
Bulletin of the Section of Logic
Volume 48/2 (2019), pp. 99–116

http://dx.doi.org/10.18778/0138-0680.48.2.02

Dorota Leszczyńska-Jasion,
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Abstract

The goal of this paper is to propose correspondence analysis as a technique for

generating the so-called erotetic (i.e. pertaining to the logic of questions) calculi

which constitute the method of Socratic proofs by Andrzej Wísniewski. As we

explain in the paper, in order to successfully design an erotetic calculus one needs

invertible sequent-calculus-style rules. For this reason, the proposed correspon-

dence analysis resulting in invertible rules can constitute a new foundation for

the method of Socratic proofs.

Correspondence analysis is Kooi and Tamminga’s technique for designing

proof systems. In this paper it is used to consider sequent calculi with non-

branching (the only exception being the rule of cut), invertible rules for the

negation fragment of classical propositional logic and its extensions by binary

Boolean functions.
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1. Introduction

1.1. The method of Socratic proofs

The method of Socratic proofs is a proof method grounded in the logic
of questions called inferential erotetic logic (IEL, for short).1 Developed
mainly in the nineties by Andrzej Wísniewski2, the logic focuses its atten-
tion on the analysis of inferential relations between questions, distinguishes
some classes of inferences with questions involved (henceforth called erotetic
inferences), and, finally, develops criteria of validity of such erotetic infer-
ences.

Undertaking the task to formally model erotetic inferences has led IEL
to distinguishing some proof methods, especially the method of Socratic
proofs.3 The core of the method is the idea of answering questions by
questioning, that is, by transforming the structure of the initially posed
question. When the questions concern, for example, validity in a logic
L, then the method of Socratic proofs constitutes a proof method for L.
However, the general goal is more ambitious: it is to capture and provide
a formal model for a kind of cognitive phenomenon, when an agent tends
to solve a problem by consecutive questions.

The fact that we do perform such reasoning is incontestable. The
erotetic calculi designed so far may be claimed to successfully model erotetic
reasoning such as:

• Is A a tautology? Well, is ¬A satisfiable?

But they also shed the light of explanation on such more general examples
as:

• From [11, p. 47]: Let me rephrase my question; what I am really
asking is . . .

whereas the very notion of erotetic implication may be adjusted to provide
an account of the following:

1The word erotetic comes from the Greek ερωτηµα which means question.
2Tadeusz Kubiński, one of the pioneers in the logic of questions, has already focused

on some relations between questions [17], [16]. For IEL, see [38] or [35] for a concise
introduction. See also [36] for the most recent account of IEL.

3Introduced in [37] for the case of classical propositional logic it has been later ad-
justed to the first-order case (see [40]) as well as various non-classical cases (int.al. modal
[19, 21], and paraconsistent [41, 6]). The most recent developments of the method are
discussed in the monographs [5, 20].
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Q1 : Is
√

2
√
2

a rational number?

A1 : (Gelfond-Schneider Theorem) If x and y are algebraic numbers, x 6=
0, x 6= 1, and y is irrational, then xy is a transcendental number.

A2 : Every (real) transcendental number is irrational.

Q2 : Is
√

2 an algebraic number?

There are two conditions defining the notion of erotetic implication.
First, if question Q1 erotetically implies question Q2 (on the basis of X),
then soundness of the first question, Q1, warrants soundness of
the second question, Q2. This means that if in a given situation it is
reasonable to ask Q1, then it is also reasonable to ask Q2. (More precisely,
soundness of a question under a valuation amounts to the existence of an
answer to the question which is true under the valuation. We postpone the
technical details to Section 3.) For example, if a question:

• Is Sabrina in the bedroom or in the living room?

is sound in a given situation, and if one can hear Sabrina’s voice, then the
following question is also sound:

• Does her voice come from the bedroom or from the living room?

The second condition defining the notion of erotetic implication
amounts to the fact that Q2 is asked for a purpose: every answer to
Q2 must bring one closer to answering Q1. It is the case in our ex-
ample with Sabrina: every answer to the second question (providing the
information that Sabrina’s voice comes from the bedroom or from the living
room) entails the answer to the first question.

The requirement “every answer” is a very strong one, and for this
reason it is often weakened: when weak erotetic implication is considered,
it is enough that at least one answer to the second question is useful in
resolving the first one. For example, the affirmative answer to the above
question Q2: “Yes,

√
2 is an algebraic number”,4 makes theorem A1 ap-

plicable, and so, together with A2, yields the negative answer to Q1: the
number is not rational. However, in this case the requirement every an-
swer is not satisfied, as the negative answer to Q2 does not entail any
solution to the problem expressed by Q1. Yet, with the weaker variants of
erotetic implication IEL can easily deal with that.

4It is the true answer, as the polynomial ‘x2 − 2’ witnesses.
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What properties should a formal model possess in order to capture at
least some of the cognitive phenomena described above? Well, the funda-
mental properties of the model designed in the framework of IEL, that is,
of the method of Socratic proofs, are the following:

1. Syntactic, quasi-reductionist approach to questions (see [39] or [36,
Chapter 2] for this and other approaches). It means, int.al., that
questions are distinguished as separate expressions in the language,
expressions differing with respect to statements; and that a question
is identified (understood) by knowing what counts as an answer. (Cf.
the so-called Hamblin’s postulates, [10].)

2. The rules transforming questions, i.e. erotetic rules, are built on a
proof-theoretical skeleton of sequent calculus. As we shall see, ques-
tions transform certain units composed of sequents.

3. The crucial property: the construction of erotetic rules warrants that
they retain the relation of erotetic implication between the question-
premise and the question-conclusion.

For the last property to hold, the rules must be semantically invertible, that
is, semantic correctness of the conclusion of a rule must warrant semantic
correctness of its premise. This property is used in proving soundness of
the method. However, regardless of their invertibility, the order of the
application of erotetic rules is settled.

Each rule of an erotetic calculus transforms a question, but it focuses
on a single constituent of a question, which is a sequent. When viewed as a
rule acting on a sequent, an erotetic rule is a sequent-calculus rule inverted,
so the derivation process as defined by the rules reflects the backward proof-
search in sequent calculi—from the final conclusion in the root to the leaves.

From a purely proof-theoretical point of view, erotetic rules need not
be sound in the sense of preserving semantic correctness top-down. Let us
observe that the situation is similar in the case of sequent calculi, where,
in general, the rules need not be semantically invertible in order to obtain
the adequateness result. However, from the erotetic point of view, both
soundness (top-down) and invertibility (bottom-up) of erotetic rules are
necessary to obtain erotetic correctness of the rules. Hence comes the
idea to examine the potential of correspondence analysis in the version
introduced in the paper [22].



The Method of Socratic Proofs Meets Correspondence Analysis 103

Both directions of applications of the rules open up more opportunities
to search for proofs; however, it is probably more important that the two
directions give more possibilities in modelling erotetic reasoning. Moreover,
invertibility of the rules is essentially used in the completeness proof of the
calculi presented in [22].

1.2. The notion of correspondence analysis

Correspondence analysis is Kooi and Tamminga’s [15] proof-theoretic ap-
proach which, originally, was developed in order to axiomatize via natural
deduction systems all the truth-functional unary and binary extensions of
three-valued logic LP (Logic of Paradox) [1, 31]. Later, Tamminga [33],
using correspondence analysis, presented natural deduction systems for all
the unary and binary extensions of Kleene’s strong three-valued logic K3

[14, 13].
Further, Petrukhin [23] formulated via correspondence analysis natural

deduction systems for all the unary and binary extensions of Belnap-Dunn’s
four-valued logic FDE (First Degree Entailment) [2, 3, 7] supplied with
Boolean negation. Petrukhin and Shangin have recently applied corre-
spondence analysis and a proof-searching procedure for FDE itself [29].
Petrukhin and Shangin [26] developed a proof-searching algorithm for nat-
ural deduction systems for all the binary extensions of LP. In [27], the
authors extended their proof searching technique to the case of all the bi-
nary extensions of K3. Petrukhin [24] presented via correspondence anal-
ysis natural deduction systems for all the unary and binary extensions of
Kubyshkina and Zaitsev’s [18] four-valued logic LRA (Logic of Rational
Agent). Besides, he generalized Kooi and Tamminga’s ([15], [33]) results
for a wider class of three-valued logics [25]. Petrukhin and Shangin [30]
used correspondence analysis to syntactically characterize Tomova’s natu-
ral logics [34, 12]. Petrukhin and Shangin [28] presented correspondence
analysis for PWK (Paraconsistent Weak Kleene logic) [9, 4] which is
Kleene’s weak logic Kw

3 [14, 13] with two designated values.
Finally, in [22], the authors showed how to use the framework to obtain

sequent calculi with the following properties: all the rules are semantically
invertible (understood as before, see also explanations below) and actually
inverted, that is, used in both directions; the rules for connectives (the
logical rules) are linear, the only branching rule is the rule of the cut, and
the rule is not eliminable.
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2. Sequent calculi obtained via correspondence
analysis

We start with a summary of [22]. Some details, that may be found there,
are skipped.

Notation. We use P for a countably infinite set {p, q, . . .} of propo-
sitional variables and B = {◦⊥, ∧, 6→, ◦1, 6←, ◦2, Y, ∨, ↓, ≡, ◦¬2, ←, ◦¬1,
→, ↑, ◦>} for a set of binary operators, where:

A B ◦⊥ ∧ 6→ ◦1 6← ◦2 Y ∨
1 1 0 1 0 1 0 1 0 1
1 0 0 0 1 1 0 0 1 1
0 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0

A B ↓ ≡ ◦¬2 ← ◦¬1 → ↑ ◦>
1 1 0 1 0 1 0 1 0 1
1 0 0 0 1 1 0 0 1 1
0 1 0 0 0 0 1 1 1 1
0 0 1 1 1 1 1 1 1 1

Let L ◦¬ be propositional language with the alphabet 〈P,B,¬, (, )〉; the set
F ◦¬ of all L ◦¬ ’s formulas is defined as usually.

Sequents are introduced as expressions of language L ◦¬⇒ which is
built upon L ◦¬ by adding ‘⇒’ (the sequent arrow) and the comma ‘,’ to the
alphabet. The only category of a well-formed expression of L ◦¬⇒ is that of
a sequent of L ◦¬⇒, which is an expression of the form:

Γ⇒ ∆ (2.1)

where Γ and ∆ are finite, possibly empty multisets of formulas of L ◦¬ . We
use comma in the antecedent and in the succedent both as a separator of
the elements of a multiset and as the sum of multisets (the context makes
it clear).

The sequent calculi introduced in [22] are built upon the rules (Ax),
(⇒ ¬), (¬ ⇒), for the negation fragment of CPL, together with the struc-
tural rule (cut) which is the only branching rule of the system.
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(Ax) A,Γ⇒ ∆, A

Γ⇒ ∆, A A,Γ⇒ ∆

Γ⇒ ∆
(cut)

A,Γ⇒ ∆

Γ⇒ ∆,¬A (⇒ ¬)
Γ⇒ ∆, A

¬A,Γ⇒ ∆
(¬ ⇒)

The following rules, presented in [22], have been found by correspon-
dence analysis:

R
(01)
◦

A,Γ⇒ ∆, B

A ◦B,Γ⇒ ∆, B
R

(02)
◦

B,Γ⇒ ∆,¬(A ◦B)

A ◦B,Γ⇒ ∆, A

R
(03)
◦

B,Γ⇒ ∆, A

A ◦B,Γ⇒ ∆, A
R

(04)
◦

A,Γ⇒ ∆, B

¬B,Γ⇒ ∆, A ◦B

R
(05)
◦

B,Γ⇒ ∆, A ◦B
¬A,Γ⇒ ∆, A ◦B

R
(06)
◦

A ◦B,Γ⇒ ∆, A

¬A,Γ⇒ ∆, B

R
(07)
◦

B,Γ⇒ ∆, A ◦B
B,Γ⇒ ∆, A

R
(08)
◦

A ◦B,Γ⇒ ∆, B

A ◦B,Γ⇒ ∆, A

R
(09)
◦

B,Γ⇒ ∆,¬(A ◦B)

B,Γ⇒ ∆, A
R

(10)
◦

¬B,Γ⇒ ∆, A ◦B
¬A,Γ⇒ ∆, A ◦B

R
(11)
◦

A,Γ⇒ ∆, A ◦B
A,Γ⇒ ∆, B

R
(12)
◦

A,Γ⇒ ∆,¬(A ◦B)

A,Γ⇒ ∆, B

A
(I)
◦↑ A,B,Γ⇒ ∆, A ◦B A

(I)
◦↓ A ◦B,∆⇒ Γ, A,B

A
(II)
◦↑ ¬A,¬B,Γ⇒ ∆, A ◦B A

(II)
◦↓ A ◦B,∆⇒ Γ,¬A,¬B

A
(III)
◦↑ A,¬B,Γ⇒ ∆, A ◦B A

(III)
◦↓ A ◦B,∆⇒ Γ, A,¬B

A
(IV)
◦↑ ¬A,B,Γ⇒ ∆, A ◦B A

(IV)
◦↓ A ◦B,∆⇒ Γ,¬A,B

R
(I)
◦

A,B,Γ⇒ ∆, A ◦B
A ◦B,Γ,⇒ ∆, A,B

R
(II)
◦

¬A,¬B,Γ⇒ ∆, A ◦B
A ◦B,Γ⇒ ∆,¬A,¬B

R
(III)
◦

A,¬B,Γ⇒ ∆, A ◦B
A ◦B,Γ⇒ ∆, A,¬B

R
(IV)
◦

¬A,B,Γ⇒ ∆, A ◦B
A ◦B,Γ⇒ ∆,¬A,B

The tables 1 and 2 (below) summarize the construction of our sequent
calculi for various fragments of CPL expressed in language 〈P, {◦},¬, (, )〉.
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To increase readability, under a connective ◦ we indicate in the table the
numbers of the ◦-specific rules instead of their names. In the case of the
primary connectives5, we define two types of sequent calculi: one can add
an axiom or a rule with the respective Roman numeral.

Table 1. Rules for non-primary connectives

A ◦⊥ B A ◦1 B A ◦2 B A YB
(02), (08) (01), (07) (03), (11) (01), (09)

(02), (10)
(03), (12)

A ≡ B A ◦¬2 B A ◦¬1 B A ◦> B
(04), (07) (06), (12) (04), (09) (05), (10)
(05), (08)
(06), (11)

Table 2. Rules for primary connectives

(I) and (08) A ◦B = A ∧B
(I) and (10) A ◦B = A ∨B

(II) and (08) A ◦B = A ↓ B
(II) and (10) A ◦B = A ↑ B

(III) and (02) A ◦B = A 6→ B
(III) and (05) A ◦B = A← B
(IV) and (02) A ◦B = A 6← B
(IV) and (05) A ◦B = A→ B

Semantics for L ◦¬⇒. As in [22], we will use the symbol ‘|=’ for en-
tailment in both languages: L ◦¬⇒ and L ◦¬ . If v is a valuation, then we say
that sequent (2.1) is true under v iff if every element of Γ is true under v,
then some element of ∆ is true under v as well. For example, every sequent
of the form (Ax): A,Γ⇒ ∆, A is true under every valuation.

5A binary connective ◦ is called primary, if {¬, ◦} is functionally complete (see [8,
p. 13]). In [22] we show the difference between the primary and the non-primary
connectives via correspondence analysis.
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Finally, by:

Γ⇒ ∆ |= Θ⇒ Λ

we mean that for every valuation v, if sequent Γ⇒ ∆ is true under v, then
sequent Θ⇒ Λ is true under v.

The notions of a derivation and a proof are defined in a standard man-
ner. By `C Γ ⇒ ∆ we mean that sequent Γ ⇒ ∆ has a proof in sequent
calculus C . In [22] we proved that:

Theorem 1 (Soundness and Completeness of C ). For each formula A ∈
L ◦¬ , � A iff `C ⇒ A.

3. Erotetic calculi

3.1. Language

Erotetic calculi are worded in languages containing questions; the declara-
tive expressions are, first of all, sequents.

We enrich language L ◦¬⇒ with the question forming operator: ‘?’, the
semicolon ‘;’, the signs for negation: ng and conjunction: & (in order to
build complex declarative formulas from sequents). The resulting language
will be called QL . Atomic declarative formulas of QL are, simply, se-
quents of L ◦¬⇒. The remaining declarative formulas are built from the
atomic ones by the use of ng and/or & in a usual way. Questions of QL
are expressions of the form:

?(Γ1 ⇒ ∆1; . . . ; Γn ⇒ ∆n) (3.1)

where Γi ⇒ ∆i is a sequent, also called a constituent of question (3.1).
Erotetic calculus is a set of erotetic rules, that is, rules transforming

a question into a question. In the original account, each erotetic step is
supposed to simplify the logical structure of the analysed problem by elim-
ination of a logical constant (or better – due to the use of the unified
notation6 – by decomposition of complex α-, β- formulas into their compo-
nents). The use of correspondence analysis changes this picture since the
simplification is sometimes lost.

6As far, erotetic calculi have been usually formed with the use of the unified notation:
see [36], [5], [20]. However, in [20] the author considers also erotetic calculi where this
convention is dropped.
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3.2. Rules

One of the characteristic proof-theoretic features of the method of Socratic
proofs is that its rules are designed with the aim to capture erotetic impli-
cation. For this reason one needs invertibility on the level of declaratives of
QL (that is, sequents). Hence follows the choice of calculi C introduced
in [22] and recalled above as the basis of erotetic calculi EC .

Greek letters Φ and Ψ are used for finite, possibly empty sequences of
sequents. For simplicity, the semicolon is used both as a separator between
sequents and as a concatenation symbol between sequences of sequents.
EC is any set of rules containing erotetic version of cut, the rules for

negation:

ERcut
?(Φ ; Γ⇒ ∆ ; Ψ)

?(Φ ; Γ⇒ ∆, A ; A,Γ⇒ ∆ ; Ψ)

ER¬⇒
?(Φ ; ¬A,Γ⇒ ∆ ; Ψ)
?(Φ ; Γ⇒ ∆, A ; Ψ)

ER⇒¬
?(Φ ; Γ⇒ ∆,¬A ; Ψ)
?(Φ ; A,Γ⇒ ∆ ; Ψ)

and a combination of the ◦-specific rules. To save space, these may be
given by the following general scheme: if R = φ/ψ is a ◦-specific rule of C ,

that is, R is one of R
(01)
◦ -R

(12)
◦ or R

(I)
◦ -R

(IV)
◦ , then the following:

ER
?(Φ ; ψ ; Ψ)

?(Φ ; φ ; Ψ)

is a rule of EC . For example, if R
(01)
◦ belongs to C , then ER

(01)
◦ belongs to

EC , where:

ER
(01)
◦

?(Φ ; A ◦B,Γ⇒ ∆, B ; Ψ)

?(Φ ; A,Γ⇒ ∆, B ; Ψ)

As above, the double line indicates that the rules are not only semantically
invertible, but may be applied in both directions.

As we can see, calculi C form the proof-theoretical skeleton of EC .
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Definition 1 (Socratic proof in EC v.1). Let Γ ⇒ ∆ be a sequent of

language QL , and assume that C does not contain any of axioms: A
(I)
◦ ,

A
(II)
◦ , A

(III)
◦ , A

(IV)
◦ . A Socratic proof of Γ⇒ ∆ in EC is a finite sequence of

questions 〈Q1, . . . , Qn〉 such that:

1. Q1 = ?(Γ⇒ ∆),

2. for each i, n ≥ i > 1: Qi results from Qi−1 by a rule of EC , and

3. each constituent of Qn is of the form (Ax): A,Γ⇒ ∆, A.

If there exists a Socratic proof of a sequent in EC , then we say that the
sequent is provable in EC .

Further, in the case of EC , where C contains axioms:

Definition 2 (Socratic proof in EC v.2). Let Γ ⇒ ∆ be a sequent of

language QL , where C contains at least one of axioms: A
(I)
◦ , A

(II)
◦ , A

(III)
◦ ,

A
(IV)
◦ . A Socratic proof of Γ ⇒ ∆ in EC is a finite sequence of questions
〈Q1, . . . , Qn〉 such that:

1. Q1 = ?(Γ⇒ ∆),

2. for each i, n ≥ i > 1: Qi results from Qi−1 by a rule of EC , and

3. each constituent of Qn is of the form (Ax): A,Γ ⇒ ∆, A, or of the
form Ax

◦ , where Ax
◦ belongs to C .

If there exists a Socratic proof of a sequent in EC , then we say that the
sequent is provable in EC .

Here is an example of a Socratic proof in EC . To save some space,
A ≡ B stands for (p ≡ q) ≡ (q ≡ p); as soon as a sequent of the form (Ax∗)
is arrived at, it is represented as Axi.
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?(⇒ (p ≡ q) ≡ (q ≡ p))
ERcut

?(⇒ A ≡ B,¬(q ≡ p) ; ¬(q ≡ p)⇒ A ≡ B)
ER⇒¬

?(q ≡ p⇒ A ≡ B ; ¬(q ≡ p)⇒ A ≡ B)
ER(07) ↑

?(q ≡ p⇒ p ≡ q ; ¬(q ≡ p)⇒ A ≡ B)
ERcut

?(B ⇒ A,¬q ; ¬q, q ≡ p⇒ p ≡ q ; ¬(q ≡ p)⇒ A ≡ B)
ER⇒¬

?(q,B ⇒ A ; ¬q,B ⇒ A ; ¬(q ≡ p)⇒ A ≡ B)
ER(07) ↑

?(q,B ⇒ p ; ¬q,B ⇒ A ; ¬(q ≡ p)⇒ A ≡ B)
ER(08) ↑

?(q,B ⇒ q ; ¬q,B ⇒ A ; ¬(q ≡ p)⇒ A ≡ B)
ER(04) ↓

?(Ax1 ; p, q ≡ p⇒ q ; ¬(q ≡ p)⇒ A ≡ B)
ER(08) ↓

?(Ax1 ; p, q ≡ p⇒ p ; ¬(q ≡ p)⇒ A ≡ B)
ER(04) ↓

?(Ax1 ; Ax2 ; p ≡ q ⇒ q ≡ p)
ERcut

?(Ax1 ; Ax2 ; p ≡ q ⇒ q ≡ p,¬p ; ¬p, p ≡ q ⇒ q ≡ p)
ER⇒¬

?(Ax1 ; Ax2 ; p, p ≡ q ⇒ q ≡ p ; ¬p, p ≡ q ⇒ q ≡ p)
ER(07) ↑

?(Ax1 ; Ax2 ; p, p ≡ q ⇒ q ; ¬p, p ≡ q ⇒ q ≡ p)
ER(08) ↑

?(Ax1 ; Ax2 ; p, p ≡ q ⇒ p ; ¬p, p ≡ q ⇒ q ≡ p)
ER(04) ↓

?(Ax1 ; Ax2 ; Ax3 ; q, p ≡ q ⇒ p)
ER(08) ↓

?(Ax1 ; Ax2 ; Ax3 ; q, p ≡ q ⇒ q)

The main differences between C and EC are:

• direction: in C , as in all standard sequent calculi, the direction of
proving as defined by the rules and the direction of proof-search as
performed by a logician are opposite; in erotetic calculi it is the same
direction; obviously, here it holds only for the rules of cut and nega-
tion;

• sequent calculi define derivations as trees, in erotetic calculi deriva-
tions (called Socratic transformations) are defined as sequences of
questions, and questions are based on sequences of sequents; as one
can see, the external context Φ, Ψ is rewritten every time a rule is
applied, the result is such that all the semantic information is saved
in the last question; in the account of implementation it means that
no backtracking is needed.
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3.3. MiES

This section shows the importance of invertibility of rules in the erotetic
context.

Let us start with:

Definition 3. An erotetic rule ?(Φ)/?(Ψ) is:

• sound iff, for each valuation v, the truth of each constituent of Φ
under v warrants the truth of each constituent of Ψ under v,

• invertible iff, for each valuation v, the truth of each constituent of Ψ
under v warrants the truth of each constituent of Φ under v.

Corollary 1. If a rule Γ1 ⇒ ∆1/Γ2 ⇒ ∆2 of C is sound and invertible,
then an erotetic rule of the form:

?(Φ ; Γ2 ⇒ ∆2 ; Ψ)

?(Φ ; Γ1 ⇒ ∆1 ; Ψ)

is sound and invertible.

It is easy to see that ERcut is sound and invertible, hence:

Corollary 2. Each rule of EC is sound and invertible.

From the fact that axioms (Ax) are true under every valuation, and
from the fact that the rules of EC are invertible, it follows that:

Theorem 2 (soundness of EC ). Let Γ⇒ ∆ be a sequent of QL . If Γ⇒ ∆
has a Socratic proof in EC , then Γ⇒ ∆ is true under every valuation.

Similarly, completeness of EC follows from completeness of C .

Theorem 3 (completeness of EC ). If a sequent of QL is true under every
valuation, then it has a Socratic proof in EC .

Erotetic implication

As we explained in the first section, the construction of erotetic calculi
should warrant that the relation of erotetic implication, a central notion for
inferential erotetic logic, holds between a question-premise and a question-
conclusion. Now we define the notion.

Suppose that we deal with a language rich enough to distinguish be-
tween declaratives and questions. Let Q, Q∗ stand for questions and dQ,
dQ∗ for the respective sets of direct answers to these questions. We adjust
the definition from [36, p. 67]:
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Definition 4 (erotetic implication). A question Q implies a question Q∗

on the basis of a set of declaratives X (in symbols: Im(Q,X,Q∗)) iff:

1. for each A ∈ dQ, for each valuation v, if each formula in X ∪ {A} is
true under v, then some formula in dQ∗ is true under v,
and

2. for each B ∈ dQ∗, there exists a non-empty proper subset Y of dQ
such that, for each valuation v, if each formula in X ∪ {B} is true
under v, then some formula in Y is true under v.

Definition 4 is based upon the semantic notion of Boolean valuation; in
the case of QL we need something more general. The notions introduced
below are central tools of the so-called Minimal Erotetic Semantics (MiES),
a very general framework for a semantic analysis of both declaratives and
questions developed by Andrzej Wísniewski.7 The primary notion is that
of a partition of a language, which comes from [32].

Definition 5 (partition of language QL ). Let DQL be the set of sequents
of language QL . By a partition of DQL (or a partition of language QL )
we mean an ordered pair P = 〈TP,UP〉 such that TP ∪ UP = DQL and
TP ∩ UP = ∅.

In the case of complex languages with questions, the counterpart of the
semantic notion of Boolean valuation is that of an admissible partition.

Definition 6 (admissible partition of language QL ). Let P = 〈TP,UP〉
be a partition of language QL . We say that P is admissible for QL iff
the following conditions hold:

1. ‘Γ⇒ ∆’ ∈ TP iff both ‘Γ⇒ ∆, A’ ∈ TP and ‘A,Γ⇒ ∆’ ∈ TP, for
each formula A;

2. ‘ Γ,¬A,∆⇒ Θ,Λ’ ∈ TP iff ‘ Γ,∆⇒ Θ, A,Λ’ ∈ TP;

3. ‘Γ,∆⇒ Θ,¬A,Λ’ ∈ TP iff ‘Γ, A,∆⇒ Θ,Λ’ ∈ TP;

4. ‘Γ, A,∆⇒ Θ, B,Λ’ ∈ TP iff ‘Γ,¬B,∆⇒ Θ, A ≡ B,Λ’ ∈ TP;

5. ‘Γ, B,∆⇒ Θ, A ≡ B,Λ’ ∈ TP iff ‘Γ, B,∆⇒ Θ, A,Λ’ ∈ TP.

To save some space, in the above definition we have specified only

the machinery for ‘◦’ = ‘≡’ corresponding to rules R
(04)
◦ and R

(07)
◦ . It

is analogous in the remaining cases. Let us also observe that the above
definition does not take into account the axioms that may be present in C .

7For the details see [36] or [39].
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The reason for their absence is that on the level of language QL we are
interested in entailment only, not in validity.

Definition 7 (entailment in QL ). Suppose that X is a set of sequents of
language QL and t is a single sequent. We say that set X entails formula
t in language QL , symbolically:

X �QL t

iff there is no admissible partition P for language QL such that X ⊆ TP

and t /∈ TP.

As before, dQ stands for the set of direct answers to Q. In the case of
questions of QL of the form (3.1) (see page 107), the set is composed of
two declarative formulas of the language: the affirmative answer (3.2) and
the negative answer (3.3).

(Γ1 ⇒ ∆1) & (. . .& ((Γn−1 ⇒ ∆n−1) & (Γn ⇒ ∆n) . . .) (3.2)

ng((Γ1 ⇒ ∆1) & (. . .& ((Γn−1 ⇒ ∆n−1) & (Γn ⇒ ∆n) . . .)) (3.3)

Definition 8 (erotetic implication in QL ). Suppose that Q and Q∗ are
questions of QL and that X is a set of sequents. We say that question Q
implies question Q∗ on the basis of set X of sequents iff, for each admissible
partition P of language QL , the following holds:

1. for each t ∈ dQ: if X ∪ {t} ⊆ TP, then dQ∗ ∩ TP 6= ∅; and

2. for each u ∈ dQ∗: there is a non-empty proper subset X∗ of dQ such
that if X ∪ {u} ⊆ TP, then X∗ ∩ TP 6= ∅.

The above construction leads to the following:

Corollary 3. Suppose that a sequence of questions 〈Q1, . . . , Qn〉 is a So-
cratic proof of a certain sequent in EC . Then question Q1 implies question
Qn on the basis of the empty set of sequents.
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