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NEGATIVE CURVES ON SPECIAL RATIONAL SURFACES

MARCIN DUMNICKI, ŁUCJA FARNIK, KRISHNA HANUMANTHU,
GRZEGORZ MALARA, TOMASZ SZEMBERG, JUSTYNA SZPOND,

AND HALSZKA TUTAJ-GASIŃSKA

Abstract. We study negative curves on surfaces obtained by blowing up
special configurations of points in P2. Our main results concern the following
configurations: very general points on a cubic, 3–torsion points on an elliptic
curve and nine Fermat points. As a consequence of our analysis, we also show
that the Bounded Negativity Conjecture holds for the surfaces we consider.
The note contains also some problems for future attention.

1. Introduction

Negative curves on algebraic surfaces are an object of classical interest. One of
the most prominent achievements of the Italian School of algebraic geometry was
Castelnuovo’s Contractibility Criterion.

Definition 1.1 (Negative curve). We say that a reduced and irreducible curve C
on a smooth projective surface is negative, if its self-intersection number C2 is less
than zero.

Example 1.2 (Exceptional divisor, (−1)-curves). Let X be a smooth projective
surface and let P ∈ X be a closed point. Let f : BlP X → X be the blow up of X
at the point P . Then the exceptional divisor E of f (i.e., the set of points in BlP X
mapped by f to P ) is a negative curve. More precisely, E is rational and E2 = −1.
By a slight abuse of language we will call such curves simply (−1)–curves.
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Castelnuovo’s result asserts that the converse is also true; for example, see [10,
Theorem V.5.7] or [1, Theorem III.4.1].

Theorem 1.3 (Castelnuovo’s Contractibility Criterion). Let Y be a smooth projec-
tive surface defined over an algebraically closed field. If C is a rational curve with
C2 = −1, then there exists a smooth projective surface X and a projective mor-
phism f : Y → X contracting C to a point on X. In other words, Y is isomorphic
to BlP X for some point P ∈ X.

The above result plays a pivotal role in the Enriques-Kodaira classification of
surfaces.

Of course, there are other situations in which negative curves on algebraic sur-
faces appear.

Example 1.4. Let C be a smooth curve of genus g(C) ≥ 2. Then the diagonal
∆ ⊂ C × C is a negative curve as its self-intersection is given by ∆2 = 2− 2g.

It is quite curious that it is in general not known if for a general curve C, there
are other negative curves on the surface C × C, see [12]. It is in fact even more
interesting, that there is a direct relation between this problem and the famous
Nagata Conjecture, which was observed by Ciliberto and Kouvidakis [5].

There is also a connection between negative curves and the Nagata Conjecture
on general blow ups of P2. We recall the following conjecture about (−1)-curves
which in fact implies the Nagata Conjecture; see [4, Lemma 2.4].

Conjecture 1.5 (Weak SHGH Conjecture). Let f : X → P2 be the blow up of the
projective plane P2 in general points P1, . . . , Ps. If s ≥ 10, then the only negative
curves on X are the (−1)–curves.

On the other hand, it is well known that already a blow up of P2 in 9 general
points carries infinitely many (−1)–curves.

One of the central and widely open problems concerning negative curves on
algebraic surfaces asks whether on a fixed surface negativity is bounded. More
precisely, we have the following conjecture (BNC in short). See [2] for an extended
introduction to this problem.

Conjecture 1.6 (Bounded Negativity Conjecture). Let X be a smooth projective
surface. Then there exist a number τ such that

C2 ≥ τ

for any reduced and irreducible curve C ⊂ X.

If the Conjecture holds on a surface X, then we denote by b(X) the largest
number τ such that the Conjecture holds. It is known (see [2, Proposition 5.1])
that if the negativity of reduced and irreducible curves is bounded below, then the
negativity of all reduced curves is also bounded below.
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Conjecture 1.6 is known to fail in the positive characteristic; see [8, 2]. In
fact Example 1.4 combined with the action of the Frobenius morphism provides
a counterexample. In characteristic zero, Conjecture 1.6 is open in general. It
is easy to prove BNC in some cases; see Remark 3.7 for an easy argument when
the anti-canonical divisor of X is Q-effective. However, in many other cases the
conjecture is open. In particular the following question is open and answering it
may lead to a better understanding of Conjecture 1.6.

Question 1.7. Let X,Y be smooth projective surfaces and suppose that X and
Y are birational and Conjecture 1.6 holds for X. Does then Conjecture 1.6 hold
for Y also?

As a special case of this question, one can ask whether Conjecture 1.6 holds for
blow ups of P2. Since the conjecture clearly holds for P2, it is interesting to consider
the blow ups of P2. If the blown up points are general, then one has Conjecture
1.5 stated above. On the other hand, it is also interesting to study blow ups of P2

at special points.
In this paper, we consider some examples of such special rational surfaces and

completely list all the negative curves on them. In particular, we focus on blow
ups of P2 at certain points which lie on elliptic curves. Our main results classify
negative curves on such surfaces; see Theorems 2.4, 3.3 and 3.6. As a consequence,
we show that Conjecture 1.6 holds for such surfaces. Additionally we provide
effective optimal values of the number b(X).

2. Very general points on a cubic

In this section we study negative curves on blow ups of P2 at an arbitrary number
s of very general points on a plane curve of degree 3. This situation was studied in
detail by Harbourne in [9]. Before stating our main result we need to recall some
notation. For the first notion, see [6, Definition 5] or [7] where this property is
called adequate rather than standard.

Definition 2.1 (Standard form). Let P1, . . . , Ps be points in P2. Let Γ be a plane
curve of degree d with mi := multPi

Γ, for i = 1, . . . , s. We say that Γ is in the
standard form if

• the multiplicities m1, . . . ,ms form a weakly decreasing sequence and
• d ≥ m1 +m2 +m3.

Gimigliano showed in [7, page 25] that if the points P1, . . . , Ps are general in
P2, then any curve Γ can be brought to the standard form by a finite sequence of
standard Cremona transformations.

Theorem 2.2 (Gimigliano). Let P1, . . . , Ps be general points in P2. Let Γ be a
curve of degree d passing through points P1, . . . , Ps with multiplicities m1, . . . ,ms.
Then there exists a birational transformation σ of P2 and general points P ′1, . . . , P ′s
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and a curve Γ′ of degree d′ passing through P ′1, . . . , P ′s with multiplicities m′1, . . . ,m′s
such that

• Γ′ is in a standard form;
• Γ′ = σ(Γ);
• d2 −

∑s
i=1m

2
i = (d′)2 −

∑s
i=1(m′i)

2.

We recall also the following Lemma, which is modeled on [7, Lemma 3.2].

Lemma 2.3. Let d ≥ m1 ≥ . . . ≥ mr ≥ 0 and t ≥ n1 ≥ . . . ≥ nr ≥ 0 be integers.
Further assume that d ≥ m1 +m2, 3d ≥ m1 + . . .+mr and t ≥ n1 +n2 +n3. Then
dt ≥

∑
imini.

Proof. We first note that if m3 = 0, then the lemma follows easily. Indeed, d ≥
m1 +m2, t ≥ n1 + n2 + n3 imply dt ≥ m1n1 +m2n2.

We now induct on d. If at any point we have m3 = 0, we are done by the above
argument.

The base case is d = 0, which is easy.
Suppose the statement is true for d− 1. Given d,m1,m2, . . . ,mr satisfying the

hypothesis, consider d− 1,m1 − 1,m2 − 1,m3 − 1,m4, . . . ,mr. Note that m3 > 0.
Then the tuple (d−1,m1−1,m2−1,m3−1,m4, . . . ,mr) satisfies the hypothesis,

after permuting the mi if necessary. If m4 = d, then m1 = m2 = m3 = m4 = d
and this violates 3d ≥ m1 + . . .+mr. So mi < d for all i ≥ 4.

By induction hypothesis,

(d− 1)t ≥ (m1 − 1)n1 + (m2 − 1)n2 + (m3 − 1)n3 +m4n4 + . . .+mrnr

implies
dt−

∑
i

mini ≥ t− n1 − n2 − n3 ≥ 0.

�

Now we are in a position to prove our first result.

Theorem 2.4 (Very general points on a cubic). Let D be an irreducible and reduced
plane cubic and let P1, . . . , Ps be very general points on D. Let f : X −→ P2 be
the blow up at P1, . . . , Ps. If C ⊂ X is any reduced and irreducible curve such that
C2 < 0, then

a) C is the proper transform of D, or
b) C can be brought by a Cremona transformation to the proper transform of

a line in P2 through any two of the points P1, . . . , Ps, or
c) C is an exceptional divisor of f .

Proof. Assume that C is a reduced and irreducible curve on X different from the
curves mentioned in cases a), b) or c). Then C = dH −m1E1 − . . . −msEs, for
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some d ≥ 1 and m1, . . . ,ms ≥ 0. Here H = f?(OP2(1)) and Ei = f−1(Pi) are the
exceptional divisors of f .

Intersecting C with the proper transform of D we get

(2.1) 3d ≥ m1 + . . .+mr.

Let Γ = f(C) be the image of C on P2. Then Γ has a singularity of order at
least mi at pi for i = 1, . . . , s. By Theorem 2.2, we can assume that Γ is in the
standard form, so that

(2.2) d ≥ m1 +m2 +m3 and m1 ≥ m2 ≥ . . . ≥ ms.

Now inequalities (2.1) and (2.2) allow us to use Lemma 2.3 with t = d and
ni = mi for i = 1, . . . , s. We get

d2 ≥ m2
1 +m2

2 + . . .+m2
r,

which is equivalent to C2 ≥ 0. This shows that the only negative curves on X are
the curves listed in a), b) or c). �

Corollary 2.5. Let X be a surface as in Theorem 2.4 with s > 0. Then Conjecture
1.6 holds for X and we have

b(X) = min {−1, 9− s} .

3. Special points on a cubic

In this section, we consider blow ups of P2 at 3-torsion points of an elliptic
curve as well as the points of intersection of the Fermat arrangement. In order to
consider these two cases, we deal first with the following numerical lemma which
seems quite interesting in its own right.

Lemma 3.1. Let m1, . . . ,m9 be nonnegative real numbers satisfying the following
12 inequalities:

m1 +m2 +m3 ≤ 1,(3.1)
m4 +m5 +m6 ≤ 1,(3.2)
m7 +m8 +m9 ≤ 1,(3.3)
m1 +m4 +m7 ≤ 1,(3.4)
m2 +m5 +m8 ≤ 1,(3.5)
m3 +m6 +m9 ≤ 1,(3.6)
m1 +m5 +m9 ≤ 1,(3.7)



72 MARCIN DUMNICKI ET AL.

m2 +m6 +m7 ≤ 1,(3.8)
m3 +m4 +m8 ≤ 1,(3.9)
m1 +m6 +m8 ≤ 1,(3.10)
m2 +m4 +m9 ≤ 1,(3.11)
m3 +m5 +m7 ≤ 1.(3.12)

Then m2
1 + · · ·+m2

9 ≤ 1.

Proof. Assume that the biggest number among m1, . . . ,m9 is m1 = 1−m for some
0 ≤ m ≤ 1.

Consider the following four pairs of numbers

p1 = (m2,m3), p2 = (m4,m7), p3 = (m9,m5), p4 = (m6,m8).

These are pairs such that together with m1 they occur in one of the 12 inequalities.
In each pair one of the numbers is greater or equal than the other. Let us call this
bigger number a giant. A simple check shows that there are always three pairs,
such that their giants are subject to one of the 12 inequalities in the Lemma.

Without loss of generality, let p1, p2, p3 be such pairs. Also without loss of
generality, let m2, m4 and m9 be the giants. Thus m2 + m4 + m9 ≤ 1. Assume
that also m6 is a giant.

Inequality m2 +m3 ≤ m implies that

m2
2 +m2

3 = (m2 +m3)2 − 2m2m3 ≤ m(m2 +m3)− 2m2m3.

Observe also that

(m2 +m3)2 − 4m2m3 ≤ m(m2 −m3).

Analogous inequalities hold for pairs p2, p3 and p4. Therefore

m2
2 +m2

3 +m2
4 +m2

7 +m2
5 +m2

9 ≤
≤ m(m2 +m4 +m9 +m3 +m7 +m5)− 2m2m3 − 2m4m7 − 2m5m9 ≤

≤ m+
[
m(m3 +m7 +m5)− 2m2m3 − 2m4m7 − 2m5m9

]
.

But we have also

m2
2 +m2

3 +m2
4 +m2

7 +m2
5 +m2

9 =

= (m2 +m3)2 + (m4 +m7)2 + (m5 +m9)2 − 2m2m3 − 2m4m7 − 2m5m9 =

= (m2 +m3)2 − 4m2m3 + (m4 +m7)2 − 4m4m7+

+(m5 +m9)2 − 4m5m9 + 2m2m3 + 2m4m7 + 2m5m9 ≤
≤ m(m2 −m3) +m(m4 −m7) +m(m9 −m5) + 2m2m3 + 2m4m7 + 2m5m9 ≤

≤ m−
[
m(m3 +m7 +m5)− 2m2m3 − 2m4m7 − 2m5m9

]
,

which obviously gives

m2
2 +m2

3 +m2
4 +m2

7 +m2
5 +m2

9 ≤ m.
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Since
m2

6 +m2
8 ≤ m2

6 +m6m8 ≤ m6(m6 +m8) ≤ (1−m)m,

we get that the sum of all nine squares is bounded by

(1−m)2 +m+ (1−m)m = 1. �

If we think of numbers m1, . . . ,m9 as arranged in a 3× 3 matrix m1 m2 m3

m4 m5 m6

m7 m8 m9

 ,

then the inequalities in the Lemma 3.1 are obtained considering the horizontal,
vertical triples and the triples determined by the condition that there is exactly
one element mi in every column and every row of the matrix (so determined by
permutation matrices). Bounding sums of only such triples allows us to bound the
sum of squares of all entries in the matrix. It is natural to wonder, if this phenomena
extends to higher dimensional matrices. One possible extension is formulated as
the next question.

Problem 3.2. Let M = (mij)i,j=1...k be a matrix whose entries are non-negative
real numbers. Assume that all the horizontal, vertical and permutational k-tuples
of entries in the matrixM are bounded by 1. Is it true then that the sum of squares
of all entries of M is also bounded by 1?

3.1. Torsion points. We now consider a blow up of P2 at 9 points which are
torsion points of order 3 on an elliptic curve embedded as a smooth cubic.

Theorem 3.3 (3–torsion points on an elliptic curve). Let D be a smooth plane
cubic and let P1, . . . , P9 be the flexes of D. Let f : X → P2 be the blow up of P2 at
P1, . . . , P9. If C is a negative curve on X, then

a) C is the proper transform of a line passing through two (hence three) of the
points P1, . . . , P9, or

b) C is an exceptional divisor of f .

Proof. It is well known that there is a group law on D such that the flexes are
3–torsion points. Since any line passing through two of the torsion points auto-
matically meets D in a third torsion point, there are altogether 12 such lines. The
torsion points form a subgroup of D which is isomorphic to Z3 × Z3. We can pick
this isomorphism so that

P1 = (0, 0), P2 = (1, 0), P3 = (2, 0),

P4 = (0, 1), P5 = (1, 1), P6 = (2, 1),

P7 = (0, 2), P8 = (1, 2), P9 = (2, 2).

This implies that the following triples of points are collinear:

(P1, P2, P3), (P4, P5, P6), (P7, P8, P9), (P1, P4, P7),

(P2, P5, P8), (P3, P6, P9), (P1, P5, P9), (P2, P6, P7),
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(P3, P4, P8), (P1, P6, P8), (P2, P4, P9), (P3, P5, P7).

Let C be a reduced and irreducible curve on X different from the exceptional
divisors of f and the proper transforms of lines through the torsion points. Then
C is of the form

C = dH − k1E1 − . . .− k9E9,

where E1, . . . , E9 are the exceptional divisors of f and k1, . . . , k9 ≥ 0 and and d > 0
is the degree of the image f(C) in P2.

For i = 1, . . . , 9, let mi = ki
d . Since C is different from proper transforms of

the 12 lines distinguished above, taking the intersection product of C with the 12
lines, and dividing by d, we obtain exactly the 12 inequalities in Lemma 3.1. The
conclusion of Lemma 3.1 implies then that

C2 = d2 −
9∑
i=1

m2
i ≥ 0,

which finishes our argument. �

Corollary 3.4. Let X be a surface as in Theorem 3.3. Then Conjecture 1.6 holds
for X and we have

b(X) = −2.

Of course, there is no reason to restrict to 3–torsion points. In particular there
is the following natural question, which we hope to come back to in the near future.

Problem 3.5. For m ≥ 4, decide whether the Bounded Negativity Conjecture
holds on the blow ups of P2 at all them–torsion points of an elliptic curve embedded
as a smooth cubic.

3.2. Fermat configuration of points. The 9 points and 12 lines considered in
the above subsection form the famous Hesse arrangement of lines; see [11]. Any
such arrangement is projectively equivalent to that obtained from the flex points
of the Fermat cubic x3 + y3 + z3 = 0 and the lines determined by their pairs.
Explicitly in coordinates we have then

P1 = (1 : ε : 0), P2 = (1 : ε2 : 0), P3 = (1 : 1 : 0),

P4 = (1 : 0 : ε), P5 = (1 : 0 : ε2), P6 = (1 : 0 : 1),

P7 = (0 : 1 : ε), P8 = (0 : 1 : ε2), P9 = (0 : 1 : 1)

for the points and

x = 0, y = 0, z = 0, x+ y+ z = 0, x+ y+ εz = 0, x+ y+ ε2z = 0, x+ εy+ z = 0,

x+ε2y+z = 0, x+εy+εz = 0, x+εy+ε2z = 0, x+ε2y+εz = 0, x+ε2y+ε2z = 0

for the lines, where ε is a primitive root of unity of order 3.
Passing to the dual plane, we obtain an arrangement of 9 lines defined by the

linear factors of the Fermat polynomial

(x3 − y3)(y3 − z3)(z3 − x3) = 0.
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These lines intersect in triples in 12 points, which are dual to the lines of the Hesse
arrangement. The resulting dual Hesse configuration has the type (94, 123) and it
belongs to a much bigger family of Fermat arrangements; see [14]. Figure 1 is an
attempt to visualize this arrangement (which cannot be drawn in the real plane
due to the famous Sylvester-Gallai Theorem; for instance, see [13]).

Figure 1. Fermat configuration of points

It is convenient to order the 9 intersection points in the affine part in the following
way:

Q1 = (ε : ε : 1), Q2 = (1 : ε : 1), Q3 = (ε2 : ε : 1),
Q4 = (ε : 1 : 1), Q5 = (1 : 1 : 1), Q6 = (ε2 : 1 : 1),
Q7 = (ε : ε2 : 1), Q8 = (1 : ε2 : 1), Q9 = (ε2 : ε2 : 1).

With this notation established, we have the following result.

Theorem 3.6 (Fermat points). Let f : X → P2 be the blow up of P2 at Q1, . . . , Q9.
If C is a negative curve on X, then

a) C is the proper transform of a line passing through two or three of the
points Q1, . . . , Q9, or

b) C is an exceptional divisor of f .

Proof. The proof of Theorem 3.3 works with very few adjustments.
Let us assume, to begin with, that C is a negative curve on X, distinct from the

curves listed in the theorem. Then

C = dH − k1E1 − . . .− k9E9,

for some d > 0 and k1, . . . , k9 ≥ 0. We can also assume that d is the smallest
number for which such a negative curve exists. As before, we set

mi =
ki
d

for i = 1, . . . , 9.

Then the inequalities (3.1) to (3.9) follow from the fact that C intersects the 9 lines
in the arrangement non-negatively.

If one of the remaining inequalities (3.10), (3.11) or (3.12) fails, then we perform
a standard Cremona transformation based on the points involved in the failing
inequality. For example, if (3.10) fails, we make Cremona based on points Q1, Q6

and Q8. Note that these points are not collinear in the set-up of our Theorem.



76 MARCIN DUMNICKI ET AL.

Since C is assumed not to be a line through any two of these points, its image C ′
under Cremona is a curve of strictly lower degree, negative on the blow up of P2 at
the 9 points. The points Q1, . . . , Q9 remain unchanged by the Cremona because,
as already remarked, all dual Hesse arrangements are projectively equivalent, see
[16]. Then C ′ is again a negative curve on X of degree strictly lower than d, which
contradicts our choice of C such that C ·H is minimal.

Hence, we can assume that the inequalities (3.10), (3.11) and (3.12) are also
satisfied. Then we conclude exactly as in the proof of Theorem 3.3. �

Remark 3.7. If we are interested only in the bounded negativity property on X,
the assertion follows from the fact, that −KX is Q-effective. Indeed, if C ⊂ X is a
reduced and irreducible curve, from the genus formula we get

1 +
C · (C +KX)

2
= g(C) ≥ 0,

so
C2 ≥ −2− CKX .

The bounded negativity follows from the fact that −CKX may be negative only in
finite number of cases.

Having classified all the negative curves on the blow up of P2 at the 9 Fermat
points, it is natural to wonder about the negative curves on blow ups of P2 arising
from the other Fermat configurations. Note that the argument given in Remark
3.7 is no longer valid, since −KX is not nef nor effective. So it will be interesting
to ask whether BNC holds for such surfaces. We pose the following problem.

Problem 3.8. For a positive integer m, let Z(m) be the set of all points of the
form

(1 : εα : εβ),

where ε is a primitive root of unity of orderm and 1 ≤ α, β ≤ m. Let fm : X(m)→
P2 be the blow up of P2 at all the points of Z(m). Is the negativity bounded on
X(m)? If so, what is the value of b(X(m))?

We end this note by the following remark which discusses bounded negativity
for blow ups of P2 at 10 points.

Remark 3.9. Let X denote a blow up of P2 at 10 points. As mentioned before, if
the blown up points are general, then Conjecture 1.5 predicts that the only negative
curves on X are (−1)-curves. This is an open question. On the other hand, let us
consider a couple of examples of special points.

Let X be obtained by blowing up the 10 nodes of an irreducible and reduced
rational nodal sextic. Such surfaces are called Coble surfaces (these are smooth
rational surfaces X such that | −KX | = ∅, but | − 2KX | 6= ∅). Then it is known
that BNC holds for X. In fact, we have C2 ≥ −4 for every irreducible and reduced
curve C ⊂ X; see [3, Section 3.2].
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Now let X be the blow up of 10 double points of intersection of 5 general lines in
P2. Then −KX is a big divisor and by [15, Theorem 1], X is a Mori dream space.
For such surfaces, the submonoid of the Picard group generated by the effective
classes is finitely generated. Hence BNC holds for X ([8, Proposition I.2.5]).
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