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In this chapter we discuss topologies called ψ-density topologies. The defi-
nition of them is based on Taylor’s strengthening the Lebesgue Density Theo-
rem. All of ψ-density topologies are essentially weaker than the density topol-
ogy Td but still essentially stronger than Tnat . The notion of ψ-density topology
was involved in the research work of many mathematicians. They concentrated
mostly on the differences between density topology and ψ-density topologies
on the real line. We would like to present the main results of that research but
we will focus on ordinary and strong ψ-density topologies on the plane.

22.1 The density topology on the real line

The classic Lebesgue Density Theorem [19] claims that for any Lebesgue mea-
surable set A⊂ R the equality

lim
h→0+

λ (A∩ [x−h,x+h])
2h

= 1 (22.1)

holds for all points x∈A except for the set of Lebesgue measure zero. Denoting
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Φd (A) =
{

x ∈ R : lim
h→0+

λ (A∩ [x−h,x+h])
2h

= 1
}

we can equivalently say that λ (A∆Φd (A)) = 0 for any A∈L. The operator Φd

is a lower density operator i.e. for any A,B ∈ L it has the following properties:

(1) Φd( /0) = /0, Φd(R) = R;
(2) Φd(A∩B) = Φd(A)∩Φd(B);
(3) λ (A∆B) = 0 =⇒Φd(A) = Φd(B);
(4) λ (A∆Φd(A)) = 0.

It is well known that a family

Td = {A ∈ L : A⊂Φd (A)}

forms a topology called the density topology and denoted by Td . Let us recall
its several properties.

Theorem 22.1. The density topology has the properties:

(a) If λ (N) = 0 then N is Td−closed;
(b) Tnat  Td;
(c) (R,Td) is neither first countable, nor Lindelöf, nor separable;
(d) A is Td−compact⇐⇒ A is finite;
(e) λ (N) = 0⇐⇒ N is Td−nowhere dense⇐⇒ N is Td−meager;
(f) (R,Td) is a Baire space;
(g) intTd (A) = A∩Φd (B), where B is a measurable kernel of A;
(h) (R,Td) is completely regular but not normal;
(i) A is connected in (R,Td)⇐⇒ A is connected in (R,Tnat);
(j) Td is invariant under translations and multiplications by nonzero

numbers.
The proofs of these properties will be presented in the next chapter. Notice
that:

- properties (a)-(d) follow from properties (1)-(3) of the operator Φd ;
- properties (e)-(g) are true by the Lebesgue Density Theorem (compare

[19]);
- a proof of completely regularity is much more complicated and connected

with the Lusin-Menchoff Theorem (compare [11]); (R,Td) is not normal,
because there is no possibility to separate Q from Q+

√
2 by Td-open sets

(compare [11]);
- (i) was proved by Goffman and Waterman via properties of approximately

continuous functions (see [12]);
- (j) again follows straightforward from the properties of Lebesgue measure.
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22.2 Taylor’s strengthening the Lebesgue Density Theorem

In The Scottish Book one can find a problem formulated by Stanisław Ulam
(1936) as follows: "It is known that in sets of positive measure there exist
points of density 1. Can one determine the speed of convergence of this ratio
for almost all points of the set?" (Problem 146, [20]). In other words it is the
question about possibility of strengthening the Lebesgue Density Theorem.
The answer to Ulam’s question was given by S. J. Taylor in 1959, [21]. Taylor
modified the condition (22.1) by introducing in denominator of the fraction
a new factor ψ , which is a nondecreasing continuous function from (0,∞) to
(0,∞) such that limx→0+ ψ(x)= 0 (the family of such functions will be denoted
by Ĉ). He proved two important theorems ([21], Th.3 and 4).

The First Taylor’s Theorem For any Lebesgue measurable set A ⊂ R there
exists a function ψ ∈ Ĉ such that

lim
d(I)→0

λ (A′∩ I)
λ (I)ψ(λ (I))

= 0

for almost all x ∈ A, where I is any interval containing x.

The Second Taylor’s Theorem For any function ψ ∈ Ĉ and a real number α ,
0 < α < 1, there exists a perfect set E ⊂ [0,1] such that λ (E) = α and

limsup
d(I)→0

λ (E ′∩ I)
λ (I)ψ(λ (I))

= ∞

for all x ∈ E.
In [22] S.J. Taylor formulated an alternative form of Egoroff’s theorem and,

by a consequence, he obtained the following theorem.

The Third Taylor’s Theorem Given any Lebesgue measurable set E in
m-dimensional Euclidean space, there exist ψ ∈ Ĉ and S ⊂ E such that
λm (E \S) = 0 and for x ∈ S

lim
d(I)→0

1
ψ (d (I))

(
λm (I∩E)

λm (I)
−1
)
= 0 (22.2)

where I is any rectangle containing x with slides parallel to the coordinate
axes of Rm and d (I) stands for a diameter of I.
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22.3 ψ-density topology on the real line

Following Taylor, in [23] there was introduced a notion of ψ-density point
which involved only intervals I with center at x. Fix ψ ∈ Ĉ.

Definition 22.2 ([23]). We say that x ∈R is a ψ-density point of a set A ∈ L if

lim
h→0+

λ (A′∩ [x−h,x+h])
2hψ(2h)

= 0.

In particular, if ψ = id we obtain superdensity introduced by Zajicek in [15].
For any set A ∈ L we denote

Φψ(A) = {x ∈ R : x is a ψ-density point of A}.

The operator Φψ is not a lower density operator, in fact the properties (1)-(3)
are fulfilled but (4) fails by The Second Taylor’s Theorem. However, for any
measurable set A, Φψ(A) is measurable (in fact it is a Fσδ set) and a family

Tψ = {A ∈ L : A⊂Φψ(A)}

constitutes a topology called ψ-density topology. Clearly, for any ψ ∈ Ĉ, Tnat ⊂
Tψ ⊂ Td and null sets are Tψ−closed. Therefore, the space (R,Tψ) is neither
first countable, nor second countable, nor Lindelöf, nor separable; each set
compact in Tψ is finite; a set is measurable if it is Borel in Tψ ([7]).

Moreover, using the condition (i) from Theorem 22.1, we can easy conclude
that the family of connected sets in topology Tψ coincides with the family of
connected sets in Tnat (and Td).

The set R\Q ∈ Tψ \Tnat . Let E be the set constructed in The Second Tay-
lor’s Theorem. It is easy to see that Φd (E) ∈ Td \Tψ . Therefore,

Tnat  Tψ  Td .

Now we will look at the properties which distinguish topologies Tψ and
Td . The set constructed in The Second Taylor’s Theorem has positive measure
and is Tψ−nowhere dense. In density topology nowhere dense sets must have
measure zero. E. Wagner-Bojakowska proved:

Theorem 22.3 (compare [24], Th.8). There exist Tψ−closed and Tψ−nowhere
dense sets En ⊂ R such that R=

⋃
∞
n=1 En.

Hence
(
R,Tψ

)
is not a Baire space while (R,Td) is.

To describe the interior operation in ψ-density topology let Φ1
ψ(A) =

Φψ(A). If α is an ordinal number, 1<α <Ω and α = β +1, where 1≤ β <Ω ,
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then Φα
ψ (A) = Φψ(Φ

β

ψ (A)). If α is a limit number, α < Ω , then Φα
ψ (A) =⋂

1≤β<α Φ
β

ψ (A). E. Wagner-Bojakowska and W. Wilczyński proved in [25] the
following theorem.

Theorem 22.4. (a) For each ψ ∈ Ĉ, A ∈ L and each countable ordinal α > 0

intψ(A)⊂ A∩Φ
α
ψ (A).

(b) For each ψ ∈ Ĉ and A ∈ L there exists an ordinal β , 1≤ β < Ω such that

intψ(A) = A∩Φ
β

ψ (A).

(c) For each ψ ∈ Ĉ and each countable ordinal α > 0 there exists A ∈ L such
that

intψ(A) 6= A∩Φ
α
ψ (A).

The spaces (R,Td) and
(
R,Tψ

)
satisfy different separate axioms. In [4]

it is proved that ψ−density topologies does not satisfy the Lusin-Menchoff
Theorem and

(
R,Tψ

)
is not regular. Since Tnat ⊂ Tψ ,

(
R,Tψ

)
is a Hausdorff

space.
Clearly, for ψ ∈ Ĉ, any translation of a set belonging to Tψ belongs to Tψ

either. It seems interesting that the invariance under multiplication depends on
ψ . In fact, it is strictly connected with the condition which we call (∆2), by
analogy with well known condition used in Orlicz spaces. We will say that
ψ ∈ Ĉ fulfills (∆2) condition (ψ ∈ ∆2) if

limsup
x→0+

ψ(2x)
ψ(x)

< ∞.

In [9] it is proved that:

Theorem 22.5. The topology Tψ is invariant under multiplication if and only
if ψ ∈ ∆2.

Note that ψ(x) =

{
x

1
x for x ∈ (0,1)

1 for x> 1
does not satisfies (∆2), but functions

ψ(x) = xα satisfy this condition for any α > 0.
It is obvious that ⋃

{Tψ : ψ ∈ Ĉ} ⊂ Td .

In [27] it was proved that the inclusion is proper and topology generated by
this union is equal to density topology. Moreover, (compare [23]),
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⋂
{Tψ : ψ ∈ Ĉ}= {U \N : U ∈ Tnat ∧λ (N) = 0}.

It is evident that the same ψ-density topologies can be obtained via differ-
ent functions from Ĉ. If limsupx→0+

ψ1(x)
ψ2(x)

< ∞ and liminfx→0+
ψ1(x)
ψ2(x)

> 0 then

Tψ1 = Tψ2 ([23]). However, there exist functions ψ1,ψ2 ∈ Ĉ such that they
fulfill the conditions 0 < limsupx→0+

ψ1(x)
ψ2(x)

< ∞ and liminfx→0+
ψ1(x)
ψ2(x)

= 0 and
Tψ1 = Tψ2 . The necessary and sufficient condition were given by E. Wagner-
Bojakowska and W. Wilczyński in [26]. For ψ1,ψ2 ∈ Ĉ and k ∈ N they put:

A+
k =

{
x ∈ R+;ψ1(2x)<

1
k

ψ2(2x)
}
,

B+
k =

{
x ∈ R+;ψ2(2x)<

1
k

ψ1(2x)
}
,

Ak =A+
k ∪ (−A+

k ), Bk = B+
k ∪ (−B+

k ).

and proved:

Theorem 22.6 ([26], Th. 8 ). Let ψ1,ψ2 ∈ Ĉ,

εk = limsup
x→0+

m(Ak∩ [−x,x])
2xψ1(2x)

, ηk = limsup
x→0+

m(Bk∩ [−x,x])
2xψ2(2x)

for k ∈ N. The topologies Tψ1 ,Tψ2 are equal if and only if limk→∞ εk =

limk→∞ ηk = 0.

A brief survey of ψ-density topologies one can find in [2] and [3]. Some
other properties of ψ-density topologies were also examined. G. Horbaczewska
considered resolvability of ψ-density topologies and proved that for any func-
tion ψ ∈ Ĉ such topologies are maximally resolvable and, assuming Martin’s
Axiom, extraresolvable ([10]). A. Goździewicz-Smejda and E. Łazarow in-
troduced the notion of ψ-sparse sets and ψ-sparse topologies ([13], [14]). E.
Łazarow and A. Vizváry examined the category analogue of ψ-density topolo-
gies ([16]). In [17] E. Łazarow and K. Rychert introduced the notion of ψ-
porosity and ψ-superporosity and they compared them with the classical no-
tions of porosity and superporosity.

22.4 ψ-density topologies on the plane.

Defining density points and ψ−density points on the real line there are used
the closed intervals with the common center. OnRm there are two standard dif-
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ferentiation basis - we can use cubes or rectangles. To simplify considerations
we will present the definitions and results obtained for R2, but all of them can
be applied in the same manner for m > 2.

We will denote by T 2
nat - the natural topology on R2. For any x = (x1,x2) ∈

R2 and h,k > 0, let Sq(x,h) denote a square [x1− h,x1 + h]× [x2− h,x2 + h]
and R(x,h,k) denote a rectangle [x1− h,x1 + h]× [x2− k,x2 + k]. Recall that
x ∈ R2 is an ordinary density point of a set A ∈ L2 if

lim
h→0+

λ2(A′∩Sq(x,h))
4h2 = 0.

Let Φo
d (A)= {x∈R2 : x is an ordinary density point of a set A} for A∈L2 and

T o
d denotes the family of all sets A∈L2 such that A⊂Φo

d (A). The family T o
d is

a topology called the ordinary density topology on the plane (see [28], section
4). Analogously, x ∈ R2 is a strong density point of a set A ∈ L2 if

lim
h→0+
k→0+

λ2 (A′∩R(x,h,k))
4hk

= 0.

In the same way for A ∈ L2 we define the set

Φ
s
d(A) = {x ∈ R2 : x is a strong density point of a set A}.

The family T s
d = {A ∈ L2 : A⊂Φ s

d(A)} is a topology called the strong density
topology on the plane. Both operators Φo

d and Φ s
d are lower density operators,

so topologies T o
d and T s

d satisfy properties analogous to (a)-(g) from Theorem
22.1.

We will study properties of ordinary and strong ψ−density on the plane. Be-
cause the results have never been published in English we will present proofs
of some theorems. More detailed information about this can be found in [5].

Suppose that ψ ∈ Ĉ. We say that x ∈ R2 is an ordinary ψ-density point of a
set A ∈ L2 if

lim
h→0+

λ2(A′∩Sq(x,h))
4h2ψ(4h2)

= 0.

Analogously, we say that x ∈ R2 is a strong ψ−density point of A if

lim
h→0+
k→0+

λ2 (A′∩R(x,h,k))
4hkψ (4hk)

= 0.
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We say that x ∈ R2 is an ordinary (strong) ψ-dispersion point of a set A if x is
an ordinary (strong) ψ-density point of A′. We denote by Φo

ψ(A) (Φ s
ψ(A)) the

set of all ordinary (strong) ψ-density points of a set A.
Using The Third Taylor’s Theorem we can easy obtain on the plane a result

analogous to The First Taylor’s Theorem for ordinary ψ−density.

Theorem 22.7. For any A ∈ L2 there exists a function ψ ∈ Ĉ such that

λ2
(
A\Φ

o
ψ(A)

)
= 0.

Proof. By The Third Taylor’s Theorem, there exists ψ∗ ∈ Ĉ such that

lim
h→0+

1

ψ∗
(√

2h
) (λ2 (Sq(x,h)∩A)

4h2 −1
)
= 0

for almost all x ∈ A. Let ψ (t) = ψ∗
(√

t
2

)
for t > 0. Then ψ ∈ Ĉ and , for any

h > 0

λ2 (A′∩Sq(x,h))
ψ (4h2)4h2 =

1
ψ (4h2)

(
λ2 (Sq(x,h))−λ2 (Sq(x,h)∩A)

4h2

)
=

=
1

ψ∗
(√

2h
) (1− λ2 (Sq(x,h)∩A)

4h2

)
.

ut

We will prove that the analogues result for strong ψ−density is not valid. Ob-
serve, that The Third Taylor’s Theorem refers to rectangles, but in the denomi-
nator of the formula (22.2) we have a diameter of I. We will show that - roughly
speaking - we can not put λ2 (I) instead of d (I).

Lemma 22.8. If B ∈ L1 satisfies the property

λ (B∩ [−h,h])> 0

for any h > 0 then (0,0) is not a strong ψ−density point of a set A = B′×R
for any ψ ∈ Ĉ.

Proof. Let ψ ∈ Ĉ. We will show that for any ε > 0, δ > 0 and h ∈ (0,δ ) there
is a number k ∈ (0,δ ) such that

λ2 (A′∩R(x,h,k))
4hk ·ψ (4hk)

> ε .
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Fix ε > 0, δ > 0 and h∈ (0,δ ). Since λ (B∩ [−h,h])> 0, there exists a positive
number

α =
λ (B∩ [−h,h])

2h
.

A number h is fixed and limt→0+ ψ (t) = 0, so there is k ∈ (0,δ ) such that
ψ (4hk)< α

ε
. Therefore,

λ2 (A′∩R(x,h,k))
4hk ·ψ (4hk)

=
λ (B∩ [−h,h]) ·2k

2h ·2k ·ψ (4hk)
=

α

ψ (4hk)
> ε .

ut

Moreover, if λ (B∩ [x1−h,x1 +h]) > 0 for any h > 0, then (x1,x2) is not a
strong ψ−density point of a set A = B′×R for any x2 ∈ R and any ψ ∈ Ĉ.
Observe that this property of a strong ψ−density is rather unusual. It is easy
to check that

Proposition 22.9. If x1 is a density point of B∈L1 then for any x2 ∈R, (x1,x2)

is an ordinary and strong density point of B×R.

Proposition 22.10. If x1 is a ψ−density point of B ∈ L1, for some ψ ∈ Ĉ then
for any x2 ∈ R, the point (x1,x2) is a ψ∗−ordinary density point of B×R,
where ψ∗ (t) = ψ

(
t2
)

for t > 0. On the other hand, if for some ψ ∈ Ĉ and
B ∈ L1, (x1,x2) is a ψ−ordinary point of B×R, then x1 is a ψ̂−density point
of B, for ψ̂ (t) = ψ

(√
t
)
.

For strong ψ−density we obtain a "strong strengthening" of the Second Tay-
lor’s Theorem.

Theorem 22.11. For any α ∈ (0,1) there is a set E ⊂ [0,1]× [0,1] such that
λ2 (E) = α and for any ψ ∈ Ĉ no point of E is a strong ψ−density point of a
set E.

Indeed, we can take a nowhere dense set C ⊂ [0,1] of measure α and put
A =C× [0,1] and use Lemma 22.8.

On the other hand, using Proposition 22.10, we can prove a theorem analo-
gous to The Second Taylor’s Theorem for ordinary ψ−density.

Theorem 22.12. For each function ψ ∈ Ĉ and number α ∈ (0,1) there is a
set E ⊂ [0,1]× [0,1] such that λ2 (E) = α and no point of E is its ordinary
ψ−density point.

Straightforward from the definitions of Φo
ψ(A) and Φ s

ψ(A) we obtain (com-
pare [23], Th.1.3):
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Theorem 22.13. For any A,B ∈ L2

(1) if A⊂ B then Φo
ψ(A)⊂Φo

ψ(B);
(2) if A∼ B then Φo

ψ(A) = Φo
ψ(B);

(3) Φo
ψ( /0) = /0 and Φo

ψ(R2) = R2;
(4) Φo

ψ(A∩B) = Φo
ψ(A)∩Φo

ψ(B);
(5) Φo

ψ(A)⊂Φo
d (A).

The same properties are satisfied for the operator Φ s
ψ .

Put
T o

ψ = {A ∈ L2 : A⊂Φ
o
ψ(A)}

and
T s

ψ = {A ∈ L2 : A⊂Φ
s
ψ(A)}.

Theorem 22.14. Let ψ ∈ Ĉ. The families T o
ψ and T s

ψ form topologies on the
plane, stronger than the Euclidean topology T 2

nat and weaker then the ordinary
density topology T o

d . Moreover T s
ψ  T o

ψ ∩T s
d .

Proof. Inclusions T 2
nat ⊂ T s

ψ ⊂ T o
ψ ⊂ T o

d follow immediately from the defini-
tions. To prove that T o

ψ (T s
ψ ) is a topology, it is enough to observe that the union

of an arbitrary subfamily of T o
ψ (T s

ψ ) belongs to T o
ψ (T s

ψ ). The only difficulty is
to show that it is a measurable set. It is true because T s

ψ ⊂ T o
ψ ⊂ T o

d and T o
d is

closed under arbitrary unions, and T o
d ⊂ L2.

Let ψ̂ (t) = ψ
(√

t
)

and A =
∞⋃

n=1
(an,bn), 0 < bn+1 < an < bn for n = 1,2, ...

be an interval set such that 0 is a right ψ̂−density point of A (for example
an =

1
2n+1 +

1
4n+1 ·ψ̂( 1

2n ) and bn =
1
2n ) . Clearly, the set B=−A∪{0}∪A belongs

to Tψ̂ and Td . Therefore, the set B×R, by Proposition 22.9, belongs to T s
d , and

- by Proposition 22.10 - belongs to T o
ψ . However, from Lemma 22.8 it follows

that (0,0) is not a strong ψ−density of B×R, so B×R /∈ T s
ψ .

The set R2 \ (Q×Q) ∈ T s
ψ \ T 2

nat . Finally, we will define a set D such that
D′ ∈ T o

d \T o
ψ . There is n0 ∈ N such that ψ( 1

2n0 )6 1. Let

D =
∞⋃

n=n0

[
1
2n −

1
2n ψ(

1
4n−1 ),

1
2n

]
×R.

For simplicity we write Sq(h) instead of Sq((0,0),h). For each h ∈
[ 1

2n+1 ,
1
2n

)
λ2 (D∩Sq(h))

4h2 6
λ2
(
D∩Sq( 1

2n )
)

4 1
(2n+1)2

6
2
2n ψ

( 1
4n−1

) 2
2n

1
4n

= 4ψ

(
1

4n−1

)
.
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Since n→ ∞ when h→ 0+, the point (0,0) is an ordinary density point of D′.
On the other hand, for any n> n0,

λ2(D∩Sq( 1
2n ))

4( 1
2n )2ψ(4( 1

2n )2)
>

λ2([
1
2n − 1

2n ψ( 1
4n−1 ),

1
2n ]× [− 1

2n .
1
2n ])

4 1
4n ψ( 1

4n−1 )
=

1
2

and (0,0) is not an ordinary ψ-density point of D′. The set D′ \{(0,0)} ∈ T 2
nat ,

so D′ ∈ T o
d \T o

ψ . ut

For any function ψ ∈ Ĉ the spaces (R,T o
ψ ) and (R,T s

ψ) are Hausdorff and
not separable. Any set of two-dimensional measure zero is closed. Each com-
pact subspace of (R,T o

ψ ) or (R,T s
ψ) is finite. Moreover

Theorem 22.15. Let ψ ∈ Ĉ. Then⋂
{T s

ψ : ψ ∈ Ĉ}=
⋂
{T o

ψ : ψ ∈ Ĉ}= {U \P : U ∈ T 2
nat ∧λ2(P) = 0}.

Proof. It is not difficult to check that a measurable set A belongs to the family{
U \P : U ∈ T 2

nat ∧λ2 (P) = 0
}

if and only if

∀(x ∈ A)∃(δx > 0)∀
(
h,k ∈ (0,δx) λ2

(
A′∩R(x,h,k

)
= 0
)

.

Therefore, if A ∈
{

U \P : U ∈ T 2
nat ∧λ2 (P) = 0

}
, then A ∈ T s

ψ , for any ψ ∈ Ĉ.
Hence

{
U \P : U ∈ T 2

nat ∧λ2 (P) = 0
}
⊂
⋂
{T s

ψ : ψ ∈ Ĉ}.
Suppose, that A /∈

{
U \P : U ∈ T 2

nat ∧λ2 (P) = 0
}

. Therefore, there is a
point x ∈ A such that

λ2

(
A′∩Sq

(
x,

1
n

))
> 0

for any n ∈ N. The sequence
{

λ2
(
A′∩Sq

(
x, 1

n

))}
is decreasing and tends to

0. There exists a function ψ ∈ Ĉ, such that

ψ

(
4
n2

)
= λ2

(
A′∩Sq

(
x,

1
n

))
.

Since
λ2
(
A′∩Sq

(
x, 1

n

))
4
n2 ψ

( 4
n2

) =
n2

4
,

A /∈ T o
ψ ⊃ T s

ψ . Therefore,⋂
{T s

ψ : ψ ∈ Ĉ} ⊂
⋂
{T o

ψ : ψ ∈ Ĉ} ⊂
{

U \P : U ∈ T 2
nat ∧λ2 (P) = 0

}
.

ut
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Recall that operators Φo
d and Φ s

d are lower density operators, so
(
R2,T o

d

)
and

(
R2,T s

d

)
are Baire spaces.

Theorem 22.16. The plane is a first category set in
(
R2,T s

ψ

)
and in

(
R2,T o

ψ

)
for any ψ ∈ Ĉ.

Proof. Let (Cn)n∈N be a sequence of Cantor-type sets on the real line of
positive one-dimensional Lebesgue measure, such that λ (R\

⋃
∞
n=1Cn) = 0.

Fix a function ψ ∈ Ĉ. All sets Cn ×R are T s
ψ−closed sets and, by Lemma

22.8, Φ s
ψ (Cn×R) = /0. Therefore, there are T s

ψ−nowhere dense sets. The set
(R\

⋃
∞
n=1Cn)×R is T s

ψ−nowhere dense because it is a set of measure zero.
Note that, by The First Taylor’s Theorem, there are functions ψ ∈ Ĉ such

that sets Cn×R have a nonempty T o
ψ−interior. In the next part of the proof we

will divide the plane differently for different ψ .
Let ψ ∈ Ĉ and ψ∗ (t) = ψ

(
t2
)
. There exist Tψ∗−closed and Tψ∗−nowhere

dense sets En ⊂ R such that R =
⋃

∞
n=1 En (Theorem 22.3). Therefore,

intTψ∗ (En) = /0. The sets En×R are T o
ψ−closed and intT o

ψ
(En×R) = /0. ut

Theorem 22.17. The space
(
R2,T s

ψ

)
is not regular for any ψ ∈ Ĉ.

Proof. As in the first part of the proof of Theorem 22.16 we can show an
"universal" closed set and a point which can not be separated by T s

ψ−open sets
for any ψ ∈ Ĉ. Fix a point (x0,y0) ∈ R2. In [11], Th. 5 it is proved that the
set L = {(x0,y) : y ∈ R} \ {(x0,y0)} can not be separated from this point by
T s

d−open sets.
For every ψ ∈ Ĉ, the set L is T s

ψ−closed, as a null set. Suppose that there are
disjoint sets U and V , open in

(
R2,T s

ψ

)
such that (x0,y0) ∈U and L⊂V . Then

U and V belong to T s
d and separate (x0,y0) from L, which gives a contradiction.

ut

A proof of the analogous property for ordinary ψ−density is more compli-
cated.

Theorem 22.18. The space
(
R2,T o

ψ

)
is not regular for any ψ ∈ Ĉ.

Proof. Let ψ ∈ Ĉ and ψ∗ (t) = ψ
(
t2
)
. There exists an increasing sequence

(En)n∈N of closed, Tψ∗−nowhere dense subsets of [0,1] such that

λ

(
[0,1]\

∞⋃
n=1

En

)
= 0
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(compare [4]). Let E =
⋃

∞
n=1 En and A = E×R. Observe that, for any n ∈ N,

En×R is T o
ψ−closed and T o

ψ−boundary set, and A∩ ((0,1)×R) ∈ T o
ψ .

Suppose that
(
R2,T o

ψ

)
is regular. Fix z = (z1,z2) ∈ A∩ ((0,1)×R). Then

there exists a set U ∈ T o
ψ such that z ∈ U and ClT o

ψ
(U) ⊂ A∩ ((0,1)×R).

We will find a sequence
(
x(n)
)

n∈N of elements of the set U such that x =

limn→∞ x(n) /∈ A and

limsup
n→∞

λ2 (U ∩Sq(x,h))
4h2 > 0.

Since intT o
ψ
(E1×R) = /0 and intT o

ψ
(U) 6= /0, the set U \ (E1×R) has positive

measure, so we can choose a point x(1) =
(

x(1)1 ,x(1)2

)
∈U \ (E1×R). The se-

quence (En)n∈N is increasing and x(1)1 ∈ E \E1, so there is k1 > 1 such that
x(1)1 ∈ Ek1 \Ek1−1. Therefore, x(1)1 belongs to some component J of R\Ek1 and
J is open. Denote it by (a1,b1). Let

ε1 = min
(

x(1)1 −a1,b1− x(1)1

)
.

The set U belongs to T o
ψ and x(1) ∈U . Therefore, x(1) ∈Φo

ψ (U)⊂Φo
d (U) and

there exists a number r1 ∈ (0,ε1) such that

λ2
(
U ∩Sq

(
x(1),r1

))
4r2

1
≥ 3

4
.

It is not difficult to check, that for any y ∈ Sq
(
x(1), 1

4 r1
)

λ2
(
U ∩Sq

(
y, 3

4 r1
))

4
(3

4 r1
)2 ≥ 1

4
.

Moreover, for any y∈ Sq
(
x(1), 1

4 r1
)

the distance between y and Ek1−1×R (and
between y and Ei×R for i < k1−1) is greater then 3

4 r1.
The set

U1 =U ∩
((

x(1)1 −
1
4

r1,x
(1)
1 +

1
4

r1

)
×
(

x(1)2 −
1
4

r1,x
(1)
2 +

1
4

r1

))
belongs to T o

ψ . Since intT o
ψ
(Ek1×R) = /0, there is a point x(2) =

(
x(2)1 ,x(2)2

)
∈

U \ (E1×R). Therefore, there is k2 > k1 such that x(2)1 ∈ Ek2 \Ek2−1. Denote
by (a2,b2) the component of R \Ek2 such that x(2)1 ∈ (a2,b2) and by ε2 the
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minimum of numbers x(2)1 − a1, b1− x(2)1 and 1
4 r1. Let r2 ∈ (0,ε2) be such a

number that
λ2
(
U ∩Sq

(
x(2),r2

))
4r2

2
≥ 3

4
.

We now proceed by induction and find a sequence
(
x(n)
)

n∈N of elements of
U , a sequence (kn)n∈N of natural numbers and a decreasing sequence (rn)n∈N
tending to zero such that

x(n) ∈U ∩Ekn ∩Sq
(

x(n−1),
1
4

rn

)
, (22.3)

λ2
(
U ∩Sq

(
x(n),rn

))
4r2

n
≥ 3

4

for any n > 1 and

dist
(

x(n),Ei×R
)
≥ 3

4
rn (22.4)

for any i < kn.
From (22.3) we know that the sequence

(
x(n)
)

n∈N is convergent. By (22.4),
x = limn→∞ x(n) /∈ A. Finally, for any n∈N, x∈ Sq

(
x(n), 1

4 rn
)

and consequently

λ2
(
U ∩Sq

(
x, 3

4 rn
))

4
(3

4 rn
)2 ≥ 1

4
.

It follows that

limsup
n→∞

λ2 (U ∩Sq(x,h))
4h2 ≥ 1

4
.

and x ∈ClT o
d
(U). Since ClT o

d
(U)⊂ClT o

ψ
(U) , the set ClT o

ψ
(U) is not a subset

of A∩ ((0,1)×R). This contradiction proves that the space
(
R2,T o

ψ

)
is not

regular. ut

From the definitions of operators and topologies T o
ψ and T s

ψ it follows that,
for any function ψ ∈ Ĉ, if A ∈ T o

ψ and x ∈R then x+A = {x+a : a ∈ A} ∈ T o
ψ

(if A ∈ T s
ψ , then x+A ∈ T s

ψ ).
As it would be expected, invariance under multiplications is connected with

(∆2) condition. Observe first that:

Lemma 22.19. Let ψ ∈ Ĉ. If there is α0 > 1 such that limsupt→0+
ψ(α0t)

ψ(t) = ∞

then limsupt→0+
ψ(αt)
ψ(t) = ∞ for any α > 1.

Theorem 22.20. Let ψ be a function from the family Ĉ.
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1. If A∈T o
ψ , α > 0 and limsupt→0+

ψ(t)
ψ(α2t) <∞ then αA= {αa : a∈A} ∈ T o

ψ .

2. If α > 0 and limsupt→0+
ψ(t)

ψ(α2t) = ∞ then there is such a set B that αB /∈
T o

ψ .

Proof. Suppose that A ∈ T o
ψ . To prove the first condition of the theorem it is

enough to show that for any x ∈ A, αx is an ordinary ψ-density point of αA.
Let x ∈ A. The point (0,0) is an ordinary ψ-density point of a set A− x =

{a− x : a ∈ A}. For any h > 0

(α(A− x))′∩Sq(h) =
(
α(A− x)′

)
∩Sq(h) = α

(
(A− x)′∩Sq

(
h
α

))
.

Therefore,

limsup
h→0+

λ2((α(A− x))′∩Sq(h))
4h2ψ(4h2)

6

6
1
α

lim
h→0+

λ2((A− x)′∩Sq( h
α
))

4( h
α
)2ψ(4( h

α
)2)

· limsup
t→0+

ψ(t)
ψ(α2t)

= 0

what means that (0,0) is an ordinary ψ-density point of a set αA−αx.
In the second part of the proof we will use a construction from the real line.

Let ψ∗(t) = ψ(t2) for t > 0. Hence

limsup
t→0+

ψ∗(t)
ψ∗(αt)

= limsup
t→0+

ψ(t)
ψ(α2t)

= ∞.

Repeating the proof of Theorem 2.8 from [23] we can construct an interval set
A =

⋃
∞
n=1[an,bn] with 0 < bn+1 < an < bn for n ∈N and lim

n→∞
bn = 0 such that 0

is a ψ∗-dispersion point of A and is not a ψ∗-dispersion point of a set αA. It is
easy to check that A′ ∈ Tψ∗ and (αA)′ 6∈ Tψ∗ . Therefore, the set A′×R is open
in topology T o

ψ but the set (αA)′×R= α · (A′×R) is not. ut

Corollary 22.21. An ordinary ψ−density topology is invariant under multipli-
cation by positive numbers if and only if ψ ∈ ∆2.

One of the clearest differences between T o
d and T s

d is connected with rota-
tions. It is well known that the ordinary density topology on the plane is invari-
ant under rotations and the strong density topology is not. It can be surprising,
that invariance T o

ψ under rotations again depends on the (∆2) condition.

Theorem 22.22. Suppose that ψ ∈ Ĉ. If ψ ∈ ∆2 then, for any set A ∈ T o
ψ , the

set B received from A by turning around a fixed point, belongs to topology T o
ψ .
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Proof. We will show that if the point (0,0) is an ordinary ψ-dispersion point of
a set A then (0,0) is an ordinary ψ-dispersion point of the set Aθ received from
A by turning around (0,0) of an angle θ ∈ (0,2π).

Let Sqθ (h) denotes a square Sq(h) turned around (0,0) of θ . Because
λ2(Aθ ∩Sq(h)) = λ2(A∩Sq−θ (h))6 λ2(A∩Sq(h

√
2), we obtain

λ2(Aθ ∩Sq(h))
4h2ψ(4h2)

6
λ2(A∩Sq(h

√
2)

4h2ψ(4h2)
=

λ2(A∩Sq(h
√

2)
1
2 4(h
√

2)2ψ(4(h
√

2)2)
· ψ(2 ·4h2)

ψ(4h2)
.

From the assumption we know that limsupt→0+
ψ(2·4h2)
ψ(4h2)

< ∞. Therefore,

limsup
h→0+

λ2(Aθ ∩Sq(h))
4h2ψ(4h2)

= 0.

Fix a point s = (s1,s2) ∈R2 and an angle θ ∈ (0,2π). We will show that if x is
an ordinary ψ-dispersion point of a set A then the point y, received from x by
rotating x around the point s of θ , is an ordinary ψ-dispersion point of the set
B received from A by the same rotate. Suppose that

lim
h→0+

λ2(A′∩Sq(x,h))
4h2ψ(4h2)

= 0.

Denote by Sq∗(y,h) a square received from Sq(y,h) by rotating of an angle−θ

around s. Thus, like in previous case, λ2(B′∩Sq(y,h)) = λ2(A′∩Sq∗(y,h)) ≤
λ2(A′∩Sq(x,

√
2)) and

lim
h→0+

λ2(B′∩Sq(y,h))
4h2ψ(4h2)

= 0.

ut

Theorem 22.23. Suppose that ψ ∈ Ĉ. If ψ /∈ ∆2 then, for any angle θ ∈ (0, π

4 ],
there exists a set A ∈ L2 such that (0,0) is not an ordinary ψ-dispersion point
of a set A, but is an ordinary ψ-dispersion point of a set A rotated of an angle
−θ around the point (0,0).

Proof. Fix an angle θ ∈ (0, π

4 ]. Since cos(π

4 −θ)>
√

2
2 , a number 2cos2(π

4 −θ)

is greater then one. Let α ∈ (1,2cos2(π

4 −θ)). We know that limsupt→0+
ψ(αt)
ψ(t) =

∞. Therefore, there is a sequence (tn)n∈N↘ 0 such that

lim
n→∞

ψ(αtn)
ψ(tn)

= ∞. (22.5)
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We will construct a sequence (dn)n∈N↘ 0 such that ψ(4d1)<
1
4 and

ψ(α ·4d2
n)> n ·ψ(4d2

n), (22.6)√
ψ(4d2

n)<
√

2 · cos(
π

4
−θ)−

√
α, (22.7)

dn+1 6 dn ·
√

ψ(4d2
n) (22.8)

for any n ∈ N. Let bn =
√

tn
2 . From (22.5) it follows that

lim
n→∞

ψ(α ·4b2
n)

ψ(4b2
n)

= ∞.

Thus, we can choose a subsequence (cn)n∈N of a sequence (bn)n∈N, such that
(cn)n∈N satisfies (22.6). Since limn→∞ cn = 0, almost all cn satisfy (22.7). We
can choose a subsequence (dn)n∈N such that (22.8) is true and ψ(4d1)<

1
4 . Let

hi = di ·
√

ψ(4d2
i ) (22.9)

and denote by Ai a triangle with vertices (di,di), (di,di− hi) and (di− hi,di).
We define

A =
∞⋃

i=1

Ai.

Observe that from (22.8) and (22.9) it follows

λ2(
∞⋃

k=i

Ak) = λ2(Ai)+λ2(
∞⋃

k=i+1

Ak)6 λ2(Ai)+λ2([0,di+1]
2) = (22.10)

= λ2(Ai)+d2
i+1 6 λ2(Ai)+h2

i = 3λ2(Ai),

for any i ∈ N. It is obvious that (0,0) is not an ordinary ψ-dispersion point of
a set A because, for each i,

λ2(A∩Sq(di))

4d2
i ψ(4d2

i )
>

1
2 h2

i

4d2
i ψ(4d2

i )
=

1
8
.

We will prove that (0,0) is an ordinary ψ-dispersion point of a set B, re-
ceived from A by turning by−θ around (0,0). Notice, that λ2(B∩Sq(

√
2di))=

λ2(A∩Sq(di)) for any i∈N and θ ∈ (0, π

4 ]. Let t be an arbitrary point of (0,d1].
There is i ∈ N such that t ∈ (

√
2di+1,

√
2di]. We will consider two cases:

10. If t ∈ [
√

αdi,
√

2di] then from (22.10) and (22.9) it follows
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λ2(B∩Sq(t))
4t2ψ(4t2)

6
λ2(B∩Sq(

√
2di))

4αd2
i ψ(4αd2

i )
=

λ2(A∩Sq(di))

4αd2
i ψ(4αd2

i )
6

3λ2(Ai)

4αd2
i ψ(4αd2

i )
6

6
3 · 1

2 d2
i ψ(4d2

i )

4αd2
i iψ(4d2

i )
=

3
8αi

;

20. Let t ∈ (
√

2di+1,
√

αdi). Note that

{(di,di)}θ =
{(√

2di cos
(

π

4
+θ

)
,
√

2di cos
(

π

4
−θ

))}
.

By (22.7) we have

√
2di ·cos(

π

4
−θ)−hi = di

(√
2cos

(
π

4
−θ

)
−
√

ψ(4d2
i )

)
> di
√

α > di,

so Aθ
i ∩ ([0,di]× [0,di]) = /0. Therefore, B∩ Sq(t) = B∩ Sq(

√
2di+1). Re-

minding that α < 2, we obtain from (22.9) and (22.6)

λ2(B∩Sq(t))
4t2ψ(4t2)

6
λ2(B∩Sq(

√
2di+1))

4 ·2d2
i+1ψ(4 ·2d2

i+1)
=

λ2(A∩Sq(di+1))

8 ·d2
i+1ψ(4 ·2d2

i+1)
6

6
3λ2(Ai+1)

8 ·d2
i+1ψ(α ·4d2

i+1)
6

3
16(i+1)

.

Since i→∞ when t→ 0+, it follows that (0,0) is an ordinary ψ-dispersion
point of a set B.

ut

As we can expect, a strong ψ-density topology is not invariant under ro-
tation, either. Firstly, we construct a set C ∈ L2 such that (0,0) is a strong
ψ-dispersion point of this set and λ2 (C∩Sq(r))> 0 for any r > 0.

Example 22.24. Suppose that ψ ∈ Ĉ , (bn)n∈N is a decreasing sequence tending
to 0 and (an)n∈N is a sequence of positive numbers with

an+1 ≤
1√
2

an

for n ∈ N. Let, for any n ∈ N,

cn = an+1 ·bn ·
√

ψ
(
4a2

n+1

)
,

Cn = [an− cn,an]× [an− cn,an]
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and

C =
∞⋃

n=1

Cn.

Obviously, λ2 (C∩Sq(r))> 0 for any r > 0 and λ2 (Cn+1)≤ 1
2 λ2 (Cn) for any

n ∈N. Moreover, there is n0 ∈N such that ψ
(
4a2

n+1
)
< 1 and bn <

√
2−1 for

n > n0. Therefore, for n > n0,

an− cn ≥
√

2an+1−an+1bn

√
ψ
(
4a2

n+1

)
>
√

2an+1−an+1bn > an+1,

so squares Cn and Cn+1 are disjoint.
We will check that (0,0) is a strong ψ-dispersion point of C. Fix arbitrary

k,h ∈ (0,an0 ]. There is n ≥ n0 such that min(k,h) ∈ (an+1,an]. From the con-
struction of the set C it follows that

C∩R((0,0),h,k)⊂C∩ ([0,an]× [0,an]) .

Hence
λ2 (C∩R((0,0),h,k))

4hk ·ψ (4hk)
≤ c2

n

4a2
n+1 ·ψ

(
4a2

n+1

) = b2
n

2
.

Now we will use a lemma which is, in fact, the strengthening of Lemma
22.8.
Lemma 22.25. Suppose that A ∈ L2. If there exists a sequence (an)n∈N ↘ 0
such that all points (an,0) belong to an interior of A (in the natural topology
on the plane) then (0,0) is not a strong ψ-dispersion point of A for any ψ ∈ Ĉ.

Proof. Fix a function ψ ∈ Ĉ and n ∈ N. There exists a positive number δn <

min{an,1}, such that Sq((an,0) ,δn)⊂ A. Hence, for any k ∈ (0,δn),

λ2 (A∩R((0,0) ,an,k))≥ 2kδn.

Since lim
t→0+

ψ (t) = 0, there is εn ∈ (0,δn) such that ψ (4ank) < δn
an

for any k ∈
(0,εn]. Therefore,

λ2 (A∩R((0,0) ,an,k))
4ank ·ψ (4ank)

≥ 2kδn

4ank ·ψ (4ank)
>

1
2
.

Let k1 = ε1 and kn = min
{

εn,
1
2 kn−1

}
for n≥ 2. Then

limsup
n→∞

λ2 (A∩R((0,0) ,an,kn))

4ankn ·ψ (4ankn)
≥ 1

2

and, consequently, (0,0) is not a strong ψ-dispersion point of A. ut
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From the latter example and lemma it follows that (0,0) it is not a strong
ψ-dispersion point of the set C rotated of π

4 . Therefore, R2 \C ∈ T s
ψ and

R2 \C
π

4 6∈ T s
ψ .

Modifying a bit the construction in Example 22.24 we can construct, for
any angle θ ∈

(
0, π

4

)
, the set D ∈ L2 such that (0,0) it is a strong ψ-dispersion

point of D and (0,0) it is not a strong ψ-dispersion point of the set D rotated
of −θ (compare [5], Example 2.12).

Corollary 22.26. For any ψ ∈ Ĉ the strong ψ-density topology on the plane is
not invariant under rotation.
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