minimal and put b := cm−1. Then 0 6= b ∈ R and
b2 = 0. Consider the R-algebra A = R[bx, bx2, bx3, . . . ] . It is an R-subalgebra
of R[x]. Since R is an sfg-ring, this algebra is finitely generated over R. Hence,
by Lemma 1.2, A = R

[
bx, bx2, . . . , bxn

]
for some fixed n. But bxn+1 ∈ A so, by

Lemma 1.5,

bxn+1 = r0 + r1bx+ r2bx
2 + · · ·+ rnbx

n ,

where r0, r1, . . . , rn ∈ R. It is an equality in the polynomial ring R[x]. This implies
that b = 0 and we have a contradiction. Therefore, the algebra A is not finitely
generated over R, and this contradicts our assumption that R is an sfg-ring. �

Lemma 3.5. (b) = (b2) for all b ∈ R.

Proof. It is clear when R is a field. Assume that R is not a field. Let b ∈ R and
suppose (b2) 6= (b). Then b 6∈ (b2). Consider the ideal I := (b2) and the factor ring

R := R/I. Let b = b+ I. Then 0 6= b ∈ R and b
2

= 0, so the ring R has a nonzero
nilpotent. Hence, by Lemma 3.4, R is not an sfg-ring. However, by Lemma 3.2,
this is an sfg-ring. Thus, we have a contradiction. �
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Lemma 3.6. The Jacobson radical J(R) is equal to zero.

Proof. Put J := J(R). It follows from Lemma 3.1 that J is a finitely generated
R-module. If b ∈ J then, by Lemma 3.5, b = ub2 for some u ∈ R, and so, b ∈ J2.
Thus, we have the equality J2 = J . Now, by Nakayama’s Lemma, J = 0. �

Lemma 3.7. If R is local, then R is a field.

Proof. Assume that R is local and M is the unique maximal ideal of R. Then M
is the Jacobson radical of R. It follows from Lemma 3.6 that M = 0. Thus R is a
field. �

Lemma 3.8. Every prime ideal of R is maximal.

Proof. Let P be a prime ideal of R and suppose P is not maximal. Then there
exists a maximal ideal M such that P ⊂M and M 6= P . Let b ∈M rP . It follows
from Lemma 3.5 that b = ub2 for some u ∈ R. Then

b(1− ub) = 0 ∈ P.

But b 6∈ P , so 1− ub ∈ P ⊂M . Hence, b ∈M and 1− ub ∈M . This implies that
1 ∈M , that is, M = R. However M 6= R, so we have a contradiction. �

Lemma 3.9. R is Artinian.

Proof. We already know by Lemma 3.1 that R is Noetherian. Moreover we know,
by Lemma 3.8 that the Krull dimension of R is equal to 0. Using a basic fact of
commutative algebra (see for example [2] or [3] 99) we deduce that R is Artinian.

�

Now we are ready to prove the mentioned proposition which is the main result
of this section.

Proposition 3.10. Every sfg-ring is a finite product of fields.

Proof. Let R be an sfg-ring. We already know (by Lemma 3.9) that R is Artinian.
It is known (see for example [2] or [3]) that every Artinian ring is a finite product
of some local Artinian rings. Hence,

R = R1 ×R2 × · · · ×Rs,

where R1, . . . , Rs are local Artinian rings. Since all projections πj : R → Rj (for
j = 1, . . . , s) are surjections of rings, it follows from Lemma 3.2 that all the rings
R1, . . . , Rs are sfg-rings. Moreover, they are local so, by Lemma 3.7, they are
fields. �

According to the above proposition we know that if R is an sfg-ring, then R
is a finite product of fields. In the next sections we will prove that the opposite
implication is also true.
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4. Initial coefficients

Let us assume that R is a ring which is not a field, and A is an R-subalgebra
of the R-algebra R[x]. Let us denote byWA the set of all nonzero initial coefficients
of polynomials of positive degree belonging to A. Note three lemmas concerning
this set.

Lemma 4.1. Let a ∈ WA. Then the polynomial ax is integral over A.

Proof. There exists a polynomial f(x) = axn +rn−1x
n−1 + · · ·+r1x+r0 ∈ A, with

n > 1 and r0, . . . , rn−1 ∈ R. Let g(x) = an−1f(x). Then

g(x) = (ax)n + rn−1(ax)n−1 + arn−2(ax)n−2 + · · ·+ r1a
n−2(ax) + r0a

n−1

is also a polynomial belonging to A. Consider the polynomial

H(t) = tn + rn−1t
n−1 + arn−2t

n−2 + · · ·+ r1a
n−2t+ r0a

n−1 − g(x) .

It is a monic polynomial in the variable t and all its coefficients are in A. Since
H(ax) = g(x)− g(x) = 0, the element ax is integral over A. �

Lemma 4.2. If R is Noetherian and WA contains an invertible element, then the
algebra A is finitely generated over R.

Proof. Let a ∈ WA be invertible in R. Then, by Lemma 4.1, the variable x is
integral over A and this means that the ring R[x] is integral over A. Hence, by
Lemma 1.3, the algebra A is finitely generated over R. �

Lemma 4.3. Let a, r ∈ R. If a ∈ WA and ra 6= 0, then ra ∈ WA.

Proof. Assume that f = axn + an−1x
n−1 + · · · + a1x + a0 ∈ A with n > 1. Then

rf is a polynomial belonging to A and the initial coefficient equals ra 6= 0. Hence,
ra ∈ WA. �

Consider for example the ring Z6. Using the above lemmas we will show that
Z6 is an sfg-ring. Let R = Z6, and let A ⊂ R[x] be an R-subalgebra. We need to
show that A is finitely generated over R. It is clear if WA = ∅, because in this case
A = R. If WA contains an invertible element of R (in our case 1 or 5) then, by
Lemma 4.2, it is also clear.

Let us assume that WA ⊂ {2, 3, 4}. Since 2 · 2 = 4 and 2 · 4 = 2 in Z6, we
have 4 ∈ WA ⇐⇒ 2 ∈ WA. If 3 ∈ WA and 4 ∈ WA then, by Lemma 4.1,
the polynomials 4x and 3x are integral over A, and then R[x] is integral over A,
because x = 4x − 3x, and in this case, by Lemma 1.3, the algebra A is finitely
generated over R.

Assume that WA = {2, 4}, and let f(x) = 4xn + rn−1x
n−1 + · · ·+ r1x+ r0 ∈ A

where n > 1 and r0, . . . , rn−1 ∈ Z6. Since r0 = r0 · 1 ∈ A, we may assume that
r0 = 0. The polynomial 3f(x) also belongs to A. Hence, 3rn−1x

n−1 + · · ·+ 3r1x ∈
A .
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Suppose that for some j ∈ {1, . . . , n − 1} we have 3rj 6= 0. Let us take the
maximal j. Then 3rj ∈ WA = {2, 4}, so rj = 0, 2 or 4 and in every case we have
a contradiction, because 3rj 6= 0. Therefore, all the elements 3r1, . . . , 3rn−1 are
zeros. This means that ri = 4bi with bi ∈ Z6, for all i = 1, . . . , n− 1. Observe that
4 is an idempotent in Z6. We have 4 = 4m for every positive integer m. Hence,

f(x) = 4xn + 4bn−1x
n−1 + 4bn−2x

n−2 + · · ·+ 4b1x

= (4x)n + bn−1(4x)n−1 + · · ·+ b1(4x)1

and hence, A is a Z6-subalgebra of the Z6-algebra Z6[4x]. In this case 4 ∈ WA

so, by Lemma 4.1, the monomial 4x is integral over A and so, the ring Z6[4x] is
integral over A. Therefore, by Lemma 1.3, the algebra A is finitely generated over
R = Z6.

Now let us assume that WA = {3}. In this case we use a similar way, as in the
previous case. We show that A is a subalgebra of Z6-algebra Z6[3x] and, using
again Lemma 1.3, we see that A is finitely generated over Z6. Therefore we proved
that Z6 is an sfg-ring.

5. Finite products of fields

In this section we prove that every finite product of fields is an sfg-ring.
Throughout this section

R = K1 ×K2 × · · · ×Kn,

where K1, . . . ,Kn are fields. It is clear that the ring R is Noetherian, and even
Artinian. Let A be an R-subalgebra of R[x]. We will show that A is finitely
generated over R. We know, by Theorem 2.1, that it is true for n = 1. Now we
assume that n > 2.

Let us fix the following notations:

N = {1, 2, . . . , n} ;

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1) ;

I = {i ∈ N ; ei ∈ WA} ;

J = N r I ;

ε =
∑
i∈I

ei .

Observe that if I = ∅, then A = R and nothing to prove. We know, by Lemma 4.1,
that if i ∈ I, then eix is an integral element over A. If I = N , then the variable
x is integral over A, because x = (1, 1, . . . , 1)x =

∑n
i=1 eix , and in this case, by

Lemma 1.3, the algebra A is finitely generated over R. Hence, we will assume that
I 6= ∅ and I 6= N . Without loss of generality we may assume that

I = {1, 2, . . . , s}, J = {s+ 1, . . . , n}, where 1 6 s < n ,

and ε = e1 + · · ·+ es. Note two simple lemmas. The first one is obvious.
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Lemma 5.1. Let u be an element of R such that uej = 0 for all j ∈ J . Then
u = εu.

Lemma 5.2. Let u ∈ R. If u ∈ WA, then u = εu.

Proof. Let u = (u1, . . . , un) and assume that u ∈ WA. Suppose there exists j ∈ J
such that uej 6= 0. Then uj is a nonzero element of the field Kj , and vu = ej ,

where v = (0, . . . , 0, u−1j , 0, . . . , 0). Hence, ej = v · uej and so, by Lemma 4.3, the
element ej belongs to WA. But it is a contradiction, because j ∈ J = N r I.
Therefore, uej = 0 for all j ∈ J and so, by Lemma 5.1, we have u = εu. �

Now consider the R-subalgebra B of R[x], defined by

B = R [e1x, e2x, . . . , esx] .

We will prove that A ⊂ B, that is, that B is a subalgebra of A.

Let f be an arbitrary element of A. If deg f = 0, then obviously f ∈ B. Assume
that deg f > 1 and u ∈ R is the initial coefficient of f . Since R ⊂ A, we may
assume that the constant term of f is equal to zero, Then we have

f = uxn + d1x
n1 + d2x

n2 + · · ·+ dpx
np ,

where d1, . . . , dp are nonzero elements of R, and n > n1 > n2 > · · · > np > 1. It
follows from Lemma 5.2 that u = εu.

Let j ∈ J . Then uej = u (εej) = u0 = 0 and then

ejf = ejd1x
n1 + ejd2x

n2 + · · ·+ ejdpx
np ∈ A .

Suppose ejdq 6= 0 for some q ∈ {1, . . . , p}. Let us take the minimal q. Then
0 6= ejdq ∈ WA. Put dq = (c1, . . . , cn) with ci ∈ Ki for all i = 1, . . . , n. Since

ejdq 6= 0, we have cj 6= 0 and so, vdq = ej , where v =
(
0, . . . , 0, c−1j , 0, . . . , 0

)
. This

implies that ej = v(ejdq) ∈ WA. But ej 6∈ WA, because j ∈ J = N r I. Hence, we
have a contradiction.

Therefore, all the elements ejd1, . . . , ejdp are zeros, and such situation is for all
j ∈ J . This means, by Lemma 5.1, that d1 = εd1, . . . , dp = εdp. Observe that the
element ε is an idempotent of R, so ε = εm for m > 1. Hence,

f = uxn + d1x
n1 + d2x

n2 + · · ·+ dpx
np

= uεxn + d1εx
n1 + d2εx

n2 + · · ·+ dpεx
np

= uεnxn + d1ε
n1xn1 + d2ε

n2xn2 + · · ·+ dpε
npxnp

= u(εx)n + d1(εx)n1 + d2(εx)n2 + · · ·+ dp(εx)np ,

and hence, the polynomial f belongs to the ring R[εx]. But

R[εx] ⊂ R[e1x, e2x, . . . , esx] = B ,

so f ∈ B. Thus, we proved that A is an R-subalgebra of B. Let us recall that
all the monomials e1x, . . . , esx are integral over A. Hence, the ring B is integral
over A. It follows from Lemma 1.3 that A is finitely generated over R. Therefore,
we proved the following proposition.
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Proposition 5.3. Every finite product of fields is an sfg-ring.

Immediately from this proposition and Proposition 3.10 we obtain the following
main result of this article.

Theorem 5.4. A ring R is an sfg-ring if and only if R is a finite product of fields.

Now, by this theorem and the Chinese Remainder Theorem, we have

Colorary 5.5. The ring Zm is an sfg-ring if and only if m is square-free.

References

[1] E. Artin, J. T. Tate, A note of finite ring extensions, J. Math. Soc. Japan, 3(1951) 74-77.
[2] M. F. Atiyah, I. G. Macdonald, Introduction to Commutative Algebra, Addison - Wesley

Publishing Company, 1969.
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