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WHEN THE MEDIAL AXIS MEETS THE SINGULARITIES

MACIEJ PIOTR DENKOWSKI

Abstract. In this survey we present recent results in the study of the medial
axes of sets definable in polynomially bounded o-minimal structures. We take

the novel point of view of singularity theory. Indeed, it has been observed

only recently that the medial axis — i.e. the set of points with more than
one closest point to a given closed set X ⊂ Rn (with respect to the Euclidean

distance) — reaches some singular points of X bringing along some metric

information about them.

1. Introduction

The notion of the medial axis or skeleton of a domain in the Euclidean space
appeared presumably for the first time in the sixties in Blum’s article [7] as a central
concept for pattern recognition. The main idea was that given a plane bounded
domain D ⊂ R2, the set of those points x ∈ D for which the Euclidean distance
d(x, ∂D) is realized in more than one point of the boundary ∂D — and this set is
often called the skeleton of D for quite obvious reasons — suffices to reconstruct the
shape of D, provided we know the distance function along the skeleton. A most
common illustration of the skeleton is the propagation of grassfire. If we ignite
a fire on the border of a field, then, assuming the fire propagates inwards with
uniform speed, at some point the different firefronts will meet and quench to form
the skeleton of the field. If the boundary is smooth, then this propagation can be
described by a PDE in the type of the eikonal equation.

The medial axis could be also interpreted as the projection of the ‘ridge’ that
forms on the graph of the distance function. And indeed, already from Clarke’s
paper [10] we may infer that the medial axis coincides with the non-differentiability
points of the distance function (see [28], [5]).
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The study of the medial axis (or its variants like the central set of a domain,
or conflict sets) on the grounds of singularity theory is motivated not only by the
applications in pattern recognition mentioned above, but also by its importance in
tomography and robotics (cf. e.g. [12]). Although since the sixties a huge amount
of results concerning the medial axis had been amassed thanks to the work of many
outstanding mathematicians (cf. e.g. [24], [25], [28], [21], [4]), it is only recently
that the special relation existing between the medial axis and the singularities of
the set for which it is computed has been observed in [16]. Before that, people
concentrated mostly on applications. Also, the results obtained up to now have
always been requiring some strong smoothness assumptions (cf. [9], [25]), or, on
the contrary, have been rather too general (see also the expository paper [1]). Our
setting is that of subanalytic geometry and the theory of o-minimal structures that
exclude any topological pathology.

In the present survey we will concentrate on the newly introduced singularity
theory approach to the medial axis. Therefore, from the extremely large bibliog-
raphy on the medial axis we shall extract only those few papers that concern this
point of view.

Throughout this paper definable means definable in some polynomially bounded
o-minimal structure expanding the field of reals R (for a concise presentation of tame
geometry see e.g. [11]; for simplicity one can always think about semi-algebraic
sets, see also [14]). It is also important to keep in mind that subanalytic sets
(see [14] or [15]) do not form an o-minimal structure unless we control them at
infinity (or near the boundary). When some local property is studied, this does
not play any role and the results obtained for definable sets hold for subanalytic
ones. However, from the global point of view the difference is significant (see [14]
and [16]).

Some additional references for general results about medial axes can be found
in the papers [1], [9] and [21].

2. Basic notions and preliminary results

Consider a closed set ∅ 6= X ( Rn and let d(x,X) denote the Euclidean distance
from x ∈ Rn to X. Put

m(x) = mX(x) := {y ∈ X | ||y − x|| = d(x,X)}.

Definition 2.1. We call m : Rn → P(X) the multifunction of closest points. Its
multivaluedness set

MX := {x ∈ Rn | #m(x) > 1} ⊂ Rn \X
is called the medial axis or skeleton (formally we should be adding: ‘of Rn \X’).

Remark 2.2. By the strict convexity of the norm, it has empty interior: intMX = ∅.
If X is definable or subanalytic, then so is MX (see Theorem 3.3) in which case we
also have intMX 6= ∅. Outside tame geometry this may not be true as is shown in
[21] Example 4A.
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Already when Rn \ X does not contain a half-space (i.e. a set described by
〈x− v, v〉 ≤ 0, or the reverse, for some v 6= 0), the medial axis is nonempty (cf. [5]
Theorem 2.27).

We write B(x, r) = Bn(x, r) ⊂ Rn for the open Euclidean ball centred at x and
with radius r > 0 and S(x, r) := ∂B(x, r) for the sphere. When r = d(x,X), we
call the sphere or ball supporting. Note that X cannot enter a supporting ball.

Remark 2.3. Any point x ∈ B(a, r) where a ∈ X has its distance d(x,X) realized
in B(a, 2r). This is a mere student’s exercise, but it plays an important role in
many proofs.

There are two other notions closely related to that of the medial axis. The first
is the concept of the central set.

Definition 2.4. We call B(x, r) ⊂ Rn \X a maximal ball for X, if

B(x, r) ⊂ B(x′, r′) ⊂ Rn \X ⇒ x = x′, r = r′.

The set CX consisting of of the centres of maximal balls for X is called the central
set (formally: ‘of Rn \X’).

Remark 2.5. If B(x, r) is a maximal ball, then r = d(x,X).

The relation between MX and CX is considered folklore (1). This result has a
practical consequence in that we often work with CX instead of MX (see e.g. the
proof of Proposition 3.20). The closure MX is sometimes called cut locus.

Theorem 2.6. There is always MX ⊂ CX ⊂MX .

Proof. [5] Theorem 2.25; see also [21] for a different proof. �

Both inclusions may be strict:

Example 2.7. If X is the parabola y = x2, then MX = {0} × (1/2,+∞) whereas
the focal point (0, 1/2) belongs to CX .

For the second inclusion an example is given in [9]: X is the boundary of the
union of B3((0, 0, 1); 1) in R3 with B3((1, 0, 1/2); 1/2) and the cylinder (0, 1) ×
B2((0, 1/2); 1/2) joining the two balls. Then (0, 0, 1/2) lies in MX , but not in CX .

A third notion closely related to the previous ones is that of conflict set. Given
two nonempty, closed, disjoint sets X1, X2 ⊂ Rn, their conflict set consists of all
the points that are equidistant to X1 and X2. This can be extended to more than
two sets:

1In [9] it is given without any references, though there is no straightforward proof. It is one
of many examples of a property that is intuitively clear, but whose proof is quite far from being

meretricious.
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Definition 2.8. If X1, . . . , Xk ⊂ Rn are closed, pairwise disjoint, nonempty sets,
where k ≥ 2, and %(x) := minki=1 d(x,Xi), then their conflict set is defined as

Conf(X1, . . . , Xk) = {x ∈ Rn | ∃i 6= j : d(x,Xi) = d(x,Xj) ≤ %(x)}.

Remark 2.9. We assumed here that the sets Xi are pairwise disjoint. This ensures,
at least in the definable case, that the dimension of their conflict set does not exceed
n−1 (cf. [4]). Otherwise, if the sets were assumed too be only pairwise distinct, we
would lose some control. For instance, the conflict set of the two intersecting half-
lines {y = x, x ≥ 0} and {y = −x, x ≤ 0} is the union of the half-line {x = 0, y ≥ 0}
together with the oblique quadrant {y ≤ −|x|}.

The definition,just as the two previous ones, makes sense also in any metric
space. In particular, if all the sets Xi are contained in E ⊂ Rn, we can compute
the relative conflict set ConfE(X1, . . . , Xk) with respect to a given metric in E.

Remark 2.10. For two distinct closed sets X,Y with a unique common point X ∩
Y = {a}, there is

MX∪Y \ (Terro(X) ∪ Terro(Y )) = Conf(X,Y ) \ C(X,Y ),

where Terro(X) = {x ∈ Rn | d(x,X) < d(x, Y )} is the open territory of X and
C(X,Y ) = {x ∈ Conf(X,Y ) | mX(x) = mY (x)}. To see ‘⊃’ take a point x
equidistant to X and Y (so that x does not belong to any of the open territories)
but with mX(x) 6= mY (x); then #mX∪Y (x) > 1. To see ‘⊂’ pick a point x from
the set on the left-hand side. Then it is equidistant to X and Y and thus it
belongs to the conflict set. But mX(x) = mY (x) implies that this set is contained
in X ∩ Y = {a} and so mX∪Y (x) = {a}, contrary to the assumptions.

If the intersection X ∩ Y has more than one point, there is no such a simple
relation between the medial axis and the conflict set as we can see for instance from
the example of X being the unit circle in R2 together with the point (2, 0) and Y
just the unit circle.

Finally, let us recall two classical cones we will be using. The Peano tangent
cone of X at a ∈ X, i.e.

Ca(X) = {v ∈ Rn | ∃X 3 xν → a, tν > 0: tν(xν − a)→ v},
and the Clarke normal cone of X at a:

Na(X) = {w ∈ Rn | ∀v ∈ Ca(X), 〈v, w〉 ≤ 0}.
Both sets are definable (respectively, subanalytic) in the definable (respec-
tively, subanalytic) case and we have the inequalities dimCa(X) ≤ dimaX and
dimNa(X) ≥ n− dimaX.

When studying the multifunction m(x) we shall need some notions of continuity.
As m(x) is compact-valued,it is natural to make use of the Hausdorff, or more
generally Kuratowski limits (2). To be more precise, let us recall the Kuratowski

2Or Painlevé-Kuratowski limits. As a matter of fact it was P. Painlevé who first introduced this

convergence generalizing some previous work of Hausdorff. A similar concept was later considered
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upper and lower limit of a multifunction F : Rn →P(Rm); for a detailed study of
these limits in o-minimal geometry see [13].

Definition 2.11. If x0 is an accumulation point of the domain domF i.e. of the
set of points x for which F (x) 6= ∅, then we define the Kuratowski lower and upper
limit at x0 as follows:

• y ∈ lim infx→x0 F (x) iff for any sequence xν → x0, xν 6= x0, one can find a
sequence F (xν) 3 yν → y;
• y ∈ lim supx→x0

F (x) iff there are sequences xν → x0, xν 6= x0, and
F (xν) 3 yν → y.

Clearly, the upper limit contains the lower one and both are closed sets that do not
alter if we replace the values of F by their closures. We write E = limx→x0

F (x) or

F (x)
K−→ E (x→ x0), if both limits coincide with the set E (that could be empty).

Remark 2.12. In particular,

Ca(X) = lim sup
ε→0+

(1/ε)(X − a).

By the Curve Selection Lemma, in the definable case we can replace the upper
limit by the limit itself (see e.g. [20]).

A simple computation shows that

(†) a ∈ m(x) ⇒ x− a ∈ Na(X).

This light observation has some heavy consequences, the first one being Nash’s
Lemma 3.1.

Before discussing what kind of relation there is between the medial axis MX and
the singularities of X we should recall the different classes of regular and singular
points:

RegkX := {x ∈ X | X is a C k − submanifold in a neighbourhood of x},
for k ∈ N∪{∞, ω} where C ω denotes analycity (in the latter case we write RegX :=
RegωX and SngX := X \ RegX for the singularities.) and we put SngkX :=
X \ RegkX.

Example 2.13. For a plane analytic curve Γ ⊂ R2 through the origin we have
0 ∈ SngΓ if and only if either Γ has a cusp at zero, or there is an integer k ≥ 1
such that 0 ∈ RegkΓ∩ Sngk+1Γ and all the possibilities can occur (cf. [5] Example
3.1):
Take two relatively prime integers p > q with q odd and such that for a given k,
we have k < p/q < k + 1 and consider the curve Γ defined by yq = xp. Then
0 ∈ RegkΓ ∩ Sngk+1Γ. For instance the function y = x5/3 has analytic graph and
is C1 but not C2 smooth at the origin.

by Vietoris. On the other hand, Kuratowski was the first to present a thorough exposition of the

theory in metric spaces in his memorable book on topology.
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A major role in the theory is played by the important but apparently somewhat
forgotten Poly-Raby Theorem:

Theorem 2.14 ([27]). Let X ⊂ Rn be a closed, nonempty set and δ(x) :=
dist(x,X)2. Then for any k ≥ 2 or k ∈ {ω,∞},

RegkX = {x ∈ Rn | δ is of class C k in a neighbourhood of x} ∩X.

Remark 2.15. We have to assume here k ≥ 2 as is easily seen from the example of
X = (−∞, 0] in R.

As it happens, MX coincides with the set of non-differentiability points of δ(x)
(see [5]). This can be derived from some results concerning the Clarke subdiffer-
ential from [10]. Let us recall briefly Clarke’s subdifferential of a locally Lipschitz
function f : U → R with U ⊂ Rn open. By the Rademacher Theorem, the set
Df of differentiability points of f is dense in U . Hence, we can define the Clarke
subdifferential ∂f(x) at any point x ∈ U as the convex hull cvx∇f (x) of the set
∇f (x) of all the possible limits of the gradients ∇f(xν) for sequences Df 3 xν → x.
It is easy to see that ∂f(x) is a compact set and by [10] it reduces to a singleton
{y} iff x ∈ Df and ∇f |Df

is continuous at y (and then ∂f(x) = {y}). In order
to compute ∂f(x) we may restrict ourselves to any dense subset of Df (see [10]).
A more detailed study of the multifunction x 7→ ∂f(x) in the definable setting is
presented in [20].

Theorem 2.16. We have for any point x ∈ Rn,

(1) ∂δ(x) = {2(x− y) | y ∈ cvx m(x)};
(2) The following conditions are equivalent:

(a) x ∈MX ;
(b) #∂δ(x) > 1;
(c) x /∈ Dδ;
(d) x /∈ Dd ∪X.

(3) ∇δ(x) = 0⇔ x ∈ X;
(4) ∇δ is continuous in Dδ = Rn \MX ;

(5) If x /∈MX ∪X, then x ∈ Dd and ∇d(x) = x−m(x)
d(x) .

Proof. (5) is a refinement of a result shown already in [10]. According to [28], (1)
can be deduced from [10] Theorem 2.1, but a self-contained proof of all the point
can be found in [5] Theorem 2.23 and Lemma 2.21. �

3. Medial axis and singularities

3.1. The medial axis of singular sets. The starting point of the new theory is
an old result of J. Nash from his famous work [26].

Lemma 3.1 ([26]). Let X be a C k-submanifold of an open set Ω ⊂ Rn where
k ≥ 2, or k ∈ {∞, ω}. Then there exists an arbitrarily small neighbourhood U ⊂ Ω
of X such that
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(i) m|U is univalued i.e. each point x ∈ U has a unique closest point m(x) ∈ X;
(ii) the function m : U 3 x 7→ m(x) ∈ X is of class C k−1, or, respectively, C k

with k ∈ {∞, ω}.

Proof. An elementary proof can be found in [16]. It is based on the fact that in
the case considered here, by (†) we have

a ∈ m(x) ⇒ x− a ∈ (TaX)⊥

where TaX denotes the tangent space of X at a. Given a local parametriza-
tion ϕ(t) of X at a, its partial derivatives span the tangent space and thus
the proof reduces to applying the Implicit Function Theorem to the function

(t, x) 7→
(
〈x− ϕ(t), ∂ϕ∂ti (t)〉

)d
i=1

(where d = dimX) at the point (ϕ−1(a), a) and

then using the function t(x) found to get m(x) = ϕ(t(x)). �

Remark 3.2. As observed by S. G. Krantz and H. R. Parker, for a finite k, we
cannot expect a better class than C k−1 and we have to start from k ≥ 2. It is easy
to check this using the example of y = |x|3/2 which will also prove useful later on.

The Nash Lemma already on its own raises two natural questions:

Problem 1.

(1) What happens when we let X have singularities?
(2) What is the structure of the exceptional set of points for which there is

more than one closest point?

The first question leads us naturally towards the setting of subanalytic geometry
or o-minimal structures, while the second one is a natural way of introducing the
medial axis MX into the picture.

The general singular counterpart of the Nash Lemma solving Problem 1 is the
following theorem with parameter for a set definable in some o-minimal structure.
Given X ⊂ Rkt × Rnx we denote by Xt its section at the point t i.e. the set
{x ∈ Rn | (t, x) ∈ X}. Let πk(t, x) = t.

Theorem 3.3 ([16] Theorem 2.1). Let X ⊂ Rkt × Rnx be a nonempty set with
locally closed t-sections and Y := πk(X). Assume that the set X is definable (in
a not necessarily polynomially bounded o-minimal structure). Then there exists a
definable set W ⊂ Rk × Rn with open t-sections and such that Xt ⊂ Wt is closed
in Wt and mt(x) 6= ∅ for x ∈Wt, where

mt(x) := {y ∈ Xt : ||x− y|| = dist(x,Xt)}, (t, x) ∈W,

and moreoever

(1) the multifunction m(t, x) := mt(x) is definable (3);

3i.e. its graph {(t, x, y) ∈W ×X | y ∈ m(t, x)} is definable.
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(2) If Mt = {x ∈Wt | #m(t, x) > 1}, then the set

M :=
⋃
t∈Y
{t} ×Mt ⊂W

is definable with nowheredense sections Mt and in particular m : W \M →
Rn is a definable function;

(3) for any integer p ≥ 2, there is a definable set F p ⊂ W containing M and
such that each F pt is closed and nowheredense; moreover, Xt\F pt = RegpXt

and

m(t, ·) is C p−1 in a neighbourhood of x ∈Wt \Mt ⇔ x /∈ F pt .
Remark 3.4. The Poly-Raby Theorem 2.14 is most useful for the proof. On the
other hand, since the Rolin-Le Gal result on the existence of o-minimal structures
that do not admit C∞ cellular cell decompositions we know that we cannot expect
to take p =∞ in the theorem above.

When the parameter t is fixed we recognize here the multifunction x 7→ m(t, x)
of the closest points to the set Xt. The section Mt of M is the set of non-unicity
(multivaluedness) of this multifunction — the medial axis in the open set Wt. In
(3) this set is extended to a set ‘eating out’ the singularities of class C p of the set
Xt; this extension is defined by the class C p−1 of the function m(t, ·) (univalued in
the open set being the complement of Mt). What is more, everything here depends
in a definable way on the multidimensional parameter t.

This good dependence on the parameter is all the more an important feature
of the result as it is no longer true when we turn to the subanalytic case. The
reason for this is the fact that the function (t, x) 7→ d(x,Xt) is not in general
subanalytic when X is such, although the distance itself x 7→ d(x,X), as is known,
is subanalytic in Rn (see Raby’s Theorem 4.3 and Example 4.4 in [14]); it is one of
the most important results in subanalytic geometry. We will illustrate this using
an example from the survey [14] (this is a modified version of the example from
[16] Remark 3.3).

Example 3.5. Consider

X = {(x, 1/x) | x > 0} ∪
+∞⋃
n=1

{(1/n,−n)} ⊂ R× R.

Although this set is subanalytic, the set M =
⋃
{(1/n, 0)} is not.

Nevertheless, there is a subanalytic analogue of the last theorem once we get rid
of the parameters.

Theorem 3.6 ([16] Theorem 3.2). Let X ⊂ Rn be subanalytic, nonempty and
locally closed. Then there exists a subanalytic neighbourhood W ⊃ X in which X
is closed and

(1) the multifunction m(x) = {y ∈ X : ||x− y|| = dist(x,X)} 6= ∅, for x ∈W ,
is subanalytic;
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(2) the set MX = {x ∈ W : #m(x) > 1} is subanalytic and nowheredense (in
particular m : W \MX → Rn is a globally subanalytic function);

(3) there is a nowheredense, subanalytic set F ⊂W closed in W and such that
MX ⊂ F , F ∩X = SngX and x ∈W \MX is a point of analycity of m if
and only if x ∈W \ F .

Let us note that in (3) we obtain the analycity ofm, which is a consequence of the
well-known Tamm Lemma (its geometric proof not requiring the use of Hironaka’s
desingularization was given by K. Kurdyka in the eighties).

We should stress the fact that the proof of the theorem above cannot be obtained
by a simple cutting off of X using an increasing sequence of cubes in order to apply
the preceding result to the globally definable sets Xν = X∩ [−ν, ν]n ⊂ Rn obtained
in this way. Indeed, in general there is no equality MX =

⋃
Mν , where Mν is the

medial axis defined for Xν .

Example 3.7. Take X to be the union of half-circles {x2 + (y− ν)2 = (3/4)2, y ≤
ν}; then (0, ν) ∈Mν \Mν+1 and in particular (0, ν) /∈MX .

3.2. Reaching of singularities. The Nash Lemma 3.1 implies that

(‡) MX ∩X ⊂ Sng2X.

Already in [16] we observed that some singular points are reached by the medial
axis.

Example 3.8. ([5] Example 3.1). Consider in R2 the sets

X1 := {y = x2}, X2 := {y = |x|3/2} andX3 := {y = (1 + sgnx)x2}.
Then 0 ∈ Reg1Xi ∩ Sng2Xi for i = 2, 3, whereas X1 = Reg2X1.

It is easy to see that MX1
is the half-line {0} × (1/2,+∞) and so it does not

meet X1. On the other hand, MX2
= {0} × (0,+∞) reaches the C 1-singularity of

X2. But again MX3
stays away from it. This is due to the fact that although both

X2 and X3 have the same kind of singularity, their geometric ‘radii of curvature’
(see below — the reaching radius) are different.

We are led to the following natural question:

Problem 2. Characterise the points of

MX ∩ Reg1X ∩ Sng2X and MX ∩ Sng1X.

Remark 3.9. If we think of the example of a quadrant X = {(x, y) ∈ R2 | x ≥
0, y ≥ 0}, we see that even for C 1-singular points the question whether the medial
axis reaches them or not is not obvious at all.

Partial answers to the Problem were given in [5] where several techniques were
developed that should allow to thoroughly solve the question. In particular, an
important tool is the newly introduced reaching radius ([5] Definition 4.24):
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Let Va = Na(X)∩S(0, 1) denote the intersection of the normal cone to X at a with
the unit sphere (4).

Definition 3.10. We define the weak reaching radius

r′(a) = inf
v∈Va

rv(a)

where

rv(a) = sup{t ≥ 0 | a ∈ m(a+ tv)}
is the directional reaching radius (or v-reaching radius). Next we put

r̃(a) = lim inf
X\{a}3x→a

r′(x)

for the limiting reaching radius. Finally, we define the reaching radius as

r(a) =

{
r′(a), a ∈ Reg2X,

min{r′(a), r̃(a)}, a ∈ Sng2X.

Remark 3.11. If a ∈ intX, then Na(X) = {0} and so Va = ∅ which gives r′(a) =
+∞ (as the infimum over the empty set).

Of course, ifX is a hypersurface, then at a ∈ Reg1X, we have Va = {ν(a),−ν(a)}
where ν is a local unit normal vector field.

Example 3.12. The idea is that the reaching radius should vanish only at points
attained by the medial axis (5). The reason why we consider the biggest lower
bound of the radii in all possible normal directions at a is that we have to take
into account the curvature and obtain a possibly finite number, e.g. for X = {y =
x2} ⊂ R2 we have r′(0) = r(0,1)(0) = 1/2 < r(−1,0)(0) = +∞.

The need for considering also the limiting radius comes from the fact that for
X = {y = |x|} we have r′(0) = +∞, while lim infX\{0}3x→0 r

′(x) = 0.

On the other hand, if X = ((−∞,−1] ∪ [1,+∞)) × {0}, then r̃(−1, 0) = +∞,
while using the directions from the normal cone we see that infv∈V0 rv(−1, 0) = 1.
This explains the final minimum in the definition.

By the Nash Lemma, r(a) > 0 at points a ∈ Reg2X. On the other hand, by
[5] Theorem 4.28 and Lemma 4.27, X+ := r−1(+∞) ∩ Reg1X is either void, or
a connected component of Reg1X and X ⊂ TaX + a for any a ∈ X+. More
importantly, by [5] Theorem 4.33, MX 6= ∅ implies X \ r−1(+∞) 6= ∅.

Theorem 3.13. For a definable X, the function r : X → [0,+∞] is definable (6)
and a ∈MX ∩X iff r(a) = 0.

4If a ∈ m(x), then x− a belongs to the normal cone to X at a, cf. (†).
5The notion is thus different from what is known as Federer’s reach ρ(X) := inf{d(x,MX) |

x ∈ X}, see [22] and [5] Subsection 4.3. It is rather awkward to use the distance d(x,MX) itself

as it does not bring along enough geometric information, even though it has some interesting

properties too, see [5] Corollaries 4.18 and 4.19.
6I.e. r−1(+∞) is definable and the restriction r|X\r−1(+∞) is a definable function.
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Remark 3.14. A major role in the proof is played by the so called proximal inequal-
ity. We say that v ∈ Va is proximal for X, if for some r > 0, m(a + rv) = {a}.
This is equivalent to the following inequality:

(#) ∃r > 0: ∀x ∈ X, 〈x− a, v〉 ≤ 1

2r
||x− a||2.

Example 3.15. It would be helpful, if r′(a) = 0 implied r̃(a) = 0. Unfortunately,
the example of X = {(x, y, z) | z = 0, y ≤ |x|3/2} shows that there may be r′(a) = 0
and r̃(a) > 0. Here Sng1X = {(x, |x|3/2, 0) | x ∈ R}, so that r′ ≡ +∞ along
Reg1X.

On the other hand, if X is the graph of f(x, y) = y|x|3/2, then r′(0) > 0, while
r̃(0) = 0, in particular, r′(0, y) = 0 for y 6= 0.

Although the definition of the reaching radius seems rather technical, the The-
orem above is often quite easy to apply.

Example 3.16. Consider the surface X = {z3 = xy(x4 + y4)} in R3 from [22].
The interesting thing here is that at each point a ∈ X the tangent cone is flat, i.e.
a plane. However, there is a discontinuity of the tangents at the origin (where the
tangent is the (x, y)-plane) if we move along the x- or y-axis where the tangent
planes are vertical (they contain the z-axis). Thus the origin lies in Sng1X. It is
easy to see that r′(0) > 0, but r̃(0) = 0 so that 0 ∈MX , by the last Theorem.

3.3. Stability of the medial axis with application to the reaching of sin-
gularities. Almost since its introduction the medial axis MX has been known as
being highly unstable under small deformations of X. F. Chazal and R. Soufflet
illustrated this in [9] with a most simple example: the medial axis of a circle is
its centre, but even the smallest ‘protuberance’ on the circle leads to the medial
axis becoming a whole segment. The paper [9] is entirely devoted to showing that
under some hypotheses on X there is a kind of stability of the medial axis for C2
deformations expressed by means of map images. However, that kind of approach
consists actually in looking at the initial and the final states only — with a black
box in between, where the actual deformation takes place. Even from the point of
view of applications it seems more natural to see the deformation as a continuous
process. Which is more, there is no need for it to be smooth. This is best expressed
using the Kuratowski convergence of sets and indeed lets us have some insight of
what is happening to the medial axis.

Let π(t, x) = t for (t, x) ∈ Rk×Rn. We have the following type of semicontinuity
of the medial axis (7):

Theorem 3.17 ([18] Theorem 4.1). Assume that X ⊂ Rk × Rn is definable with

closed t-sections, 0 is an accumulation point of π(X) and Xt
K−→ X0. Then for

7Recently, we have obtained with A. Denkowska a similar but more detailed result based partly
on [13] for conflict sets and also for Voronoi diagrams which are medial axes of finite sets. The

result is as yet unpublished.
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M = {(t, x) | #m(t, x) > 1}, where m(t, x) = {a ∈ Rn | a ∈ Xt : ||x − a|| =
d(x,Xt)}, we have

lim inf
π(M)3t→0

Mt ⊃M0

where we posit lim infπ(M)3t→0Mt = ∅ when 0 /∈ π(M) \ {0}.

Remark 3.18. The Theorem implies that 0 cannot be an isolated point of π(M) =

{t |Mt 6= ∅}, i.e. M0 = ∅, if 0 /∈ π(M) \ {0}.
The proof depends heavily on the Curve Selection Lemma for which the defin-

ability assumption is unavoidable. Whether there is a general counterpart of this
result remains an open question.

Example 3.11 from [18] shows that we can hardly expect a better result even
in the quite regular situation when we are dealing with a convergent definable
one-parameter family of graphs:

Example 3.19. Consider the set X = {(t, x, y) ∈ R×R2 | y = t|x|}. It is definable,

we have Xt
K−→ X0, but

Mt =


{(x, y) | x = 0, y > 0}, t > 0,

∅, t = 0,

{(x, y) | x = 0, y < 0}, t < 0,

so that there is no convergence.

The Theorem above combined with the following recent observation of A.
Bia lożyt [3] enables us to prove a refined version of Theorem 4.6 from [5] on reaching
a certain type of singular points.

Proposition 3.20 (A. Bia lożyt). Let V ⊂ Rn be a real cone (8). Then MV 6= ∅
if and only if V is not a convex set.

Proof. See [3]. If V is convex, then mV (x) is obviously univalued and MV = ∅.
On the other hand, it is easy to see that by homothety MV ∪{0} is a real cone, too.
Assume that V is non-convex and take x 6= y in V such that [x, y] ∩ V = {x, y}.
If the midpoint z of the segment [x, y] is not in MV take a = mV (z) and write
Bt := B(a + t(z − a), td(z, V )). Then by the choice of z, we conclude that there
must be

sup{t ≥ 1 | Bt ⊂ Rn \ V } < +∞,
which implies that the central set CV 6= ∅ and we are done due to Theorem 2.6. �

Theorem 3.21. Assume that X ⊂ Rn is a definable with a non-convex tangent
cone V := C0(X). Then 0 ∈MX and C0(MX) ⊃MV .

8A real cone V ⊂ Rn is a union of half-lines starting from the origin, i.e. for any t ≥ 0, tV ⊂ V
and we assume that V 6= ∅ by definition.
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Proof. As noted in Remark 2.12, in the definable case we know that V is the
Kuratowski limit when t→ 0+ of the dilatations (1/t)X, t > 0. Hence by Theorem
3.17,

MV ⊂ lim inf
t→0+

M(1/t)X .

By homothety, we have M(1/t)X = (1/t)MX and so the limit inferior is actually a
limit and coincides with C0(MX). Finally, as observed [20], for a definable set we
have C0(E) = limt→0+(1/t)E also in the case when 0 /∈ E in which case the limit
is empty. Therefore, since we know by Proposition 3.20 that 0 ∈MV (as MV ∪{0}
is a cone,by homothety), we obtain the result sought for. �

In general we can hardly expect equality between C0(MX) and MV in the last
theorem:

Example 3.22. Consider a calyx-shaped X, i.e. the union of the horn x2 +
y2 + z3 = 0 together with z = ||(x, y)|| (Euclidean norm). Then V = C0(X)
consists of {x = y = 0, z ≤ 0} together with z = ||(x, y)|| and so it is non-
convex and the last Theorem applies. However, MX contains the z-axis without
the origin, so that C0(MX) contains the whole z-axis, whereas the cone MV ∪ {0}
intersected with the z-axis is just the half-line {x = y = 0, z ≥ 0} which means
that C0(MV ) = MV = MV ∪{0} does not contain the half-line {x = y = 0, z < 0}.

3.4. The plane case. The plane case is far from being plain, if we may indulge
in a little pun. Let us recall the following classical fact.

Lemma 3.23. If X ⊂ R2 is a definable curve such that 0 ∈ X and the germ
(X \ {0}, 0) is connected, i.e. X has a single branch ending at the origin, then the
tangent cone C0(X) is a half-line that we can identify with R+ × {0}n−1 ⊂ Rn in
properly chosen coordinates and X is near zero the graph of a definable C 1 function
f : [0, ε)→ R with f(0) = 0 and f ′(0) = 0.

In the situation from this Lemma, for 0 < t� 1, we can write f(t) = atα+o(tα)
with a 6= 0, α ≥ 1, provided f 6≡ 0.

Definition 3.24. We say that X as in the Lemma above is superquadratic at zero
iff f 6≡ 0 and α < 2 (cf. [5, Section 3.3]).

Remark 3.25. The definability of f allows us also to assume that f has constant
convexity on [0, ε) and is C 2 on (0, ε).

The choice of the adjective superquadratic in view of the fact that we require
α < 2 may seem a little strange. Its geometrical origin is shown in the following
easy lemma.

Lemma 3.26 ([5] Lemma 3.17). If γ : [0, ε) → [0,+∞) is superquadratic with
γ(0) = γ′(0) = 0, then for any r > 0 the disc Dr := B((0, r), r) ⊂ {y > 0} tangent
to the x-axis at zero contains points of γ inside.
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Proof. It follows from the obvious observation that if g : [0, r) → R+ denotes the
usual parametrization of the lower part of the circle ∂Dr through zero, then g(x) =
1
2rx

2 + o(x2) near zero. At the same time γ(x) = axα + o(xα) with a > 0 and
α ∈ (0, 2) and so there must be g(x) < γ(x) for small x. �

Following [6] we will give here the correct version of [5] Proposition 3.24. It
reads:

Proposition 3.27 ([5] Proposition 3.24 – correct version). Assume that X ⊂ R2

is a definable curve such that 0 ∈ X and the germ (X \ {0}, 0) is connected. Then
0 ∈MX if and only if X is superquadratic at zero.

Proof. If X is superquadratic at zero, then by Lemma 3.26, the weak reaching
radius r′(0, 0) is zero and so the reaching radius r(0, 0) is zero, too. By Theorem
3.13, it means that 0 ∈MX .

If X is not superquadratic at zero, then either f ≡ 0, or α ≥ 2, where f is the
function from Lemma 3.23. In both cases f has a C 2 extension by 0 through zero
and the Nash Lemma leads to the conclusion that 0 /∈MX . �

Lemma 3.28. If X ⊂ R2 is definable with dim0X = 1 and 0 ∈ MX ∩ X, then
dim0MX = 1.

Proof. Since the assumptions imply that 0 ∈ MX \MX , then by the Curve Selec-
tion Lemma, dim0MX ≥ 1. On the other hand, MX has empty interior, whence
dim0MX < 2. �

We may complete now the previous Proposition with a metric statement.

Proposition 3.29 ([6] Proposition 2.3). Assume that X is as in the previous
Proposition and 0 ∈ MX ∩ X. Then the tangent cone C0(MX) is the half-line
perpendicular to C0(X) lying on the same side of C0(X) as X near zero. To be
more precise, if X near zero is the graph of f : [0, ε) → R and f is, say, convex,
then C0(MX) = {0} × [0,+∞).

Proof. From the previous Lemma we know that dim0MX = 1. By Lemma 3.23,
we assume that X is the graph of a convex definable function f : [0,+∞) → R of
class C 1 that is C 2 on (0, ε), f(0) = f ′(0) = 0 and f is superquadratic at the origin
(by Proposition 3.27). Thanks to the convexity, for some neighbourhood U of the
origin, we have MX ∩ U ⊂ {(x, y) ∈ R2 | y ≥ 0}.

Take any sequence MX 3 aν → 0 such that aν/||aν || → v. For each index we
pick a point bν ∈ m(aν) \ {0}. Then bν → 0 (cf. [20] Lemma 8.5). Moreover, vν :=
(aν−bν)/d(aν , X) is a unit normal vector to X at bν and for each θ ∈ [0, d(aν , X)),
bν is the unique closest point in X to bν +θvν and so the unit vector vν is proximal,
which implies, as in the proof of Theorem 4.35 in [5], the proximal inequality (#):

∀c ∈ X, 〈c− bν , vν〉 ≤
1

2d(aν , X)
||c− bν ||2.
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From this, after multiplying both sides by d(aν , X) and taking c = 0, we obtain

1

2
||bν ||2 ≤ 〈aν , bν〉,

whence ||bν ||/||aν || ≤ 2 cosαν , where αν = ∠(bν , aν). In particular all the angles
αν are acute.

Since ||bν || → 0, we obtain bν/||bν || → (1, 0), for C0(X) = [0,+∞) × {0}.
Our proof will be accomplished, if we show that αν → π/2, since αν =
∠(bν/||bν ||, aν/||aν ||) → ∠((1, 0), v). As the angles are acute, we immediately get
∠((1, 0), v) ∈ [0, π/2].

We know that X is superquadratic at zero, which implies that for any y > 0,
the origin does not belong to m((0, y)), by Lemma 3.26. If b ∈ m((0, y)), then b
is the unique closest point for any point from the segment [(0, y), b] \ {(0, y)}. As
earlier, by [20] Lemma 8.5, b→ 0 when y → 0+. Then the set Y := {b ∈ X | ∃y >
0: b ∈ m((0, y))} is definable and 0 ∈ Y \ Y . Therefore, by the Curve Selection
Lemma, Y coincides with X in a neighbourhood of zero that we may take to be a
ball B(0, R).

In particular, we can find r, ρ > 0 such that there is a continuous definable
surjection [0, r) 3 y 7→ F (y) ∈ X ∩ B(0, ρ) satisfying F (y) ∈ m((0, y)). Then, for
any (x, y) ∈ B(0, ρ/2) such that x > 0, y > f(x), the distance d((x, y), X) is realized
in B(0, ρ) ∩X. If b is a closest point to (x, y), then the vector (x, y)− b is normal
to X at b, but as b = F (y′) for some y′ ∈ [0, r), we conclude that (x, y) ∈ [(0, y′), b]
and so m((x, y)) = {b}. Therefore,

MX ∩ {(x, y) ∈ B(0, ρ/2) | x > 0, y > 0} = ∅.

This means that MX ∩ B(0, ρ/2) ⊂ {(x, y) ∈ R2 | y ≥ 0, x ≤ 0}, whence
∠((1, 0), v) ∈ [π/2, π]. Summing up, we obtain ∠((1, 0), v) = π/2 as required. �

If we are dealing with a C 1-smooth curve, a so called ‘rolling disc’ argument
yields:

Theorem 3.30. Assume that 0 ∈ Reg1X ∩ Sng2X. Then 0 ∈ MX iff X is su-
perquadratic at the origin.

Proof. [5] Theorem 3.19. �

In the presence of at least two branches, we have the following result for a
C 1-singularity:

Theorem 3.31. Let X ⊂ R2 be a definable curve with 0 ∈ Sng1X and assume
that the germ (X \ {0}, 0) has at least two connected components. Then 0 ∈MX .

Proof. [5] Theorem 3.21. �

Remark 3.32. Due to the Nash Lemma, Proposition 3.27 together with Theorems
3.30 and 3.31 completely solve Problem 2 in the plane.
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Using the main result of Birbrair and Siersma from [4], which is the following
Theorem, we are able to compute in the case of plane curves the tangent cone to
MX at a point a ∈ X reached by the medial axis.

Theorem 3.33 (Birbrair-Siersma [4]). Let X1, . . . , Xk ⊂ Rn be closed, definable,
pairwise disjoint, nonempty sets such that 0 belongs to K := Conf(X1, . . . , Xk)
and let S := S(0, d(0, X1)) be the supporting sphere at 0. Then C0(K) is the cone

spanned over the conflict set ConfS(X̃1, . . . , X̃k) in the sphere, where X̃i := Xi∩S.

Here, what we mean by a cone spanned over a subset E of the sphere S centred
at zero is the set

⋃
{R+v | v ∈ E}. The conflict set in the sphere is computed with

respect to the geodesic metric in S (cf. Remark 2.9).

If (X, 0) ⊂ R2 is a definable pure one-dimensional closed germ, then X \ {0}
consist of finitely many branches Γ0, . . . ,Γk−1 ending at zero and dividing a small
ball B(0, r) into k regions. For k > 1, if we enumerate the branches in a consecutive
way, we can call these open regions D(Γi,Γi+1), i ∈ Zk. Assuming that 0 ∈ MX ,
we say that a pair of consecutive branches Γi,Γi+1 contributes to MX at zero, if

0 ∈MX ∩D(Γi,Γi+1).

Let 1 ≤ c ≤ k be the number of contributing regions. For each such region
D(Γi,Γi+1) we have two half-lines `i, `i+1 tangent to Γi,Γi+1 at zero, respectively.
These half-lines define an oriented angle α(i, i + 1) ∈ [0, 2π], consistent with the
region (9).

As we know that MX is one-dimensional, the germ (MX , 0) consists of finitely
many branches ending at zero. For a definable curve germ (E, 0), we will denote
by b0(E) the number of its branches at the origin.

Combining [5] Theorem 3.27 with Propositions 3.27 and 3.29, we obtain the
following Tangent Cone Theorem.

Theorem 3.34 ([5] Theorem 3.27 – extended version, [6] Theorem 2.4). Assume
that 0 ∈ MX ∩ X where X is a pure one-dimensional closed definable set in the
plane. Then,

(1) either b0(X) = 1, in which case b0(MX) = 1 and C0(MX) is the half-line
perpendicular to C0(X) lying on the same side of C0(X) as X near zero,

(2) or b0(X) = k > 1, in which case b0(MX) ≤ c+ 1 where c is the number of
contributing regions, and C0(MX) is the union of the bisectors of all the
pairs of half-lines forming up C0(X) given by pairs of consecutive branches
delimiting regions that contribute to MX at zero with possibly one exception:
there is at most one contributing region D(Γi,Γi+1) with angle α(i, i+1) >
π in which case at least one of the curves Γi,Γi+1 is superquadratic at
zero and Mi,i+1 = MX ∩D(Γi,Γi+1) has at most two branches at zero and

9Note that it may happen that α(i, i + 1) = 2π; indeed, if X consists of the two branches

Γ0 = [0,+∞)×{0} and the superquadratic Γ1 = {y = x3/2, x ≥ 0}, then both regions D(Γ0,Γ1)

and D(Γ1,Γ0) are contributing. The angles are 0 and 2π, respectively.
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C0(Mi,i+1) consists of one or two half-lines orthogonal to the corresponding
tangent `i or `i+1.

Proof. (1) is the statement of Proposition 3.29. To see that MX near zero consists
of one branch we consider the situation from the proof of Proposition 3.29. In
particular MX ∩ B(0, r) ⊂ {(x, y) ∈ R2 | y ≥ 0, x ≤ 0}. Suppose that there are (at
least) two different branches M1,M2 ending at zero. Then one of them, say M1,
lies in the region delimited by the other one, i.e. M2, and {0} × [0,+∞). Take a
point a ∈ M2. Then m(a) contains a non-zero point b. Then, if a is sufficiently
near zero, the segment [a, b] intersects M1. If c belongs to the intersection, then
m(c) = {b}, contrary to c ∈MX .

As for (2), we can repeat the argument from the proof in [5] Theorem 3.27 with
only one additional case to consider. Let D(Γ0,Γ1) be a contributing region. The
same type of argument as above shows that MX has only one branch in D(Γ0,Γ1)
ending at zero (10). Let α = α(0, 1) ∈ [0, 2π] be the oriented angle consistent with
D(Γ0,Γ1).

If α ∈ [0, π), we proceed as in [5] Theorem 3.27: for a ∈ MX near zero, m(a)
cannot contain zero and has points both from Γ0 and Γ1 — these tend to zero when
a→ 0. The set MX ∩D(Γ0,Γ1) coincides with the conflict set of Γ0,Γ1 (compare
the proof of Theorem 3.21 in [5]) and the Birbrair-Siersma Theorem quoted above
gives the result as in the original proof in [5].

If α = π, then Γ = Γ0 ∪Γ1 is a C 1 curve and MX ∩D(Γ0,Γ1) reaches the origin
iff Γ is superquadratic at zero (11). But then no point from the normal cone at
zero can have its distance realized at the origin (cf. Lemma 3.26) and so we are
in a position that allows us to repeat the argument based on the Birbrair-Siersma
Theorem just as in [5].

If α > π (clearly, there can be only one such contributing region), then the only
possibility that the region D(Γ0,Γ1) be contributing is that at least one of the two
delimiting curves be superquadratic at zero and B(0, r) \D(Γ0,Γ1) be non-convex.
In this case we are exactly in the situation from Proposition 3.29 and the result
follows. Of course, MX ∩D(Γ0,Γ1) may have two branches at zero which explains
why we have b0(MX) ≤ c+ 1. �

The need for taking c+ 1 in (2) is illustrated by the following example from [6].

Example 3.35. Rotate the superquadratic curve y = x3/2, x ≥ 0 by π/6 an-
ticlockwise and the curve y = −x3/2, x ≥ 0 by the same angle clockwise, ob-
taining two curves Γ0,Γ1 with tangent half-lines at zero y = (1/

√
3)x, x ≥ 0 and

10If there were only two branches of MX in D(Γ0,Γ1) ending at zero, it could happen that
along each of them the segments joining the points to the points realizing their distance would
not intersect the other branch. In that case we pick a point a in between the two branches of MX

and the segment [a,m(a)] must intersect one of the branches in a point c. Then m(a) ∈ m(c) but
there is a point b ∈ m(c) \m(a) and the triangle inequality shows that ||a − b|| < ||a −m(a)||,
which is a contradiction.

11I.e. D(Γ0,Γ1) is near zero the epigraph of a superquadratic function.
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y = −(1/
√

3)x, x ≥ 0, respectively. Let X = Γ0 ∪Γ1. Then we have two contribut-
ing regions: D(Γ1,Γ0) with α(1, 0) = π/3 and D(Γ0,Γ1) with α(1, 2) = 5π/3. The
medial axes has three branches at zero: the half-line [0,+∞)×{0} and two curves
symmetric with respect to (−∞, 0] × {0}, living in the quadrants {x ≤ 0, y ≥ 0}
and {x ≤ 0, y ≥ 0}, respectively. Then

C0(MX) = ([0,+∞)× {0}) ∪ {y = −
√

3x, x ≤ 0} ∪ {y =
√

3x, x ≤ 0}.

In the non-definable setting the tangent cone C0(MX) when MX reaches the set
X at zero may be quite big.

Example 3.36. ([5] Example 3.28). Consider X = {0} ∪
⋃+∞
ν=1{(xν , 0)} ⊂ R2

where xν = 1/ν. Then

MX =
+∞⋃
ν=1

{
xν + xν+1

2

}
× R

and so 0 ∈MX , but C0(MX) = {(x, y) | x ≥ 0}, while C0(X) = [0,+∞)× {0}.
Example 3.37. Let X = {(x, x2) | x ∈ [0, 1)} ∪ {(x, x3) | x ∈ [0, 1)}. Then MX

near zero is clearly a curve lying between the two branches of X \ {0}. Since these
branches have a common tangent [0,+∞)×{0} at zero, this line is also the tangent
cone of MX at the origin.

From these results, we obtain a symmetry property of plane analytic curves.

Proposition 3.38 ([5] Corollary 3.30). Let X ⊂ R2 be a real-analytic curve germ
at zero and such that X \ {0} consists of only two branches and 0 ∈MX . Then in
a neighbourhood U of zero, the medial axis MX is a half-line that is a symmetry
axis of X ∩ U .

Proof. In view of the preceding results, there are two possibilities (12): either
0 ∈ Sng1X, or 0 ∈ Reg1X ∩ Sng2X with X superquadratic at the origin. In
the first case, by [22] Corollary 5.6 we know that C0(X) is a half-line `, that we
may assume to be {0} × [0,+∞), whereas in the second one it is a line L that we
assume to be the x-axis. Using the definition of the tangent cone, we may assume
in both cases that in a neighbourhood of the origin X is a graph over an interval
(−ε, ε) in the x-axis. Consider F = 0 to be an analytic equation of X in the same
neighbourhood.

Let h be the branch over (−ε, 0] and g the branch over [0, ε). They both are
C1 at zero and due to the Puiseux Theorem, for some integer p > 0, g(tp) has an
analytic extension through zero onto (−δ, δ) for some δ ∈ (0, ε). Then, we obtain

F (s, g(s)) ≡ 0, s ∈ [0,
p
√
δ).

Therefore, by the identity principle, this holds true for |s| < p
√
δ. But we may repeat

the same argument with h and so we conclude that g(−s) = h(s) for s ∈ (0, δ) (if

12Note that both may occur: y3 = x4 is C 1 regular at zero but superquadratic at this point,

cf. Example 2.13.
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δ was chosen < 1) which gives the symmetry sought after (since the germ of MX

at zero depends only on the germ of X at this point) and proves that MX is a
half-line near zero, as well. �

Remark 3.39. This result implies that for instance the superquadratic curve y =
sgn(x)|x|3/2 is not analytic at the origin.

4. Superquadratic points

Motivated by the situation in the plane, we may introduce a notion of su-
perquadraticity in higher dimensions. The first natural step would be the following.

Definition 4.1 ([5] Definition 3.9). If X is the graph of a non-negative continuous
function f at x0 ∈ X, then we call X superquadratic at this point, if the function
gf (r) := maxx∈S(x0,r) f(x) is superquadratic, i.e. it can be written near zero as
g(r) = arα + o(rα) with α < 2.

On the other hand, a geometric interpretation as in e Lemma 3.26 suggests that
it might be a good idea to consider a notion of order of vanishing.

Definition 4.2 ([5] Definition 3.10). We define the order at zero of a continuous
definable function germ f : (Rn, 0)→ (R, 0) as

ord0f = sup{η > 0 | |f(x)| ≤ const.||x||η, ||x|| � 1},
if f 6≡ 0, and ord0f := +∞ otherwise.

Remark 4.3. Since we are in a polynomially bounded o-minimal structure, the
 Lojasiewicz inequality ensures the well-posedness of the definition. It is a mere
exercise to prove that in one variable g(t) = atα + o(tα) is written precisely with
α = ord0g and |g(t)| ≤ const.|t|α.

By the methods used by Bochnak and Risler in [8] Theorem 1, it is easy to show
that the least upper bound in the definition is in fact attained.

The inequality defining the order is satisfied with any exponent α ≤ ord0f and
it makes sense also for a vector-valued f ; then it is written as ||f(x)|| ≤ const.||x||η.
In the latter case, ord0f coincides with the minimal order of the components fi of
f = (f1, . . . , fk) (13).

Remark 4.4. For a given function germ f : (Rn, 0)→ (R, 0) the definition of differ-
entiability at zero gives readily the following two implications:

f is differentiable at 0 and ∇f(0) = 0⇒ ord0f ≥ 1,

and
ord0f ≥ 2⇒ f is differentiable at 0 and ∇f(0) = 0.

The example of f(x) = |x|3/2 shows that there may be f ′(0) = 0 and ord0f ∈ (1, 2).

13Also in this case the upper bound is attained. If |fi(x)| ≤ ci||x||θi for ||x|| � 1 where ci > 0

and θi = ord0fi, then max |fi(x)| ≤ (max ci)||x||min θi whence ord0f ≥ min θi. On the other

hand, for the Euclidean norm we have ||f(x)|| ≤ |fi(x)| for any i, whence ord0f ≤ θi.
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From a practical point of view it is natural to consider also the following notion.

Definition 4.5 ([5] Definition 3.12). We call sectional order at zero for a definable
function f : (Rn, 0)→ (R, 0), f 6≡ 0, the number

s0(f) = inf{α > 0 | f(tv) = atα + o(tα), 0 ≤ t� 1, v ∈ Sn−1 : f |R+v 6≡ 0}.

The relations between these three notions are given in Proposition 3.13 from [5]:

Proposition 4.6. Consider a non-constant, continuous, definable germ
f : (Rn, 0)→ (R, 0). Then for the following three conditions:

(1) s0(f) < 2;
(2) ord0f < 2;
(3) |f | is superquadratic at 0;

we have (1)⇒ (2)⇔ (3).

Proof. The implications (1) ⇒ (2) ⇒ (3) are immediate. Indeed, if (2) does not
hold, then in a neighbourhood of zero, |f(x)| ≤ C||x||2 for some C > 0. Thus for
f(tv) we have for all t ≥ 0 small enough, |atα + o(tα)| ≤ Ct2 which implies α ≥ 2
(divide both sides by tα and take t → 0+) and so s0(f) ≥ 2. If (3) does not hold,
then |f(x)| ≤ g|f |(||x||) = a||x||α + o(||x||α) for some α ≥ 2. But as ord0g|f | = α,
we obtain |f(x)| ≤ const.||x||α and so ord0f ≥ 2.

Furthermore, to see that (3) ⇒ (2) suppose that ord0f ≥ 2 and consider the
definable set A = {(r, x) ∈ [0, ε] × Rn | ||x|| = r, g|f |(||x||) = |f(x)|}. Then 0
is an accumulation point of A and so there is a continuous definable selection
r 7→ (r, γ(r)) ∈ A.

Then g|f |(r) = |f(γ(r))| and it follows from the definition of the order of van-
ishing (note that for small r, the values γ(r) are near zero) that ord0g|f | ≥ ord0f
and so ord0g|f | ≥ 2 as required. �

Example 4.7 ([5] Example 3.15). The implication (2) ⇒ (1) does not hold in
general. To see this consider the semi-algebraic function

f(x, y) =


0, x ≤ 0 or y ≤ 0,
y
x , 0 < y ≤ x and x2 + y2 > y2

x2 ,

(x2 + y2)xy , 0 < y ≤ x and x2 + y2 ≤ y2

x2 ,

f(y, x), 0 < x < y.

It is easy to check that f is continuous. Clearly, f |R+v 6≡ 0 iff v ∈ S2 ∩ {x, y >
0} =: S in which case f(tv) = t2(v1/v2) for 0 ≤ t ≤ v2/v1 (for greater t’s we get
f(tv) = v2/v1), where v = (v1, v2). Hence s0(f) = 2.

But if there were ord0f ≥ 2, then we would have in a neighbourhood of zero,
f(x, y) ≤ C||(x, y)||2 for some constant C > 0. In particular, this would hold for
(x, y) = tv for any v ∈ S and all t ∈ (0, ε) with an appropriate ε > 0. However, this
would lead to v1/v2 ≤ C which yields a contradiction when we make (v1, v2) ∈ S
tend to (1, 0).
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Remark 4.8. The equivalence (2)⇔ (3) in the last Proposition allows us to extend
the Definition 4.1 to any hypersurface being the graph of a definable function.

Definition 4.9. A set X ⊂ Rn+1 is said to be superquadratic at a point a ∈ X,
if in some coordinates it can be written in a neighbourhood of a as the graph of a
superquadratic function of n variables.

The reason why we confine ourselves — at least for the moment — to hyper-
surfaces is that the superquadraticity introduced above has a further geometric
characterisation similar to Lemma 3.26. First, let us introduce the (open) bi-ball
(or bidisc when we are in the plane) in the direction v ∈ Sn−1 as the open set

bv(a, r) := B(a− rv, r) ∪ B(a+ rv, r)

where r > 0.

Proposition 4.10 ([5] Proposition 3.18). Let X ⊂ Rn be a closed definable set
such that the tangent cone C0(X) is a linear hyperplane and X ∩ U is a graph
over it, for some neighbourhood U of 0 ∈ X. Then the following assertions are
equivalent:

(1) X is superquadratic at the origin.
(2) For any r > 0, bν(0)(0, r) ∩X 6= ∅ where ν(0) is a unit normal to X at 0.

Proof. Choose coordinates in Rn = Rn−1x ×Rt so that C0(X) = {t = 0} and write
X = Γf in a neighbourhood of zero. Fix ν(0) = (0, 1).

We start with (1) ⇒ (2). Suppose that for some r > 0, bν(0)(0, r) ∩ X =

∅. This implies that for all x ∈ Rn−1 sufficiently close to zero, we have
(x, |f(x)|) /∈ B(rν(0), r). On the other hand, observe that for 0 < ||x|| < r
we have (x, (1/r)||x||2) ∈ B(rν(0), r). Summing up, in a neighbourhood of zero,
|f(x)| ≤ (1/r)||x||2 which means by Proposition 4.6 that X is not superquadratic.

In order to prove (2)⇒ (1) assume thatX is not superquadratic at zero. Then by
Proposition 4.6 we conclude that ord0f ≥ 2, i.e. |f(x)| ≤ c||x||2 for ||x|| < ε where
c, ε > 0 are constants. Observe that for any 0 < r < 1/(2c), the graph of t = c||x||2
does not enter the ball B((0, r), r). This readily implies that X ∩ bν(0)(0, r) = ∅,
provided we have taken r < min{1/(2c), ε}. �

Now, thanks to this result and in view of Theorem 3.13 (we need only to use the
directional reaching radius in this case) we easily obtain the following Proposition:

Proposition 4.11. If X satisifes the assumptions of the previous Proposition, then

X is superquadratic at the origin ⇒ 0 ∈MX .

The converse to the implication above does not hold.

Example 4.12 ([5] Remark 4.18). Consider X = {z = y|x|3/2} which is the graph
of a C 1 function z = f(x, y) in R3. We easily check that ord0f ≥ 2 so that X is
not superquadratic at the origin, but as it is such along all the other points of the
y-axis, we have 0 ∈MX by the preceding Proposition.
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Remark 4.13. Clearly, in view of the last Proposition, if a point a ∈ X belongs to
the closure of superquadratic points in X, then it belongs to MX .

The converse, unfortunately, is not true and the question of the relation between
superquadraticity of C 1-smooth hypersurfaces in at least three dimensions and the
reaching of singularities by the medial axis is settled by the following clever Example
of A. Bia lożyt [3]:

Example 4.14 (A. Bia lożyt). Let X be the graph of the function

f(x, y) =


y2

x , |y| < x3, x > 0;

2x2|y| − x5, |y| ≥ x3, x > 0;

0, x ≤ 0.

Then we can check that f is of class C 1, it is not superquadratic at any point and
yet 0 ∈MX ∩X as X contains a suitable part of a rotated cone.

More results about superquadraticity, its generalization for sets of codimension
greater than 1 and how can that be exploited in the context of Problem 2 will be
published in [3] where the following theorem is shown:

Theorem 4.15 (A. Bia lożyt). If X ⊂ Rkx×Rny is definable with 0 ∈ Reg1X∩Sng2X

and C0(X) = Rk×{0}n, then 0 ∈MX provided X is superquadratic at 0 in the sense
that gX(ε) = aεα + o(εα) with a 6= 0 and α < 2 where gX(ε) := max{||y|| : (x, y) ∈
X, ||x|| = ε}. Moreover, if dim0X = 1, then the converse holds: 0 ∈ MX implies
X is superquadratic at the origin.

Remark 4.16. Although the result above, Theorem 3.21 and Remark 4.13 give an
answer to Problem 2 for a quite large family of singularities, still much work has
to be done in order to definitely settle the question. It seems that Theorem 3.13
should lead to some advances.

5. On the multifunction of closest points

Another question related to the medial axis in the setting of singularity theory
is what can be said about the the metric properties of the multifunction m(x). It
appears that m(x) satisfies some  Lojasiewicz-type inequalities ([5] Proposition 2.16
— see below; here our recent results [20] prove useful). Note that the distance of X
along MX encodes some metric information about the singularities. This, together
with the study of the link of MX , lk(MX , a) = MX ∩∂B(a, ε) (by the Local Conical
Structure Theorem it does not depend on ε > 0 sufficiently small), provides some
information about the tangent cone of MX at a ∈MX ∩X.

Let us begin with a general semicontinuity result that holds regardless of the
definability of X.

Proposition 5.1 ([5] Proposition 2.17). The multifunction m(x) is upper semi-
continuous: lim supD3x→x0

m(x) = m(x0) at any point x0 ∈ Rn and for
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any dense subset D of Rn. Along MX we usually only have an inclusion:
lim supMX3x→x0

m(x) ⊂ m(x0).

Proof. See [5] and [16] for the second part of the statement. �

Another useful fact is the following observation that also holds in general.

Proposition 5.2. Let U ⊂ Rn be open and nonempty. Assume that there is a
continuous selection µ : U → X for m(x), i.e. for any x ∈ U , µ(x) ∈ m(x). Then
µ = m|U , i.e. m(x) is univalent on U .

Proof. [5] Proposition 2.19. �

Following [20] we will recall the different possible notions of a fibre of a multi-
function F : Rm →P(Rn). For a ∈ domF , we consider

• F−1(F (a)) = {x ∈ Rm | F (x) = F (a)} the (strong) pre-image;
• F ∗(F (a)) = {x ∈ domF | F (x) ⊂ F (a)} the lower pre-image;
• F∗(F (a)) = {x ∈ Rm | F (x) ⊃ F (a)} the upper pre-image;
• F#(F (a)) = {x ∈ Rm | F (x) ∩ F (a) 6= ∅} the weak pre-image.

Finally, we may consider a point pre-image defined for a point y ∈ F (a) as the
section (ΓF )y := {x ∈ Rm | y ∈ F (x)}. Obviously,

F#(F (a)) =
⋃

y∈F (a)

(ΓF )y.

Apart from m(x) we introduced in [5] two more multifunctions of interest,
namely, the normal set multifunction

N(a) = {x ∈ Rn | a ∈ m(x)} = {x ∈ Rn | ||x− a|| = d(x,X)}, a ∈ X

and the univalued normal set multifunction

N ′(a) = {x ∈ Rn | m(x) = {a}}, a ∈ X.

Proposition 5.3 ([5] Propositions 2.2, 2.6). In the introduced setting

(1) a ∈ N ′(a) ⊂ N(a);
(2) N(a) is closed, convex and definable (respectively, subanalytic), actually

X 3 a 7→ N(a) is a definable (resp. subanalytic) multifunction, when X is
definable (resp. subanalytic);

(3) N(a) ⊂ Na(X) + a;
(4) x ∈ N ′(a) ⇒ [a, x] ⊂ N ′(a)

and x ∈ N(a) \ {a} ⇒ [a, x) ⊂ N ′(a);
(5) For any non-isolated a ∈ X, lim supX3b→aN(b) ⊂ N(a);
(6) N ′(a) is convex and definable/subanalytic (as a set and as a multifunction

of a ∈ X) when X is definable/subanalytic;

(7) N(a) = N ′(a).
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Clearly, we have

MX =
⋃
a∈X

N(a) \N ′(a) =
⋃
a∈X

N(a) \
⋃
a∈X

N ′(a) = Rn \
⋃
a∈X

N ′(a)

cf. [5] Theorem 27.

The different types of pre-images of m(x), N(a) or N ′(a) can be explicitly com-
puted, see [5] Subsection 2.2 and the Proposition below.

The Kuratowski convergence of closed subsets of Rn is metrizable, and thus by
the results of [20] Section 6 we have the following  Lojasiewicz-type inequalities in
the definable setting:

Proposition 5.4 ([5] Proposition 2.16). Let F denote either the closed multifunc-
tion N(x), x ∈ X, or the compact one m(x), x ∈ Rn. Then for any point x0 in
the domain of F , there are constants C, ` > 0 such that in a neighbourhood of x0,

distHK(F (x), F (x0)) ≥ Cd(x, F •(F (x0)))`

where distHK denotes the Hausdorff-Kuratowski distance (14) and F •(F (x0))
stands for any of the pre-images introduced above. In particular,

(1) distK(N(x), N(x0)) ≥ C||x− x0||` for all x ∈ X near x0 ∈ X;
(2) distH(m(x),m(x0)) ≥ Cd(x,N ′(x0))` for all x ∈ Rn near x0 ∈ X;
(3) distH(m(x),m(x0)) ≥ Cd(x,N(x0))` for all x ∈ Rn near x0 ∈ X;
(4) distH(m(x),m(x0)) ≥ Cd(x,

⋃
y∈m(x0)

N(y))` for all x ∈ Rn near x0 ∈ Rn;

(5) distH(m(x),m(x0)) ≥ Cd(x,MX)` for all x ∈ Rn near x0 ∈MX .

Fix a definable or subanalytic closed, nonempty proper subset X of Rn and put

MX(k) = {x ∈MX | dimm(x) = k}.
These sets are obviously definable or subanalytic, respectively.

Theorem 5.5 ([16] Theorem 4.10, Theorem 4.13). In the setting considered,

(1) If k = n− 1 (which is the maximal dimension possible), then dimMX(n−
1) = 0, i.e. MX(n− 1) is isolated;

(2) In general k+ dimMX(k) ≤ n− 1 and the inequality may be strict already
for k = 1, n = 3.

Remark 5.6. Point (1) in the theorem above was obtained earlier by Albano and
Cannarsa in [2] in a slightly different form and for a general closed set X using
the Hausdorff dimension (it coincides with the analytic dimension for a subanalytic
set). Point (2), on the contrary, proved in [16] using methods typically from tame
geometry, is still waiting for a general counterpart.

Example 5.7. ([16] Example 4.15). Consider X = {x2 + y2 + z2 = 1, yz = 0} in
R3. Then m(0) = X and so 0 ∈MX(1) and clearly it is the only point in this set.
Therefore 1 + dimMX(1) < 3− 1 = 2.

14For compact sets it is the usual Hausdorff distance, for closed ones, it is the metric giving

the Kuratowski convergence.
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Using the last Theorem, A. Bia lożyt shows in [3]:

Theorem 5.8 (A.Bia lożyt). In the definable setting, for any a ∈ MX , there is a
neighbourhood U of a such that

dimaMX = n− 1−min{dimm(b) | b ∈MX ∩ U}.

We have to move around a due to the Bia lożyt wristwatch example:

Example 5.9 (A. Bia lożyt). Let X be the boundary of B2(0, 3)∪ ((−1, 1)×R) in
R2. Then for a = 0, we have dimm(a) = 1 and dimaMX = 1, as MX = {0} × R.
Only taking any other point b ∈MX \ {a} gives the equality from the Theorem.

Further studies on the subject are presented in [3].

6. Closing remarks

Several results concerning the topological structure of the medial axis are known.
For instance in [21] Theorem 1.B it is shown that for a domain D ⊂ Rn that does
not contain any half-space (cf. Remark 2.2) the set MX ∩ D is connected. This
intuitive result has an astonishingly intricate proof (see [17] for a self-contained one;
see also the inspiring paper [23]). Moreover, Fremlin proves also an interesting fact
[21] Proposition 1.F which hints at the fact that the medial axis should not have
‘bad’ singularities itself, i.e. no cusps are allowed (this is partly confirmed by the
results of [4]). Also Yomdin in his very nice paper [28] presented a general structural
result concerning the medial axis, however the proof is fallacious as it is based on
a non-existing (and most probably false) version of a Lipschitz Implicit Function
Theorem (LIFT). We discuss this problem in [19] obtaining a correct LIFT which,
nonetheless, allows us to reprove Yomdin’s stability result only in a generic case in
R3.
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(2009) 109-125;
[2] P. Albano, P. Cannarsa, Structural properties of singularities of semiconcave functions,

Annali Scuola Norm. Sup. Pisa Sci. Fis. Mat. 28 (1999), 719-740;
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