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CONTACT EXPONENT AND THE MILNOR NUMBER OF

PLANE CURVE SINGULARITIES

EVELIA ROSA GARCÍA BARROSO AND ARKADIUSZ P LOSKI

Abstract. We investigate properties of the contact exponent (in the sense of

Hironaka [Hi]) of plane algebroid curve singularities over algebraically closed

fields of arbitrary characteristic. We prove that the contact exponent is an
equisingularity invariant and give a new proof of the stability of the maximal

contact. Then we prove a bound for the Milnor number and determine the

equisingularity class of algebroid curves for which this bound is attained. We
do not use the method of Newton’s diagrams. Our tool is the logarithmic

distance developed in [GB-P1].

Introduction

Let C be a plane algebroid curve of multiplicity m(C) defined over an alge-
braically closed field K. To calculate the number of infinitely near m(C)-fold
points, Hironaka [Hi] (see also [B-K] or [T2]) introduced the concept of contact
exponent d(C) and study its properties using Newton’s diagrams.

In this note we prove an explicit formula for a generalization of contact exponent
(Section 2, Theorem 2.3) using the logarithmic distance on the set of branches.
Then we give a new proof of the stability of maximal contact (Section 3, Theorem
3.7) without resorting to Newton’s diagrams. In Section 4 we define the Milnor
number µ(C) in the case of arbitrary characteristic (see [M-W] and [GB-P2]), prove
the bound µ(C) ≥ (d(C)m(C)−1)(m(C)−1) and characterize the singularities for
which the bound is attained. In Section 5 we reprove the formulae for the contact
exponents of higher order (see [LJ] and [C]). Section 6 is devoted to the relation
between polar invariants and the contact exponent in characteristic zero.
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1. Preliminaries

Let K[[x, y]] be the ring of formal power series with coefficients in an alge-
braically closed field K of arbitrary characteristic. For any non-zero power series
f = f(x, y) =

∑
i,j cijx

iyj ∈ K[[x, y]] we define its order as ord f = inf{i + j :

cij 6= 0} and its initial form as inf =
∑
i+j=n cijx

iyj , where n = ord f . We let

(f, g)0 = dimKK[[x, y]]/(f, g), and call (f, g)0 the intersection number of f and g,
where (f, g) denotes the ideal of K[[x, y]] generated by f and g.

Let f be a nonzero power series without constant term. An algebroid curve
C : {f = 0} is defined to be the ideal generated by f in K[[x, y]]. The multiplicity
of C is m(C) = ord f . Let P1(K) denotes the projective line over K. The tangent
cone of C is by definition cone (C) = {(a : b) ∈ P1(K) : inf(a, b) = 0}.

The curve C : {f = 0} is reduced (resp. irreducible) if the power series f has
no multiple factors (resp. is irreducible). Irreducible curves are called branches.
If ]cone (C) = 1 then the curve C : {f = 0} is called unitangent. Any irreducible
curve is unitangent. For C : {f = 0} and D : {g = 0} we put (C,D)0 = (f, g)0.
Then (C,D)0 ≥ m(C)m(D), with equality if and only if the tangent cones of C
and D are disjoint.

For any sequence Ci : {fi = 0 : 1 ≤ i ≤ k} of curves we put C =
⋃k
i=1 Ci :

{f1 · · · fk = 0}. If Ci are irreducible and Ci 6= Cj for i 6= j then we call Ci the
irreducible components of C.

Consider an irreducible power series f ∈ K[[x, y]]. The set

Γ(C) = Γ(f) := {(f, g)0 : g ∈ K[[x, y]], g 6≡ 0 (mod f)}

is the semigroup associated with C : {f = 0}. Note that min(Γ(C)\{0}) = m(C).
It is well-known that gcd(Γ(C)) = 1.

The branch C is smooth (that is its multiplicity equals 1) if and only if Γ(C) = N.

Two branches C : {f = 0} and D : {g = 0} are equisingular if Γ(C) = Γ(D).

Two reduced curves C : {f = 0} and D : {g = 0} are equisingular if and only if
f and g have the same number r of irreducible factors and there are factorizations
f = f1 · · · fr and g = g1 · · · gr such that

(1) the branches Ci : {fi = 0} and Di : {gi = 0} are equisingular for i ∈
{1, . . . , r},

and
(2) (Ci, Cj)0 = (Di, Dj)0 for any i, j ∈ {1, . . . , r}.

A function C 7→ I(C) defined on the set of all reduced curves is an equisingu-
larity invariant if I(C) = I(D) for equisingular curves C and D. Note that the
multiplicity m(C), the number of branches r(C) and the number of tangents t(C)
(which is the cardinality of the cone (C)) of the reduced curve C are equisingularity
invariants.
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For any reduced curve C : {f = 0} we put OC = K[[x, y]]/(f) and OC its
integral closure. Let C = OC : OC be the conductor of OC in OC . The number
c(C) = dimK OC/C is the degree of the conductor. If C is a branch then c(C)
equals to the smallest element of Γ(C) such that c(C) + N ∈ Γ(C) for all N ∈ N
(see [C, Chapter IV]).

Suppose that C is a branch. Let (v0, v1, . . . , vg) be the minimal system of gen-
erators of Γ(C) defined by the following conditions:

(3) v0 = min(Γ(C)\{0}) = m(C).
(4) vk = min(Γ(C)\Nv0 + · · ·+ Nvk−1), for k ∈ {1, . . . , g}.
(5) Γ(C) = Nv0 + · · ·+ Nvg.

In what follows we write Γ(C) = 〈v0, v1, . . . , vg〉 when v0 < v1 < · · · < vg is the
increasing sequence of minimal system of generators of Γ(C).

Since gcd(Γ(C)) = 1 the sequence v0, . . . , vg is well-defined. Let ek :=

gcd(v0, . . . , vk) for 0 ≤ k ≤ g. We define the Zariski pairs (mk, nk) =
(
vk
ek
, ek−1

ek

)
for 1 ≤ k ≤ g. One has c(C) =

∑g
k=1 (nk − 1) vk − v0 + 1 (see[GB-P1, Corollary

3.5]).

If K is a field of charateristic zero the Zariski pairs determine the Puiseux pairs
and vice versa (see [T2, pp. 19, 47]).

If Γ(C) = 〈v0, v1, . . . , vg〉 then the sequence (vi)i is strongly increasing, that is
ni−1vi−1 < vi for i ∈ {2, . . . , g}.

Let C : {f = 0} be a reduced unitangent curve of multiplicity n. Let us consider
two possible cases:

(i) f = c(y − ax)n + higher order terms, where a, c ∈ K, c 6= 0 and
(ii) f = cxn + higher order terms, c ∈ K\{0}.

We associate with C a power series f1 = f1(x1, y1) ∈ K[[x1, y1]] by putting
f1(x1, y1) = x−n1 f(x1, ax1 + x1y1) in the case (i) and f1(x1, y1) = y−n1 f(x1y1, y1)

otherwise. The strict quadratic transform of C : {f = 0} is the curve Ĉ : {f1 = 0}.
Obviously m(Ĉ) ≤ m(C). If C =

⋃k
i=1 Ci is a unitangent curve then Ci are

unitangent and Ĉ =
⋃k
i=1 Ĉi.

The following lemma is a particular case of a theorem due to Angermüller [Ang,
Lemma II.2.1].

Lemma 1.1. Let C be a singular branch. Then the strict quadratic transform Ĉ
of C is also a plane branch. If Γ(C) = 〈v0, . . . , vg〉 then

• Γ(Ĉ) = 〈v0, v1 − v0, . . .〉 if v0 < v1 − v0

or
• min(Γ(Ĉ)\{0}) = v1 − v0 if v1 − v0 < v0.
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2. Logarithmic distance

A log-distance δ associates with any two branches C,D a number δ(C,D) ∈
R+ ∪ {+∞} such that for any branches C, D and E we have:

(δ1) δ(C,D) =∞ if and only if C = D,
(δ2) δ(C,D) = δ(D,C),
(δ3) δ(C,D) ≥ inf{δ(C,E), δ(E,D)}.

Note that if δ(C,E) 6= δ(E,D) then δ(C,D) = inf{δ(C,E), δ(E,D)}.
If C and D are reduced curves with irreducible components Ci and Dj then we

set δ(C,D) := inf i,j{δ(Ci, Dj)}.
If δ is a log-distance then ∆ := 1

δ (by convention 1
+∞ = 0) is an ultrametric

(see [GB-GP-PP, Definition 41]) on the set of branches and vice versa: if ∆ is an
ultrametric then 1

∆ is a log-distance.

Examples 2.1.

(1) The order of contact of branches d(C,D) = (C,D)0
m(C)m(D) is a log-distance (see

[GB-P1, Corollary 2.9]).
(2) The minimum number of quadratic transformations γ(C,D) necessary to

separate C from D is a log-distance (see [W, Theorem 3]).

Let δ be a log-distance.

Lemma 2.2. If C has r > 1 branches Ci and D is any branch then δ(C,D) ≤
infi,j{δ(Ci, Cj)}.

Proof. Let i0, j0 be such that infi,j{δ(Ci, Cj)} = δ(Ci0 , Cj0). Then δ(C,D) =
inf1≤i≤r{δ(Ci, D)} ≤ inf{δ(Ci0 , D), δ(Cj0 , D)} and using (δ3) we get δ(C,D) ≤
δ(Ci0 , Cj0), which proves the lemma. �

Let C be a reduced curve. For every non-empty family of branches B we put

δ(C,B) := sup{δ(C,W ) : W ∈ B}.

Note that δ(C,B) = +∞ if C ∈ B. In what follows we assume the following

condition

(*) for any branch C there exists W0 ∈ B such that δ(C,B) = δ(C,W0),
we say that W0 has maximal δ-contact with C.

We will prove the following

Theorem 2.3. Let C be a reduced curve with r > 1 branches Ci and let B be a
family of branches such that the condition (*) holds.

Then
δ(C,B) = inf{inf

i
{δ(Ci,B)}, inf

i,j
{δ(Ci, Cj)}}.
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Moreover, there exists i0 ∈ {1, . . . , r} such that if a branch W ∈ B has maximal
δ-contact with Ci0 then it has maximal δ-contact with C.

Proof. Set δ∗(C,B) = inf{infiδ(Ci,B), infi,j δ(Ci, Cj)}.

The inequality δ(C,B) ≤ δ∗(C,B) follows from Lemma 2.2 and from the defini-
tion of δ(Ci,B). Thus to prove the result let us consider two cases:

First case: infi{δ(Ci,B)} ≤ infi,j{δ(Ci, Cj)}.
Let i0 ∈ {1, . . . , r} be such that δ(Ci0 ,B) = infi{δ(Ci,B)}. Then, we have

(1) δ(Ci0 ,B) = δ∗(C,B).

Let W ∈ B such that δ(Ci0 ,W ) = δ(Ci0 ,B). We claim that

(2) δ(Ci0 ,W ) ≤ δ(Ci,W ) for all i ∈ {1, . . . , r}.
To obtain a contradiction suppose that (2) does not hold. Thus there is i1 ∈
{1, . . . , r} such that

(3) δ(Ci1 ,W ) < δ(Ci0 ,W ).

Applying Property (δ3) to the branches Ci0 , Ci1 and W we get

(4) δ(Ci1 ,W ) = δ(Ci0 , Ci1).

On the other hand, in the case under consideration we have

(5) δ(Ci0 ,B) = inf
i
{δ(Ci,B)} ≤ δ(Ci0 , Ci1).

Therefore by (5), (4) and (3) we get δ(Ci0 ,B) ≤ δ(Ci1 ,W ) < δ(Ci0 ,W ), which
contradicts the definition of δ(Ci0 ,B).

Now, using (2) and (1), we compute

δ(C,W ) = inf{δ(Ci0 ,W ), inf
i6=i0

(δ(Ci,W ))} = δ(Ci0 ,W ) = δ(Ci0 ,B) = δ∗(C,B),

which proves the theorem in the first case.

Second case: infi{δ(Ci,B)} > infi,j{δ(Ci, Cj)}.
Let i0, j0 be such that δ(Ci0 , Cj0) = infi,j δ(Ci, Cj) = δ∗(C,B).

Let W ∈ B such that δ(Ci0 ,W ) = δ(Ci0 ,B). We claim that

(6) δ(Ci0 , Cj0) ≤ δ(Ci,W ) for all i ∈ {1, . . . , r} with equality for i = j0.

First observe that in the case under consideration we have

(7) δ(Ci0 , Cj0) < δ(Ci0 ,B) = δ(Ci0 ,W ).

Fix i ∈ {1, . . . , r}. If δ(Ci0 ,W ) ≤ δ(Ci,W ) then (6) follows from (7). If
δ(Ci,W ) < δ(Ci0 ,W ) then by Property (δ3) applied to the branches Ci, Ci0 and
W we get δ(Ci,W ) = δ(Ci, Ci0) ≥ infi,j{δ(Ci, Cj)} = δ(Ci0 , Cj0). In particular for
i = j0, δ(Cj0 ,W ) = δ(Cj0 , Ci0) = δ(Ci0 , Cj0).
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Now by the definition of δ(C,W ) and inequalities (6) and (7) we get:

δ(C,W ) = inf{δ(Ci0 ,W ), δ(Cj0 ,W ), inf
i6=i0,j0

δ(Ci,W )}

= δ(Cj0 ,W ) = δ(Ci0 , Cj0) = δ∗(C,B),

which proves the theorem in the second case. �

Proposition 2.4. Let C and D be two branches. Then

(1) If there exists a branch of B which has maximal δ-contact with C and D
then δ(C,D) ≥ inf{δ(C,B), δ(D,B)} with equality if δ(C,B) 6= δ(D,B).

(2) If there does not exist such a branch and U has maximal δ-contact with
C and V has maximal δ-contact with D then δ(C,D) = δ(U, V ) <
inf{δ(C,B), δ(D,B)}.

Proof. (see [GB-L-P, Proposition 2.2] for δ = d). If there exists a branch W ∈ B
such that δ(W,C) = δ(C,B) and δ(W,D) = δ(D,B) then we get the first part of
the proposition by using Property (δ3) to the branches C, D and W . In order to
check the second part suppose that such a branch does not exist. Let U, V ∈ B such
that δ(U,C) = δ(C,B) and δ(V,D) = δ(D,B). By hypothesis δ(C, V ) < δ(C,B) =
δ(C,U) and δ(D,U) < δ(D,B) = δ(D,V ). According to (δ3) we get δ(U, V ) =
inf{δ(C, V ), δ(C,U)} = δ(C, V ) and δ(U, V ) = inf{δ(D,U), δ(D,V )} = δ(D,U)
thus

(8) δ(C, V ) = δ(D,U) = δ(U, V ).

Without loss of generality we can suppose that δ(C,B) ≤ δ(D,B). Since δ(C, V ) <
δ(C,B) so δ(C, V ) < δ(D,B) = δ(D,V ) and using (δ3) we get

(9) δ(C,D) = inf{δ(C, V ), δ(D,V )} = δ(C, V ).

From (8) and (9) it follows that δ(C,D) = δ(U, V ). Moreover δ(C,D) <
inf{δ(C,B), δ(D,B)} and we are done. �

Proposition 2.5. Let C be a reduced curve with r > 1 branches Ci and let D be a
branch. Suppose that δ(C,D) < inf{σ, infi,j{δ(Ci, Cj)}}, where σ is a real number.
Then δ(Ci, D) < σ, for i ∈ {1, . . . , r}.

Proof. By definition we have δ(C,D) = infri=1{δ(Ci, D)}. Thus there exists i0 ∈
{1, . . . , r} such that δ(C,D) = δ(Ci0 , D). Fix j0 ∈ {1, . . . , r}. By hypothesis
δ(Ci0 , D) < δ(Ci0 , Cj0) and after (δ3) we have δ(Ci0 , D) = δ(Cj0 , D) < δ(Ci0 , Cj0).
Now δ(Cj0 , D) = δ(Ci0 , D) = δ(C,D) < σ and we are done since j0 ∈ {1, . . . , r} is
arbitrary. �

Corollary 2.6. Let C be a reduced curve with r > 1 branches Ci and let B be a
family of branches such that the condition (*) holds. If δ(C,W ) < δ(C,B) for a
branch W ∈ B then δ(Ci,W ) < δ(Ci,B), for i ∈ {1, . . . , r}.
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3. The contact exponent

Recall that d(C,D) = (C,D)0
m(C)m(D) is a log-distance (see Example 2.1 (1)).

If C and D are reduced curves with irreducible components Ci and Dj then we
set d(C,D) = infi,j{d(Ci, Dj)}.

Lemma 3.1. If C has r > 1 branches Ci and D is any branch then

(1) d(C,D) ≤ infi,j{d(Ci, Cj)},
(2) d(C,D) ≤ (C,D)0

m(C)m(D) with equality if d(C,D) < infi,j{d(Ci, Cj)}.

Proof. The first part of the lemma follows from Lemma 2.2, for δ = d. In order to
check the second part let us observe that

(C,D)0 =
r∑
i=1

(Ci, D)0 =
r∑
i=1

d(Ci, D)m(Ci)m(D) ≥
r∑
i=1

d(C,D)m(Ci)m(D)

= d(C,D)m(C)m(D),

so d(C,D) ≤ (C,D)0
m(C)m(D) with equality if and only if d(C,D) = d(Ci, D) for all

i ∈ {1, . . . , r}.
Suppose that d(C,D) < inf i,j{d(Ci, Cj)}. By definition there is i0 ∈ {1, . . . , r}

such that d(C,D) = d(Ci0 , D), so d(Ci0 , D) < d(Ci0 , Cj) for all j ∈ {1, . . . , r}.
Applying (δ3) (δ = d) to Ci0 , D and Cj we get

d(Cj , D) = inf{d(Ci0 , D), d(Cj , Ci0)} = d(Ci0 , D) = d(C,D) for all j,

so d(C,D) = (C,D)0
m(C)m(D) . �

Now we put for any reduced curve C:

d(C) := sup{d(C,W ) : W runs over all smooth branches}
and call d(C) the contact exponent of C (see [Hi, Definition 1.5] where the term
characteristic exponent is used). We say that a smooth branch W has maximal
contact with C if d(C,W ) = d(C).

Observe that d(C) = +∞ if C is a smooth branch.

Lemma 3.2. Let C be a singular branch with Γ(C) = 〈v0, v1, . . . , vg〉. Then there
exists a smooth branch W0 such that (C,W0)0 = v1. Moreover, d(C) = v1

v0
and W0

has maximal contact with C.

Proof. See [GB-P1, Proposition 3.6] or [Ang, Folgerung II.1.1] for the first part
of the lemma. To check the second part, let W be a smooth branch. We have
d(C,W0) = v1

v0
6∈ N and d(W,W0) = (W,W0)0 ∈ N. Therefore d(C,W0) 6=

d(W,W0) and d(C,W ) = inf{d(C,W0), d(W,W0)} ≤ d(C,W0). �
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Proposition 3.3. Let C be a reduced curve with r > 1 branches Ci. Then

d(C) = inf{infi{d(Ci)}, infi,j{d(Ci, Cj)}}.

Moreover, there exists i0 ∈ {1, . . . , r} such that if a smooth branch W has maximal
contact with the branch Ci0 then it has maximal contact with the curve C.

Proof. Use Theorem 2.3 when δ = d and B is the family of smooth branches. �

Corollary 3.4. The contact exponent of a reduced curve is an equisingularity in-
variant.

Proof. It is a consequence of Lemma 3.2 and Proposition 3.3. �

Corollary 3.5. Let C be a reduced curve with r ≥ 1 branches. Then d(C) equals
∞ or a rational number greater than or equal to 1. There exists a smooth curve W
that has maximal contact with C. Moreover,

(1) d(C) = +∞ if and only if C is a smooth branch.
(2) d(C) = 1 if and only if C has at least two tangents.
(3) d(C) < infri=1{d(Ci)} if and only if d(C) is an integer.

Proof. The first and second properties follow from Lemma 3.2 and Proposition 3.3.

To check the third part suppose that d(C) ∈ N. Then d(C) 6= infi{d(Ci)} and
by Proposition 3.3 we get the inequality d(C) < infi{d(Ci)}.
Suppose now that d(C) < infi{d(Ci)}. We have to check that d(C) ∈ N. By
Proposition 3.3 we get d(C) = infi,j{d(Ci, Cj)} = d(Ci0 , Cj0) for some i0, j0. By
hypothesis d(C) = d(Ci0 , Cj0) < inf{d(Ci0), d(Cj0)}. Hence by Proposition 2.4
(δ = d) there is not a branch with maximal contact with Ci0 and Cj0 and d(C) =
d(Ci0 , Cj0) = d(U, V ) for some smooth branches U, V , and we conclude that d(C) ∈
N. �

Lemma 3.6. Let C and D be two branches with common tangent. Suppose that

m(C) = m(Ĉ) and m(D) = m(D̂). Then

d(C,D) = d(Ĉ, D̂) + 1.

Proof. It is a consequence of Max Noether’s theorem, which states (C,D)0 =

m(C)m(D) + (Ĉ, D̂)0. �

Theorem 3.7 (Hironaka). Let Ĉ be the strict quadratic transformation of a reduced
singular unitangent curve C. Then

(i) if d(C) < 2 then m(Ĉ) < m(C),

(ii) if d(C) ≥ 2 then m(Ĉ) = m(C) and d(Ĉ) = d(C)− 1,
(iii) if d(C) ≥ 2 and W is a smooth curve tangent to C then d(C,W ) =

d(Ĉ, Ŵ ) + 1. If W has maximal contact with C then Ŵ has maximal

contact with Ĉ.
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Proof. Firstly consider the case when C is a singular branch. Let Γ(C) =
〈v0, v1, . . . , vg〉. Let us prove (i). By Lemma 3.2 d(C) = v1

v0
so d(C) < 2 if

and only if v1 − v0 < v0. By the second part of Lemma 1.1 we have m(Ĉ) =

min(Γ(Ĉ)\{0}) = v1 − v0 < v0 = min(Γ(C)\{0}) = m(C).

Now we will prove (ii) when C is irreducible. Assume that d(C) ≥ 2 (in fact
d(C) > 2 since d(C) 6∈ N). The condition d(C) ≥ 2 means v0 < v1 − v0 and

by the first part of Lemma 1.1 we get Γ(Ĉ) = 〈v0, v1 − v0, · · · 〉. Consequently

m(Ĉ) = v0 = m(C) and d(Ĉ) = v1−v0
v0

= d(C)− 1.

Now let C =
⋃r
i=1 Ci, r > 1 with irreducible Ci and let us prove (i) and (ii) in

this case.
Assume that d(C) < 2. We claim that there exists i0 ∈ {1, . . . , r} such that
d(C) = d(Ci0). Suppose that such i0 does not exist. Then d(C) 6= d(Ci) for any
i ∈ {1, . . . , r} and by Proposition 3.3 d(C) = infi,j{d(Ci, Cj)} = d(Ci0 , Cj0) for
some i0, j0 ∈ {1, . . . , r}. We claim that d(Ci0) < 2 or d(Cj0) < 2. In the contrary

case, we had d(Ci0) ≥ 2 and d(Cj0) ≥ 2 and we would get m(Ĉi0) = m(Ci0) and

m(Ĉj0) = m(Cj0), which implies by Lemma 3.6 d(Ci0 , Cj0) = d(Ĉi0 , Ĉj0) + 1 ≥ 2.
This is a contradiction since d(Ci0 , Cj0) = d(C) < 2.

If d(Ci0) = d(C) < 2 then by the irreducibility case, m(Ĉi0) < m(Ci0) and m(C)−
m(Ĉ) =

∑r
i=1(m(Ci)−m(Ĉi)) ≥ m(Ci0)−m(Ĉi0) > 0.

Suppose now that d(C) ≥ 2. We have

inf{d(Ci)} ≥ inf{inf(d(Ci)), inf(d(Ci, Cj))} = d(C) ≥ 2.

Thus d(Ci) ≥ 2 for i ∈ {1, . . . , r} and by the first part of the proof m(Ĉi) =

m(Ci) and d(Ĉi) = d(Ci) − 1. Hence m(Ĉ) = m(C). Moreover, by Lemma

3.6, d(Ci, Cj) = d(Ĉi, Ĉj) + 1 and d(C) = inf{inf(d(Ci)), inf(d(Ci, Cj))} =

inf{inf(d(Ĉi)), inf(d(Ĉi, Ĉj))}+ 1 = d(Ĉ) + 1.

To finish let us prove (iii). By Lemma 3.6 d(Ci,W ) = d(Ĉi, Ŵ ) + 1 for i ∈
{1, . . . , r} and d(C,W ) = inf{d(Ci,W )} = inf{d(Ĉi,W )} + 1 = d(Ĉ,W ) + 1.

Suppose that W has maximal contact with C. Then d(C) = d(C,W ) = d(Ĉ, Ŵ ) +

1 ≤ d(Ĉ) + 1 = d(C), where the last equality is a consequence of statement (ii) of

the theorem. This implies d(Ĉ, Ŵ ) = d(Ĉ). Thus Ŵ has maximal contact with

Ĉ. �

Lemma 3.8. Let C be a reduced curve with r > 1 branches and W a smooth
branch. If d(C,W ) 6∈ N then d(C,W ) = d(C).

Proof. The lemma is obvious if C is a branch. In the general case d(C,W ) =
infi{d(Ci,W )} = d(Ci0 ,W ) for some i0 ∈ {1, . . . , r}. If d(C,W ) 6∈ N then
d(Ci0 ,W ) 6∈ N and d(Ci0 ,W ) = d(Ci0) since Ci0 is a branch. Consequently, we get
d(C,W ) = d(Ci0) which implies, by Proposition 3.3, d(C) = d(Ci0) = d(C,W ). �
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Now we give a characterization of smooth curves which does not have maximal
contact with a reduced curve.

Proposition 3.9. Let C be a reduced curve with r > 1 branches. A smooth branch
W does not have maximal contact with C if and only if (C,W )0 < d(C)m(C).
Moreover, in this case (C,W )0 ≡ 0 (mod m(C)).

Proof. Let us suppose that W is a smooth branch which does not have maximal

contact with C. We will check that (C,W )0 < d(C)m(C) and (C,W )0
m(C) ∈ N. By

Proposition 3.3 we get d(C,W ) < inf i,j{d(Ci, Cj)} since d(C,W ) < d(C). Ac-

cording to the second part of Lemma 3.1 we can write d(C,W ) = (C,W )0
m(C) , thus

(C,W )0 = d(C,W )m(C) < d(C)m(C). We claim (C,W )0
m(C) = d(C,W ) is an integer.

Indeed, by Lemma 3.8 we get d(C,W ) = d(C), which is a contradiction.

Now suppose that (C,W )0 < d(C)m(C). By the second part of Lemma 3.1 we get

d(C,W ) ≤ (C,W )0
m(C) and consequently d(C,W ) < d(C), which means that W does

not have maximal contact with C. �

4. Milnor number and Hironaka contact exponent

Let C be a reduced curve. We define the Milnor number µ(C) of C by the
formula µ(C) = c(C)− r(C) + 1, where c(C) is the degree of the conductor of the
local ring of C and r(C) is the number of branches (see Preliminaries).

If C : {f = 0} then µ(C) = dimK K[[x, y]]/
(
∂f
∂x ,

∂f
∂y

)
provided that K is of

characteristic zero (see [GB-P2]).

Lemma 4.1. Let C =
⋃r
i=1 Ci, where r ≥ 1 and Ci are irreducible. Then

(1) µ(C) + r − 1 =
∑r
i=1 µ(Ci) + 2

∑
1≤i<j≤r(Ci, Cj)0,

(2) if C is a branch then µ(C) equals the conductor of the semigroup Γ(C),
(3) µ(C) ≥ 0 with equality if and only if C is a smooth branch.

Proof. See [GB-P2, Proposition 2.1]. �

Proposition 4.2. Let C =
⋃r
i=1 Ci be a singular reduced curve with r branches Ci.

Then µ(C) ≥ (d(C)m(C)− 1)(m(C)− 1) with equality if and only if the following
two conditions are satisfied:

(e1) d(Ci, Cj) = d(C) for all i 6= j,
(e2) if the branch Ci is singular then Ci has exactly one Zariski pair and d(Ci) =

d(C).

Proof. First let us suppose that C is a branch with Γ(f) = 〈v0, v1, . . . , vg〉. Let
n0 = 1. Since ni−1vi−1 ≤ vi for i ∈ {1, . . . , g} we have n0n1 · · ·nk−1v1 ≤ vk for
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k ∈ {1, . . . , g}. We get

c(C) =

g∑
k=1

(nk − 1)vk − v0 + 1 ≥
g∑
k=1

((nk − 1)nk−1 · · ·n1n0)v1 − v0 + 1

= (ng · · ·n1n0 − n0)v1 − (v0 − 1) = (v0 − 1)v1 − (v0 − 1)

= (v0 − 1)(v1 − 1).

Moreover, c(C) = (v0 − 1)(v1 − 1) if and only if Γ(C) = 〈v0, v1〉.
Now suppose that the curve C has r > 1 branches Ci and let mi = m(Ci) for

i ∈ {1, . . . , r}. From Proposition 3.3 we get d(Ci) ≥ d(C) and d(Ci, Cj) ≥ d(C) for
all i, j ∈ {1, . . . , r}. By the first part of the proof µ(Ci) ≥ (d(Ci)mi−1)(mi−1) for
the singular branches with equality if and only if Ci is a singular branch satisfying
condition (e2).

Let I := {i : Ci is singular}. Now we get

µ(C) + r − 1 =

r∑
i=1

µ(Ci) + 2
∑

1≤i<j≤r

(Ci, Cj)0

=

r∑
i=1

µ(Ci) + 2
∑

1≤i<j≤r

d(Ci, Cj)mimj

≥
∑
i∈I

(d(Ci)mi − 1)(mi − 1) + 2
∑

1≤i<j≤r

d(Ci, Cj)mimj

≥
r∑
i=1

(d(C)mi − 1)(mi − 1) + 2
∑

1≤i<j≤r

d(C)mimj

= d(C)(m(C)2 −m(C))−m(C) + r

with equality if and only if the conditions (e1) and (e2) are satisfied. �

Lemma 4.3. Let C be a unitangent singular curve. We have:

(1) d(C) ≥ 1 + 1
m(C) . Moreover d(C) = 1 + 1

m(C) if and only if C is a branch

with semigroup 〈m(C),m(C) + 1〉.
(2) µ(C) ≥ m(C)(m(C)− 1) with equality if and only if d(C) = 1 + 1

m(C) .

Proof. Let {Ci}i be the set of branches of C. To check the first part of the lemma
we may assume that d(C) is not an integer. Then by Proposition 3.3 and the third
part of Corollary 3.5 there is an i0 such that d(C) = d(Ci0). The contact exponent
d(Ci0) is a fraction with the denominator less than or equal to m(Ci0). Therefore
we get d(C) = d(Ci0) ≥ 1 + 1

m(Ci0
) ≥ 1 + 1

m(C) and the equality d(C) = 1 + 1
m(C)

implies m(Ci0) = m(C) and consequently Ci0 = C. Moreover the semigroup of C
is 〈m(C),m(C) + 1〉 since m(C) and m(C) + 1 are coprime.
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In order to prove the second part we get, by Proposition 4.2 and the first part of
this lemma,

µ(C) ≥ (d(C)m(C)− 1)(m(C)− 1)

≥
((

1 +
1

m(C)

)
m(C)− 1

)
(m(C)− 1) = m(C)(m(C)− 1).

If µ(C) = m(C)(m(C)− 1) then from the above calculation it follows that d(C) =
1 + 1

m(C) .

On the other hand if d(C) = 1 + 1
m(C) then by the first part of this lemma C is

a branch of semigroup 〈m(C),m(C) + 1〉. According to Proposition 4.2 µ(C) =
(d(C)m(C)− 1)(m(C)− 1) = m(C)(m(C)− 1). �

If µ(C) = (d(C)m(C)−1)(m(C)−1) then the pair (m(C), d(C)) determines the
equisingularity class of C. More specifically, we have:

Proposition 4.4. Let C be a reduced singular curve. Then µ(C) = (d(C)m(C)−
1)(m(C)− 1) if and only if one of the following three conditions holds

(1) d(C) ∈ N. All branches of C are smooth and intersect pairwise with mul-
tiplicity d(C).

(2) d(C) 6∈ N and m(C)d(C) ∈ N. The curve C has r = gcd(m(C),m(C)d(C))

branches, each with semigroup generated by
(
m(C)
r , m(C)d(C)

r

)
, intersecting

pairwise with multiplicity m(C)2d(C)
r2 .

(3) m(C)d(C) 6∈ N. There is a smooth curve L such that C = L ∪ C ′, where
C ′ is a curve of type (2) with d(C ′) = d(C) and m(C ′) = m(C) − 1. The
branch L has maximal contact with any branch of C ′.

Proof. If one of conditions (1), (2) or (3) is satisfied then a direct calculation shows
that µ(C) = (d(C)m(C)− 1)(m(C)− 1).

Suppose that C =
⋃r
i=1 Ci satisfy the equality µ(C) = (d(C)m(C)− 1)(m(C)−

1). By Proposition 4.2 the conditions (e1) and (e2) are satisfied. Let us consider
three cases:

Case 1: All branches Ci are smooth. Then C is of type (1) by (e1).

Case 2: All branches Ci are singular. Then the branches {Ci}i have the same
semigroup 〈v0, v1〉 and according to (e2) d(Ci) = d(C) for all i ∈ {1, . . . , r}. Clearly,
we have m(C) =

∑r
i=1m(Ci) = rv0 and m(C)d(C) = m(C)d(Ci) = rv1. Thus

m(C)d(C) ∈ N, r = gcd(m(C),m(C)d(C)) and it is easy to see that C is of type
(2).

Case 3: Neither Case 1 nor Case 2 holds, thus r > 1. We may assume that C1

is smooth and C2 is singular. If r > 2 then all branches Ci for i ≥ 3 are singular.
In fact, we have by (e1): d(C1, Ci) = d(C2, Ci) = d(C1, C2) = d(C) and by (e2):
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d(C) = d(C2) 6∈ N. Thus d(C1, Ci) 6∈ N and Ci are singular for all i ≥ 3. Let
L := C1 and C ′ :=

⋃r
i=2(Ci, 0). Then C = L ∪ C ′ and we check using Proposition

3.3 that C is of type (3). �

Corollary 4.5. Let C1, C2 be two reduced singular curves such that µ(Ci) =
(d(Ci)m(Ci) − 1)(m(Ci) − 1) for i ∈ {1, 2}. Then C1 and C2 are equisingular
if and only if (m(C1), d(C1)) = (m(C2), d(C2)).

Corollary 4.6. Let C be a reduced singular curve. Suppose that µ(C) =
(d(C)m(C)− 1)(m(C)− 1) and m(C)d(C) 6∈ N. Then (m(C)− 1)d(C) ∈ N.

To compute µ(C) one can use Pham’s formula.

Proposition 4.7 ([Ph]). Let C =
⋃t
i Ci, where Ci are unitangent and the tangents

to Ci and Cj are different for i 6= j. Then

µ(C) + t− 1 = m(C)(m(C)− 1) +
t∑

k=1

µ(Ĉk).

Proof. We distinguish three cases.

Suppose that C is irreducible. Then µ(C) = m(C)(m(C) − 1) + µ(Ĉ) by the

well-known formula c(C) = m(C)(m(C)− 1) + c(Ĉ) (see [Ang, Korollar II.1.8]).

Suppose now that C is unitangent and let C =
⋃r
i=1 Ci, where Ci are irreducible

and let mi = m(Ci) for i ∈ {1, . . . , r}. Then

µ(C) + r − 1 =
r∑
i=1

µ(Ci) + 2
∑

1≤i<j≤r

(Ci, Cj)0

=

t∑
i=1

(
mi(mi − 1) + µ(Ĉi)

)
+ 2

∑
1≤i<j≤r

(
mimj + (Ĉi, Ĉj)0

)
=

r∑
i=1

mi(mi − 1) + 2
∑

1≤i<j≤r

mimj +

r∑
i=1

µ(Ĉi)

+2
∑

1≤i<j≤r

(Ĉi, Ĉj)0

=
r∑
i=1

mi(mi − 1) + 2
∑

1≤i<j≤r

mimj + µ(∪ri=1Ĉi) + r − 1

=
r∑
i=1

mi(mi − 1) + 2
∑

1≤i<j≤r

mimj + µ(∪̂ri=1Ci)

= m(C)(m(C)− 1) + µ(Ĉ) + r − 1.
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Finally suppose that C =
⋃t
i=1 Ci, where Ci are unitangent and the tangents to

Ci and Cj are different for i 6= j. Put mi = m(Ci) for i ∈ {1, . . . , t}. Then

µ(C) + t− 1 =
t∑
i=1

µ(Ci) + 2
∑

1≤i<j≤t

(Ci, Cj)0

=
t∑
i=1

(
mi(mi − 1) + µ(Ĉi)

)
+ 2

∑
1≤i<j≤t

mimj

=
t∑
i=1

µ(Ĉi) +
t∑
i=1

(mi)
2 + 2

∑
1≤i<j≤t

mimj −
t∑
i=1

mi

= m(C)(m(C)− 1) +
t∑
i=1

µ(Ĉi).

�

5. Contact exponents of higher order

Let Bk be the family of branches having at most k − 1 Zariski pairs. If C is a
reduced curve we put

dk(C) := sup{d(C,W ) : W ∈ Bk} = d(C,Bk).

Observe that d1(C) = d(C).

A branch D ∈ Bk has k-maximal contact with C if d(C,D) = dk(C).

The concept of contact exponent of higher order was studied by Lejeune-Jalabert
[LJ] and Campillo [C].

Lemma 5.1. Let C : {f = 0} be a singular branch with Γ(C) = 〈v0, v1, . . . , vg〉.
There exist irreducible power series f0, . . . , fg−1 such that ord fk−1 = v0

ek−1
and

(f, fk−1)0 = vk.

Proof. We may assume that (f, x)0 = ord f . According to [GB-P1, Theorem 3.2]
there exist distinguished polynomials f0, . . . , fg−1 such that (fk−1, x)0 = v0

ek−1
and

(f, fk−1)0 = vk. Consider the log-distances d(f, x) = 1, d(fk−1, x) = (fk−1,x)0

ord fk−1
and

d(f, fk) = vk
v0

v0
ek−1

= ek−1vk
(v0)2 . Since d(fk−1, x) = ek−1vk

(v0)2 ≥
e0v1
(v0)2 = v1

v0
> 1 we have

d(fk−1, x) = d(f, x) = 1, that is (fk−1, x)0 = ord fk−1. �

Lemma 5.2. Let C : {f = 0} be a singular branch with Γ(C) = 〈v0, v1, . . . , vg〉. If
E is a branch such that d(C,E) > ek−1vk

(v0)2 then E has at least k Zariski pairs.

Proof. See [GB-P1, Theorem 5.2]. �

Proposition 5.3. Let C be a branch with Γ(C) = 〈v0, . . . , vg〉. Then dk(C) =
ek−1vk
(v0)2 .
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Proof. By Lemma 5.1 there is Dk−1 ∈ Bk such that ord Dk−1 = v0
ek−1

and

(C,Dk−1)0 = vk. Then dk(C) ≥ d(C,Dk−1) = (C,Dk−1)0

ord C ord Dk−1
= ek−1vk

(v0)2 . Sup-

pose now that there is a branch E ∈ Bk such that d(C,E) > ek−1vk
(v0)2 . Then

(C,E)0

v0ord E
> ek−1vk

(v0)2 , hence (C,E)0

ord E
> ek−1vk

v0
. By Lemma 5.2 we conclude that E

has at least k Zariski pairs which is a contradiction (since E ∈ Bk). �

Proposition 5.4. Let C be a reduced curve with r > 1 branches Ci. Then

dk(C) = inf{infi{dk(Ci)}, infi,j{d(Ci, Cj)}}.

Proof. Use Theorem 2.3 when δ = d and Bk is the family of branches having at
most k − 1 Zariski pairs. �

6. Polar invariants and the contact exponent

Let K be a field of characteristic zero. Let C be a reduced plane singular curve
and let P (C) be a generic polar of C. Then P (C) is a reduced germ of multiplicity
m(P (C)) = m(C) − 1. Let P (C) =

⋃s
j=1Dj be the decomposition of P (C) into

branches Dj .

We put Q(C) =
{

(C,Dj)0
m(Dj) : j ∈ {1, . . . , s}

}
and call the elements of Q(C) the polar

invariants of C. They are equisingularity invariants of C (see [T2], [Gw-P]). In
particular if C is a branch then

Q(C) := {m(C)dk(C)}gk=1.

Let us consider the minimal polar invariant α(C) := inf Q(C).

Proposition 6.1. For any singular reduced germ C we have α(C) = m(C)d(C).

Proof.- See [L-M-P, Theorem 2.1 (iii)].

One could prove Proposition 6.1 by using Theorem 3.3 and the explicit formulae
for the polar invariants given in [Gw-P, Theorem 1.3].

We say that C is an Eggers singularity if Q(C) has exactly one element.

Proposition 6.2. Let C be a singular reduced curve. Then µ(C) = (d(C)m(C)−
1)(m(C)− 1) if and only if C is an Eggers singularity.

Proof. By [T1] Proposition 1.2 we get

µ(C) = (C,P (C))0 −m(C) + 1 =
s∑
j=1

(C,Dj)0 −m(C) + 1

≥ α(C)m(P (C))−m(C) + 1 = α(C)(m(C)− 1)−m(C) + 1

= (α(C)− 1)(m(C)− 1)



108 EVELIA ROSA GARCÍA BARROSO AND ARKADIUSZ P LOSKI

with equality if and only if C is an Eggers singularity. We use Proposition 6.1. �

Proposition 4.4 provides an explicit description of Eggers singularities.

Corollary 6.3. ([E, p. 16]) If C has exactly one polar invariant then C is equi-
singular to yn − xm = 0 or yn − yxm = 0, for some integers 1 < n < m.

Proof. We check that if C : {yn − xm = 0} then m(C) = n, d(C) = m
n and

µ(C) = nm−n−m+ 1. On the other hand if C : {yn− yxm = 0} then m(C) = n,
d(C) = m

n−1 and µ(C) = nm−n+1. In both cases µ(C) = (d(C)m(C)−1)(m(C)−
1), that is C is an Eggers singularity.

Now let C be an Eggers singularity. If m(C)d(C) ∈ N then C and {ym(C) −
xm(C)d(C) = 0} are equisingular by Corollary 4.5. Analogously, if m(C)d(C) 6∈ N
then, by Corollary 4.6, (m(C) − 1)d(C) ∈ N and C is equisingular to {ym(C) −
yx(m(C)−1)d(C) = 0}. �
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des singularités I , 49-124, 1988.



CONTACT EXPONENT AND THE MILNOR NUMBER 109

[L-M-P] A. Lenarcik, M. Masternak, A. P loski, Factorization of the polar curve and the

Newton polygon, Kodai Math. J. 26 (2003), no. 3, 288-303.

[Ph] Pham, F. Courbes discriminantes des singularités planes d’ordre 3, Singularités à
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