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The investigation of topological properties of sets of subsums for abso-
lutely convergent series has been initiated almost one hundred years ago by
Soichi Kakeya [11], [12]. A major step in the research took place in 1988
when J.A. Guthrie and J.E. Nymann published the full topological classifica-
tion of the sets of subsums [8] – wider than Kakeya thought. However, their
theorem is ineffective in the sense that it lists all four possible (up to homeo-
morphisms) types of sets of subsums, but provides no tool for recognition of
the type for a given series. Finding a complete analytic characterization of the
Guthrie-Nymann classification remains a challenging problem and we present
the current state of research in this direction. Starting with a new exposition of
the Guthire-Nymann Classification Theorem (based upon [21]), we survey all
known examples of series leading to M-Cantorvals together with very recently
discovered sufficient conditions for such series. The topological classification
of the sets of subsums induces a natural division of the classic Banach space
l1 into four disjoint sets. Interesting algebraic and topological properties of the
division are also discussed in the survey.

http://dx.doi.org/10.18778/7525-971-1.21



346 Artur Bartoszewicz, Małgorzata Filipczak, Franciszek Prus-Wiśniowski

21.1 Sets of subsums of series

Let (an)n∈N be a sequence of real numbers tending to zero. For a series Σn∈Nan

and a given a given set B⊂N, we will say that the series: ∑n∈B an is a subseries
of ∑n∈N an. If B is finite, we will say that ∑n∈B an is a finite subseries of
∑n∈N an. We agree to write ∑n∈ /0 an = 0. We are going to investigate the set of
subsums of a series, that is, the set

E = E (an) :=

{
x ∈ R : ∃ B⊂ N ∑

n∈B
an = x

}
.

We will also write
E =

{
∑εnan : εn ∈ {0, 1}

}
,

assuming tacitly, that we consider such choises of (εn)n∈N only that lead to
convergent subseries.

The restricted definition allows for a very nice, transparent and natural clas-
sification of series. We start with a classification of series from the point of
view of their behaviour under rearrangements. We will say that a series ∑an is
strongly divergent if ∑aπ(n) diverges for every permutation π of its terms. We
will say that a series ∑an is absolutely convergent if ∑aπ(n) converges for ev-
ery permutation π of its terms. We know from the elementary theory of series
that ∑an is absolutely convergent if and only if ∑ |an| converges ((an) ∈ l1).
Other series which are neither strongly divergent nor absolutely convergent
will be called potentially non-absolutely convergent. These are extactly se-
ries ∑an for which there are permutations π1 and π2 of N such that ∑aπ1(n)
converges and ∑aπ2(n) diverges. Thus the potentially non-absolutely conver-
gent series are exactly the series that are non-absolutely convergent or can be
rearranged into a non-absolutely convergent series.

All three classes of series defined above have very transparent characteriza-
tions in terms of subseries of all positive terms and of all negative terms. With
the classic definitons

a+n := max{an, 0} and a−n := max{−an, 0},

we get the following well known characterizations.

Theorem 21.1. A series ∑an is absolutely convergent if and only if both series
∑a+n and ∑a−n converge.

A series ∑an is potentially non-absolutely convergent if and only if both
series ∑a+n and ∑a−n diverge.
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A series ∑an is strongly divergent if and only if exactly one of the series
∑a+n and ∑a−n converges.

Another characterization of our classification of series can be given in terms
of their sets of subsums. We need an auxilliary fact (which would be false if
not the initial agreement that general terms of a series must tend to 0) (cf. [3]).

Lemma 21.2. If ∑an is a divergent series of positive terms then every positive
number is the sum of an infinite subseries of ∑an and hence E(an) = [0,+∞).

We are ready for a theorem that tells us how to recognize the type of a series
by looking at its sets of subsums E = E(an).

Theorem 21.3. A series ∑an is:
(i) strongly divergent if and only if the set E is a half-line.
(ii) potentially non-absolutely convergent if and only if E = R.
(iii) absolutely convergent if and only if E is bounded.

Proof. Since our classification of series forms a division of the set all series, it
suffices to prove implications from the left to the right in all three cases.

First, consider the case A := ∑a+n <+∞ and ∑a−n =−∞. Applying Lemma
21.2 to the series ∑(−a−n ), we conclude that its sets of subsums is the half-line
(−∞, 0]. It follows that E(∑an) = (−∞, A]. The proof in the case ∑a+n =+∞

and B := −∑a−n > −∞ is analogous and leads to the conclusion that E :=
[B, ∞) which completes the proof of left-to-right implication in (i).

Next, if the series ∑an : is potentially non-absolutely convergent then using
the Lemma 21.2 to both series ∑a+n and ∑(−a−n ) and taking into account the
the sum of an empty subseries is 0, we obtain E = R.

Finally, if the values A = ∑a+n and B =−∑a−n both are finite, we get E ⊂
[B, A]. ut

If an absolutely convergent series ∑an has only finitely many non-zero
terms, then E = E(an) is a finite subset of R and therefore presents no topo-
logical mysteries whatsoever. On the other hand, the removal of all zero terms
from any series does not change their sets of subsums. Therefore we may and
from now on we will assume that all terms of the investigated sequences (an)

are non-zero. Even more, we are now going to show that in order to describe
all topological properties of sets of subsums of absolutely convergent series it
suffices to consider only series of positive terms. Indeed, let α be the sum of
all positive terms of a series ∑an and let β be the sum of all negative terms,
that is,
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α := ∑
an>0

an and β := ∑
an<0

an.

Next, let E ′ be the set of subsums of the series of absolute values of terms of
∑an. Finally, given a subset A⊂ N, denote

A+ := {n ∈ A : an > 0} and A− := {n ∈ A : an < 0}.

Now, if the series ∑an is absolutely convergent, we may use associativity and
commutativity of infinite addition freely and hence

∑
n∈A

an = ∑
n∈A+

an + ∑
n∈A−

an = ∑
n∈A+

|an|+ ∑
an<0
n/∈A−

|an|+ ∑
an<0

an

= ∑
n∈A+

or
(an<0 and n/∈A−)

|an|+β ∈ E ′+β .

Thus, : E ⊂ E ′+β . On the other hand,

∑
n∈A
|an|= ∑

n∈A+

an− ∑
n∈A−

an = ∑
n∈A+

an− ∑
an<0

an + ∑
an<0
n/∈A−

an

= ∑
n∈A+

or
(an<0 and n/∈A−)

an−β ∈ E−β .

Thus E ′ ⊂ E−β and therefore E = E ′ + β . In particular, the sets E and E ′

are homeomorphic.
Actually, the investigation of the topological type of sets of subsums of an

absolutely convergent series can be reduced even further. We can assume that
the investigated series not only has all terms positive, but also that its terms are
arranged in non-increasing manner and that sum of the series is 1. Indeed, if
E = E(an), then defining

ãi :=
ai

∑
∞
n=1 an

,

we obtain a series ∑ ãn of sum 1. Further, denoting Ẽ := E(ãn), we get

E(an) = E

((
∞

∑
n=1

an

)
ãi

)
=

(
∞

∑
n=1

an

)
· Ẽ,
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that is E is the image of Ẽ under a dilation. In particular, the sets E and Ẽ are
homeomorphic.

Summarizing, if we investigate topological properties of the set of subsums
of an absolutely convergent series, we may, with little loss of generality, as-
sume that the considered series is of positive non-increasing terms and of sum
1. In that case the set E of subsums becomes the set of values of a purely
atomic probabilistic measure. In fact, there are a number of papers using such
a language: [15], [4], [7]. The mentioned loss of generality is caused by omit-
ting the case of almost all terms equal to zero, but, as we easily see, this is
equivalent to the case when E is a finite set.

Therefore, from now on until the end of this section whenever we will
discuss a series ∑an without any explicit assumptions, we will assume that
the series has positive and non-increasing terms and that its sum is 1.

Theorem 21.4. The set E(an) is closed for every absolutely convergent series
∑an.

It is one of classical results of Kakeya [11], [12] (see also [20], Problems
130-132) and it was rediscovered later in [9] and [14].

We turn now towards a number of simple but important notions that will
give us a better look into the structure of sets of subsums. Given an index
k ∈ N0, we denote

Ek :=

{
∞

∑
n=k+1

εnan : ∀n εn ∈ {0, 1}

}
.

Thus, Ek is the set of subsums of the k-th remainder of the series ∑an. The
value of the k-th remainder will be denoted by rk. In particular, E0 = E(an).
The set of all k-initial subsums of ∑an will be denoted by

Fk :=

{
k

∑
n=1

εnan : ∀n ∈ {1, . . . , k} εn ∈ {0, 1}

}
.

We define F0 := {0} additionally.
The following fact tells us that the set E is a union of finitely many translates

of the set of subsums of the k-th remainder.

Fact 21.5. For any k ∈ N, the following equalities hold

Ek−1 = Ek∪ (ak + Ek)
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and
E =

⋃
f∈Fk

( f + Ek).

Sometimes we will need a list of all elements of Fk in the increasing order:

0 = f (k)1 < f (k)2 < · · · < f (k)t(k) =
k

∑
n=1

an,

where t(k) := |Fk| (the cardinality of Fk). Clearly, k + 1 ≤ t(k) ≤ 2k always
(we keep assuming that ∑an is a convergent series of positive non-increasing
terms and of sum 1; in particular, f (k)2 = ak for any k ∈ N).

Fact 21.6. The set F :=
⋃

k Fk of all sums of finite subseries is dense in E.

Proof. Clearly, F ⊂ E, and hence F ⊂ E. Thus, F ⊂ E by the Thm. 21.4. On
the other hand, if x ∈ E, then

x = ∑
n∈A

an = lim
k→∞

∑
n∈A
n≤k

an ∈ F ,

that is, E ⊂ F . ut

Another of classic Kakeya’s results is the following (see [11], [12], [9],
[14]).

Theorem 21.7. The set E has no isolated points (hence E is always a perfect
set).

It is easy to see that the set E always is symmetric with respect to the point
1
2 . The next fact provides a rather natural description of E as an intersection
of a descending family of finite unions of closed intervals. Given a series ∑an

and a non-negative integer k, the set

Ik :=
⋃
f∈Fk

(
f + [0, rk]

)
will be called the k-th iterate of the set E.

Fact 21.8.

E =
∞⋂

k=1

⋃
f∈Fk

(
f + [0, rk]

)
=

∞⋂
k=1

Ik.
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Proof. Given a non-negative integer k, we get by the Fact 21.5 that

E =
⋃
f∈Fk

(
f + Ek

)
⊂

⋃
f∈Fk

(
f + [0, rk]

)
= Ik.

Thus E ⊂
⋂

k Ik. On the other hand, if x ∈
⋃

f∈Fk

(
f + [0, rk]

)
, then d(x, Fk),

that is the distance of x to Fk, does not exceed rk. Hence, if x ∈
⋂

k Ik, then
d(x, F) = 0. It means x ∈ F = E by the Fact 21.6 which completes the proof
of the reverse inclusion

⋂
k Ik ⊂ E. ut

A series ∑an is said to be quickly convergent if an > rn for all n. The
terminology has been introduced in [17].

Fact 21.9 (The First Gap Lemma). If ak > rk for some index k, then the open
interval (rk, ak) is a gap of E (ie a component of the complement of E).

Proof. Clearly, both endpoints of (rk, ak) belong to E. Suppose that (rk, ak)

is not a gap of E. Then rk < p < ak for some p ∈ E. Since the terms of ∑an

are non-increasing, we have p < ak ≤ ak−1 ≤ . . . ≤ a1 as well. Thus, the k
initial terms are excluded from any representation of p as a subsum of ∑an

and therefore p is a subsum of ∑
∞
n=k+1 an. In particular, p≤ rk, a contradiction.

ut

Yet another of classic Kakeya’s results is

Theorem 21.10. If ∑an is quickly convergent, then its set of subsums E is a
Cantor set (that is, homeomorphic to the classic Cantor ternary set). Moreover,
the Lebesgue measure of E is µE = limn 2nrn.

It is known that if ∑an is quickly convergent, then
(i) x is the right endpoint of an E-gap if and only if x ∈ F .
(ii) x is the left endpoint of an E-gap if and only if ∃ k ∈ N x ∈ Fk−1 + rk .
It follows from the Thm. 21.10 that a finite limit limn 2nrn exists for every
quickly convergent series ∑an.

A series ∑an is said to be slowly convergent if an ≤ rn for all n.
Let us recall that if the set Fk of all subsums using at most k initial terms of

the series ∑an is listed in the increasing order of elements then we use the sym-
bol f (k)j for the j-th term of the increasing finite sequence (see page 350). The
following Fact provides a vague description of endpoints of E-gaps without
the assumption that the underlying series ∑an is quickly convergent.

Fact 21.11 (The Second Gap Lemma). Let (a, b) be an E-gap. Define k :=
max{n : an ≥ b−a}. Then b ∈ Fk. Moreover, if b = f (k)j , then a = f (k)j−1 + rk.
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Proof. Observe first that b ∈ Fk. Otherwise, every representation of the form
b = ∑n∈A an must involve at least one term al with l > k. Then b−al ∈ E and,
by the definition of k, b−al ∈ (a, b) contradicting the assumption that (a, b)
is an E-gap. Thus, b ∈ Fk, indeed.

Recall that E =
⋃

f∈Ek
( f +Fk), where Ek = E(∑∞

n=k+1 an) and Fk = { f (k)j :

j = 1, 2, . . . , t(k)}. Let j be such that b = f (k)j . Then f (k)j−1 ≤ a, since (a, f (k)j )

is an E-gap.
Suppose now that f (k)j−1 + rk > b. Then ( f (k)j−1 + ri)

∞
i=k is a sequence decreas-

ing to f (k)j ≤ a such that the difference between any two consequtive terms
is less than b− a. Hence the interval (a, b) contains at least one term of the
sequence and thus E ∩ (a, b) 6= /0, a contradiction. Therefore, we have

f (k)j−1 + rk ≤ a. (21.1)

On the other hand, a < f (k)i for i≥ j. Hence a∈
⋃

i< j( f (k)i +Ek) which implies

that a ≤ sup( f (k)j−1 +Ek) = f (k)j−1 + rk. Thus, by (21.1), a = f (k)j−1 + rk. ut

Example 21.12. Consider the series

a1 = 1, a2 =
15
16

, a3 = a4 =
1
2
, a5 =

7
16

, an =
1
2n for n≥ 6.

We ought to multiply all terms of the series by a suitable factor in order
to guarantee its sum is 1, but it is inessential for the example. The interval
(a, b) := (31

32 , 1) is a gap of E. b has exactly two representations as a subsum
of the series: b = a1 and b = a3 +a4. Since F1 = {0, 1}, we have b ∈ F1 with
ε1 = 1. Moreover,

b = f (1)2 , a =
31
32

< f (1)1 + r1 = 0 + 2
13
32

.

Also b ∈ F4 with ε4 = 1 and F4 = {0, 1
2 ,

15
16 , 1, 1 7

16 , 1 1
2 , 1 15

16 , 2, 2 7
16 , 2 15

16 }.
Thus,

b = f (4)4 , a =
31
32

< f (4)3 + r4 =
15
16

+ 2
15
32

.

Hence a is not of the form f (k)j−1 + rk for any representation b = ∑
k
i=1 εiai with

εk = 1, where j is such that b = f (k)j . That is, one of statements in the initial
part of the proof of Lemma 2, [18] is false. Fortunately, the mistake had no
influence on corectness of results from the cited paper.
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Here is the last of classic Kakeya theorems on partial sums that we want
to recall. It was rediscovered not only by already metioned H. Hornich and P.
Kesava Menon, but also by A. D. Weinstein and B. E. Shapiro in [23].

Theorem 21.13. E = [0, 1] if and only if the series ∑an is slowly convergent.

The above theorem has turned out to be the perfect tool for showing that
every continuous measure has the Darboux property [22] which confirms the
strong relationship of Kakeya’s theorems to the basic measure theory.

Corollary 21.14. E is a union of finitely many closed intervals if and only if
an ≤ rn for all sufficiently large indices n.

Proof. (⇒) If E is a union of a finite family of closed intervals, then [0, 1]\E
is a union of a finite family of pairwise disjoint open intervals. Therefore, the
lengths of gaps of E are bounded away from 0 and thus, by the First Gap
Lemma, an ≤ rn for all sufficiently large n.

(⇐) If an ≤ rn for n > N, then EN = [0, rN ] by the Thm. 21.13. Now, the
equality E =

⋃
f∈FN

( f +EN) completes the proof. ut

We are now turning our attention towards a discussion of a bold hypothesis
formulated by S. Kakeya. Namely, he thought that every set of subsums of
a convergent series of positive terms is either a union of a finite family of
bounded closed intervals or a Cantor set, and he wrote openly: "but I have no
proof of it".

21.2 M-Cantorvals

The hypothesis remained open until the work of Weinstein and Shapiro who
gave an example of a series with the set of subsums being neither of the two
known to Kakeya types [23]. The series provided by Weinstein and Shapiro
has an M-Cantorval as the set of its subsums. The full classification of sets of
subsums up to homeomorphisms was eventually found by J. A. Guthrie and
J. E. Nymann in [8] and their proof was essentially repaired by Nymann and
Sáenz in [18]. We are going to present here the classification theorem with
a new and short proof based on the Mendes-Oliveira characterization of M-
Cantorvals. We are now turning towards the definition of an M-Cantorval.

Let us start from some basic notions. Connectivity components of a closed
set D⊂R are either closed intervals or singletons. Intervals that are connectiv-
ity components of a closed set D will be called D-intervals, while one-point
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connectivity components of D will be called loose points of D. Open intervals
that are connectivity components of D′ will be called D-gaps. If D is bounded,
then the two unbounded D-gaps will be called exterior D-gaps. Bounded D-
gaps will be called interior D-gaps.

Let C be the classic Cantor set. The order of an interior C-gap is defined to
be the number of step of the standard construction of the Cantor set in which
the gap was removed from [0, 1]. For instance, (1

3 ,
2
3) is a C-gap of order 1,

(7
9 ,

8
9) is one of two C-gaps of order 2, (19

81 ,
20
81) is one of eight C-gaps of order

4. We do not assign any order to the exterior C-gaps.
We will say that a sequence (In) of intervals of R converges to a point x∈R

if
∀ε > 0 ∃N ∈ N ∀ n≥ N In ⊂ (x− ε, x+ ε),

that is, if the closures of the intervals tend to the singleton : {x} : in the Vietoris
topology. Observe three simple properties of the classic Cantor set C.

Fact 21.15. The classic Cantor set C enjoys the following properties:
(c1) Given any two C-gaps, there are an even order C-gap and an odd order

C-gap between them.
(c2) Every point of C is the limit of a sequence of C-gaps of even order and

of a sequence of C-gaps of odd order.
(c3) The set of endpoints of all odd order C-gaps is dense in C.

The Guthrie-Nymann set is defined to be

GN := C ∪
∞⋃

n=1

G2n−1 = [0, 1]\
∞⋃

n=1

G2n,

where Gk denotes the union of all C-gaps of order k. Clearly, GN is a nonempty
bounded perfect set, since no two GN-gaps have common endpoints. The GN-
gaps are exactly C-gaps of even order. The GN-intervals are exactly closures of
C-gaps of odd order. GN has infinitely many component intervals and therefore
is not homeomorphic to the classic Cantor set.

How can we characterize all perfect subsets of R that are homeomorphic to
GN? We start with a list of topological properties of the set GN.

Fact 21.16. The Guthrie-Nymann set enjoys the following properties:
(GN1) GN-gaps and GN-intervals have no common endpoints.
(GN2) Endpoints of all GN-gaps are limits of sequences of GN-intervals

and limits of sequences of GN-gaps.
(GN3) Given any two GN-intervals (or any two GN-gaps, or a GN-gap and

a GN-interval), there are a GN-interval and a GN-gap between them.
(GN4) The union of all GN-intervals is dense in GN.
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Theorem 21.17. A nonempty bounded perfect set P ⊂ R is homeomorphic to
the Guthrie-Nymann set if and only if

(i) P-gaps and P-intervals have no common endpoints
and

(ii) the union of all P-intervals is dense in P.

Proof. The necessity of both conditions (i) and (ii) follows easily from prop-
erties (GN1) and (GN4).

Assume now that P⊂ R is a nonempty bounded perfect set with properties
(i) and (ii) and denote a := infP, b := supP. We are going to construct a home-
omorphism h : [0, 1]→ [a, b] (an increasing continuous surjection) such that
h(GN) = P. Let (IGN

i )i∈N be a joint enumeration of all GN-intervals and all
closures of interior GN-gaps. Analogously, let (IP

i )i∈N denotes a sequence of
all P-intervals and closures of all interior P-gaps. It follows from the property
(i) that the last sequence is infinite, indeed.

We are ready for inductional construction of a function f :
⋃

i IGN
i →

⋃
i IP

i .
Take the interval IGN

1 . If it is a GN-interval, then we map it in the linear in-
creasing manner onto the first P-interval in the sequence (IP

i )i∈N. If IGN
1 is the

closure of a bounded GN-gap, then we define f
∣∣
IGN
1

to be the increasing linear

map of the interval onto the first closure of a P-gap in the sequence (IP
i )i∈N.

Suppose now that n is a positive integer such that there is an increasing con-
tinuous injection f of

⋃n
i=1 IGN

i into
⋃

i IP
i such that f takes GN-intervals onto

P-intervals and takes closures of GN-gaps onto closures of P-gaps. Consider
the interval IGN

n+1. Exactly one of the following cases holds:
(a) IGN

n+1 lies between the intervals IGN
i and IGN

j for some i, j ≤ n.
(b) IGN

n+1 lies to the right of all IGN
i for i = 1, . . . , n.

(c) IGN
n+1 lies to the left of all IGN

i for i = 1, . . . , n.
In the case (a), if IGN

i is a GN-interval (the closure of a GN-gap), then we
map it in the linear and increasing manner onto the P-interval (the closure of
a P-gap) with the smallest index in the sequence (IP

i )i∈N among indices of all
P-intervals (of all closures of a P-gaps) lying between f (IGN

i ) and f (IGN
j ). In

the case (b), if IGN
i is a GN-interval (the closure of a GN-gap), then we map it

in the linear and increasing manner onto the P-interval (the closure of a P-gap)
with the smallest index in the sequence (IP

i )i∈N among indices of all P-intervals
(of all closures of a P-gaps) lying to the right of all f (IGN

i ) for i= 1, . . . , n. The
case (c) is fully analogous to the case (b).

This construction yields an increasing continuous surjection f of
⋃

i IGN
i

onto
⋃

i IP
i such that the image under f of the union of all GN-intervals is the

union of all P-intervals.
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Let us recall that a bounded and increasing continuous function g : A→
R defined on a set A dense in a closed interval [α, β ] can be extended to a
continuous function g : [α, β ] → R if and only if

lim
x→x+0

g(x) = lim
x→x−0

g(x)

for every x0 ∈ (α, β ) \A. Then g is an increasing function from [α, β ] onto
[limt→α+ g(t), limt→β− g(t)].

The constructed by us function f is defined on [0, 1] except for the loose
points of GN which are not endpoints of interior GN-gaps. Let x0 be such an
exceptional point. The function f is increasing and bounded and hence there
exist finite limits limx→x−0

f (x) ≤ limx→x+0
f (x). Suppose that the two limits

are distinct. Then the open interval
(

limx→x−0
f (x), limx→x+0

f (x)
)

has no com-

mon points with f
(⋃

i IGN
i

)
=
⋃

i IP
i which contradicts the fact that the last set is

dense in [a, b]. Hence, it must be limx→x−0
f (x) = limx→x+0

f (x) which proves
that f can be uniquely extended to a homeomorphism h : [0, 1] → [a, b].

It remains to show that h(GN) = P. Since h is a homeomorphism, we get
h(A) = h(A) for any A⊂ [0, 1]. In particular, choosing A to be the union of all
GN-intervals, we get h(GN) = P by the property (ii) and by our construction
of h. ut

A set homeomorphic to the GN set will be called an M-Cantorval. Another
characterization of M-Cantorvals was given by Mendes and Oliveira in [16].

Theorem 21.18. A nonempty bounded perfect set P ⊂ R is an M-Cantorval if
and only if all endpoints of P-gaps are limits of sequences of P-intervals and
limits of sequences of P-gaps.

Proof. A short outline of a direct constructional proof of the Mendes-Oliveira
characterization of M-Cantorvals can be found in the Appendix of [16]. We
are going to present here another proof based on Thm. 21.17.

Suppose that P is an M-Cantorval. Then it has properties (i) and (ii) of Thm.
21.17. Observe that if a, b (with a < b) are points of P such that

(∗) a, b are not endpoints of the same P-gap
and

(∗∗) a and b do not belong to the same P-interval,
then the open interval (a, b) contains a P-interval. Indeed, the interval (a, b)
must contain a point of the complement of P by (∗∗). Hence, since a, b∈ P, the
interval must contain a P-gap. Now, at least one of the endpoints of the P-gap
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must lie in (a, b) by (∗). This endpoint cannot be an endpoint of a P-interval
because of (i). Hence, by (ii), there is at least one P-interval contained in (a, b).

Let x ∈ P be an endpoint of a P-gap. The point x does not belong to any
P-interval by (i). On the other hand, since P is perfect, there is a sequence
(xn) of points of P monotonically convergent to x. Passing, if necessary, to a
subsequence, we may assume that any two consecutive terms of the sequence
are neither endpoints of the same P-gap nor belong to the same P-interval.
Thus, by our earlier observation, there is a P-interval Pn between xn and xn+1.
The sequence (Pn) converges to x and Pi∩Pj = /0 for i 6= j. If Gn denotes any
P-gap lying between Pn and Pn+1, then the sequence (Gn) converges to x as
well. Hence all endpoints of P-gaps are limits of sequences of P-intervals and
limits of sequences of P-gaps.

Now, let P ⊂ R be a nonempty bounded perfect set such that all endpoints
of P-gaps are limits of sequences of P-intervals and limits of sequences of P-
gaps. This property implies instantly that a P-gap and a P-interval cannot have
a common endpoint, that is, P satisfies the property (i) of Thm. 21.17.

Let x be a point of P not belonging to any of P-intervals. Take any sequence
(xn) of points of P monotonically convergent to x. Passing, if necessary, to a
subsequence, we may assume that no two consequtive terms of the sequence
belong to the same P-interval or are endpoints of the same P-gap. Therefore,
given any positive integer n, there is a P-gap between xn and xn+1 such that at
least one of the endpoints of the gap belongs to the open interval with endpoints
xn and xn+1. According to our assumption about P, the endpoint of the gap is
a limit of a sequence of P-intervals. Hence the open interval with endpoints
xn and xn+1 contains infinitely many P-intervals. Choosing one of them and
denoting it by Pn, we obtain a sequence (Pn) of P-intervals convergent to x.
Hence x belongs to the closure of the union of all P-intervals. Since x ∈ P was
arbitrary, we conclude that the set P has the property (ii) of Thm. 21.17 as well.

Then P is an M-Cantorval by the Thm. 21.17. ut

21.3 Sets of subsums of series and Cantorvals

The first essential appearance of an M-Cantorval popped up in the paper [23]
and it was given as a counterexample to a hypothesis on sets of subsums of
an absolutely convergent series. M-Cantorvals turned out to be one of four
possible topological types of sets of subsums of an absolutely convergent series
[8]. However Guthrie and Nymann did not use the name; they wrote about
sets homeomorphic to the set T of subsums ∑βn where β2n−1 = 3/4n and
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β2n = 2/4n (n = 1, 2, . . . ). The Guthrie-Nymann set was given as a transparent
example of a set homeomorphic to the set T in [8]. Finally, when Mendes and
Oliveira characterized topological types of algebraic sums of homogeneous
Cantor sets in [16], they defined various types of Cantorvals, including the
M-Cantorvals, and used the name explicitly.

We need first a theorem that tells us that the set of subsums is locally iden-
tical near endpoints of its gaps and it will be the crucial tool in proving the
topological classification of sets of subsums of absolutely convergent series.
It was proved in [18] and a number of versions of it were developed in more
general settings (Lemma 3.3, [19] and Proposition 2.1, [1]).

Theorem 21.19 (Nymann-Sáenz Theorem). If (a, b) is an interior E-gap, then
the following equalities hold

b+
(
[0, ε] ∩ E

)
= [b, b+ ε] ∩ E

and (
[1− ε, 1] ∩ E

)
− (1−a) = [a− ε, a] ∩ E

for all sufficiently small ε > 0.

Proof. We start with an Observation 1:

E ∩ [0, ε] = Ek ∩ [0, ε] for ε < ak.

The inclusion⊃ above is obvious. On the other hand, if x ∈ E and x < ak, then
x is the sum of some terms less than ak, that is, some terms with indices greater
than k. Hence, x ∈ Ek.

Observation 2: Let b be the right endpoint of an interior E-gap. Let k and
f (k)j = b be as in the Second Gap Lemma (Fact 21.11).

If j = t(k) (see page 350), then b = ∑
k
n=1 an. Hence if x ∈ E and x > b, then

x ∈ b+Ek by the Second Gap Lemma. The inclusion b+Ek ⊂ E is obvious.
Hence (b,+∞) ∩ E = b + Ek and thus

[b, b+ ε]∩E = [b, b+ ε]∩ (b + Ek) for every ε > 0.

If j < t(k), then taking x ∈ [b, b + ε] ∩ E, where ε < f (k)j+1 − f (k)j , and its
representation x = ∑n∈A an, we look at the trivial equality

x = ∑
n∈A
n≤k

an + ∑
n∈A
n>k

an.
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Clearly, x̃ := ∑n∈A
n≤k

an ∈ Fk. If x̃ < b, then x̃ ≤ f (k)j−1, and x ≤ f (k)j−1 + rk. Thus,

by the Second Gap Lemma, x ≤ a < b, a contradiction. If x̃ > b, then x̃ ≥
f (k)j+1 > f (k)j + ε = b+ ε , a contradiction. Therefore, it must be x̃ = b and
hence x = b + ∑n∈A

n>k
an ∈ b + Ek. We have proved that

[b, b+ ε] ∩ E = [b, b+ ε] ∩ (b+Ek) for 0 < ε < f (k)j+1 − f (k)j .

Finally, given ε < min{ak, f (k)j+1− f (k)j }, we get

b+
(
[0, ε] ∩ E

) Obs. 1
= b+

(
[0, ε] ∩ Ek

)
= [b, b+ ε] ∩ (b + Ek

)
Obs. 2
= [b, b+ ε] ∩ E.

The proof of the second equality in the thesis of the Thm. 21.19 is analogous.
ut

We are now ready for the main Guthrie-Nymann Classification Theorem
(Thm. 1, [8]).

Theorem 21.20. The set E of all subsums of an absolutely convergent series
always is of one of the following four types:

(i) a finite set;
(ii) a union of a finite family of bounded closed intervals;
(iii) a Cantor set;
(iv) an M-Cantorval.

Proof. Clearly, E is a finite set if and only if almost all terms of the series are
zeros.

It remains to look at the case when ∑an is a convergent series of positive
terms and of sum 1. Assume that E is then neither a union of a finite family
of closed intervals nor a Cantor set. The first assumption tells us that an > rn

for infinitely many n by the Cor. 21.14. The second assumption tells us that E
contains at least one closed interval by the Thm. 21.7.

Then 0 is the limit of a sequence of E-gaps by the First Gap Lemma. Since E
is symmetric with respect to the point 1

2 , 1 is the limit of a sequence of E-gaps
as well.

A union of a finite family of nowhere dense sets is nowhere dense. Hence,
since E contains a component interval, it follows from the Fact 21.5 that sets Ek

contain at least one component interval Pk. Since En = [0, rn]∩E = [0, an)∩E
for all n ∈ A := {i : ai > ri }, it follows that the intervals Pk are intervals of E
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for those n as well. The sequence of intervals (Pn)n∈A converges to 0, because
rn→ 0. By symmetry again, the point 1 ∈ E is the limit point of a sequence of
E-intervals as well.

Now, by the Nymann-Sáenz Thm., we conclude that every endpoint of every
E-gap is the limit of a sequence of E-gaps and of a sequence of E-intervals.
Finally, an application of the Mendes-Oliveira Thm. 21.18 shows that E is an
M-Cantorval. ut

The latter theorem states that the space l1 can be decomposed into four sets
c00, C, I andMC, where I consists of sequences (xn) with E(xn) equal to a
finite union of intervals, C consists of sequences (xn) with E(xn) homeomor-
phic to the Cantor set, and MC consists of sequences (xn) with E(xn) being
Cantorvals. Let us recall some examples of absolutely summable sequences
belonging toMC. We use the original notations proposed by the authors. The
notation will be unified later in the chapter.

A. D. Weinstein and B. E. Shapiro in [23] gave an example of a sequence
(an) defined by the formulas: a5n+1 = 0,24 ·10−n, a5n+2 = 0,21 ·10−n, a5n+3 =

0,18 ·10−n, a5n+4 = 0,15 ·10−n, a5n+5 = 0,12 ·10−n. So,

(an) =

(
3 ·8
10

,
3 ·7
10

,
3 ·6
10

,
3 ·5
10

,
3 ·4
10

,
3 ·8
100

, . . .

)
.

However, they did not justify why the interior of E(an) is non-empty.
Independently, C. Ferens ([7]) constructed a sequence (bn) putting b5l−m =

(m+3)2l−1

33l for m = 0,1,2,3,4 and l = 1,2, . . . . Therefore

(bn) =

(
7 · 1

27
,6 · 1

27
,5 · 1

27
,4 · 1

27
,3 · 1

27
,7 · 2

272 , . . .

)
.

Finally, in Jones’ paper [10] there is presented a sequence

(dn) =

(
3
5
,
2
5
,
2
5
,
2
5
,
3
5
· 19

109
,
2
5
· 19

109
,
2
5
· 19

109
,
2
5
· 19

109
,
3
5
· ( 19

109
)2, . . .

)
.

In fact, R. Jones shows a continuum of sequences generating Cantorvals, in-
dexed by a parameter q, by proving that, for any positive number q with

1
5
6

∞

∑
n=1

qn <
2
9

(i.e. 1
6 6 q < 2

11 ) the sequence
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3
5
,
2
5
,
2
5
,
2
5
,
3
5

q,
2
5

q,
2
5

q,
2
5

q,
3
5

q2, . . .

)
is not in C nor I, so it belongs to MC. Based on Jones’ idea, we will
describe one-parameter families of sequences which contain (in particular)
(an) ,(bn) ,(dn) and many others.

For any q∈ (0, 1
2) we will use the symbol (k1,k2, . . . ,km;q) to denote the se-

quence (k1,k2, . . . ,km,k1q,k2q, . . . ,kmq,k1q2,k2q2, . . . ,kmq2, . . .). Such sequences
we will call multigeometric. In ([5]) the authors have obtained the following

Theorem 21.21. Let k1 > k2 > · · · > km be positive integers and K = ∑
m
i=1 ki.

Assume that there exist positive integers n0 and n such that each of numbers
n0,n0+1, . . . ,n0+n can be obtained by summing up the numbers k1,k2, . . . ,km

(i.e. n0 + j = ∑
m
i=1 εiki with εi ∈ {0,1}, j = 1, . . . ,n). If

1
n+1

6 q <
km

K + km

then E(k1, . . . ,km;q) is a Cantorval.

Now we can easily check that sequences (an) ,(bn) and (dn) generate Can-
torvals, because they belong to appropriate one-parameter families, indexed by
q.

Example 21.22. The Weinstein-Shapiro sequence ([23]).
It is clear that if E(xn) is a Cantorval, α 6= 0 and (αxn) = (αx1,αx2, . . .),

then E(αxn) is a Cantorval too. To simplify a notation we multiply the se-
quence (an) by 10

3 and consider the family of sequences

aq = (8,7,6,5,4;q)

for q ∈ (0, 1
2). Summing up 8,7,6,5 and 4, we can get any natural number

between n0 = 4 and n + n0 = 26. Therefore, by Theorem 21.21, for any q
satisfying inequalities

1
23
6 q <

4
34

,

the sequence aq generates a Cantorval. Obviously, the number 1
10 used in [23]

belongs to [ 1
23 ,

4
34). It is not difficult to check that aq ∈ I for q> 4

34 .

Example 21.23. The Ferens sequence ([7]).
For the family of sequences

bq = (7,6,5,4,3;q)
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K is equal to 25, n0 = 3 and n = 19. Hence, for any q ∈ [ 1
20 ,

3
28), bq generates a

Cantorval. In particular, the sequence (7,6,5,4,3; 2
27), obtained from the Fer-

ens sequence by multiplication by a constant, generates a Cantorval. Note that
bq ∈ I, for q> 3

28 .

Example 21.24. The Jones-Velleman sequence ([10]).
Applying Theorem 21.21 to the sequence

dq = (3,2,2,2;q)

we obtain K = 9, n0 = 2 and n = 5, so for any q ∈ [1
6 ,

2
11), E(dq) is a Cantorval

set. Clearly, ∑
∞
n=1 qn ∈ [1

5 ,
2
9), for such q. Moreover dq ∈ I for q> 2

11 .

We can also consider analogous sequences for more than three 2’s. In fact,
any sequence

xq = (3,2, . . . ,2︸ ︷︷ ︸
k−times

;q)

with q ∈ [ 1
2k ,

2
2k+5), generates a Cantorval set.

Note that for k = 1 and k = 2 the argument of Theorem 21.21 breaks down,
because 1

2k >
2

2k+5 .

However, we can apply Theorem 21.21 to "shortly defined" sequences. In-
deed, for the sequence (4,3,2;q), numbers K, n0 and n are the same as for dq.
It is not difficult to check that, to keep the interval [ 1

n+1 ,
km

K+km
) non-empty, m

should be greater than 2.
There is a natural question if Theorem 21.21 precisely describes the set of q

with (k1, . . . ,km;q) ∈MC. The upper bounds, for all mentioned examples are
exact, because (k1, . . . ,km;q) ∈ I, for q > km

K+km
. However, this is not true for

all sequences satisfying the assumptions of Theorem 21.21.

Example 21.25. For the sequence hq = (10,9,8,7,6,5,2;q), we have K = 47,
n0 = 5 and n = 37. Therefore the interval [ 1

n+1 ,
km

K+km
) = [ 1

38 ,
2

49) is non-empty.
However, for h=(10,9,8,7,6,5,2; 2

49) and any n∈N, we have ∑i>7n−1 h(i)=

( 2
49)

n−1(2+
2

49 ·47
1− 2

49
) = 4( 2

49)
n−1 < h(7n− 1). It means that h /∈ I. Note that in

the second part of the proof of 21.21(compare [5]) only the inequality q≥ 1
n+1

is used. Since 2
49 > 1

38 , we have h /∈ C and so h ∈MC.
Again, it is not difficult to check that hq /∈ I if and only if q < 3

50 .
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21.4 Topological and algebraic properties of C, I andMC

Let us observe that all the sets c00, C, I andMC are dense in `1. Moreover, c00

is an Fσ -set of the first category. We are interested in studying the topological
size and Borel classification of considered sets. To do it, let us consider the
hyperspace H(R), that is the space of all non-empty compact subsets of reals,
equipped with the Vietoris topology (see [13], 4F, pp. 24-28). Recall, that the
Vietoris topology is generated by the subbase of sets of the form {K ∈ H(R) :
K ⊂U} and {K ∈ H(R) : K ∩U 6= /0} for all open sets U in R. This topology
is metrizable by the Hausdorff metric dH given by the formula

dH(A,B) = max{max
t∈A

d(t,B),max
s∈B

d(s,A)}

where d is the natural metric in R. It is known that the set N of all nowhere
dense compact sets is a Gδ -set in H(R) and the set F of all compact sets with
finite number of connected components is an Fσ -set. To see this, it is enough
to observe that

• K is nowhere dense if and only if for any set Un from a fixed countable
base of natural topology in R there exists a set Um from this base, such that
cl(Um)⊂Un and K ⊂ (cl(Um))

c;
• K has more then k components if and only if there exist pairwise disjoint

open intervals J1,J2, . . . ,Jk+1, such that K⊂ J1∪J2∪·· ·∪Jk+1 and K∩Ji 6= /0
for i = 1,2, . . . ,k+1.

Now, let us observe that if we assign the set E(x) to the sequence x ∈ `1, we
actually define the function E : `1→ H(R).

It is not difficult to check (compare Lemma 3.1, [2]) that the function E
is Lipschitz with Lipschitz constant L = 1, and consequently it is continuous.
Now we can prove that

Theorem 21.26 ([2]). The set C is a dense Gδ -set (and hence residual), I is
a true Fσ -set (i.e. it is Fσ but not Gδ ) of the first category, andMC is in the
class (Fσδ ∩Gδσ )\Gδ .

Proof. Let us observe that C ∪ c00 = E−1[N] and I ∪ c00 = E−1[F ] where N,
F , E are defined as before. Hence C ∪ c00 is Gδ -set and I ∪ c00 is Fσ -set.
Thus C is Gδ -set (because c00 is Fσ -set) and I ∪MC is Fσ . Moreover, I =
(I ∪ c00)∩ (I ∪MC) is Fσ -set, too. By the density of C, C is residual. Since
I is dense of the first category, it cannot be Gδ -set. For the same reason,MC
also cannot be Gδ -set. Since MC is a difference of two Fσ -sets, it is in the
class Fσδ ∩Gδσ . ut



364 Artur Bartoszewicz, Małgorzata Filipczak, Franciszek Prus-Wiśniowski

Jones in a very nice paper [10] gives the following example. Let (xn) =

(1/2n) and (yn) = (1/3n). Then clearly (xn) ∈ I and (yn) ∈ C. Moreover,
(xn + yn) ∈ C and (xn− yn) ∈ I. Since, for any n ∈ N, xn = (xn + yn)− yn and
yn =−(xn− yn)+ xn, then neither I nor C is closed under pointwise addition.
However, the sets C, I and MC contain large (c-generated) algebraic struc-
tures.

Assume that V is a linear space (linear algebra). A subset E ⊂ V is called
lineable (algebrable) whenever E∪{0} contains an infinite-dimensional linear
space (infinitely generated linear algebra, respectively). For a cardinal κ > ω ,
let us observe that the set E is κ-algebrable (i.e. it contains κ-generated linear
algebra), if and only if it contains an algebra which is a κ-dimensional linear
space . Moreover, we say that a subset E of a commutative linear algebra V
is strongly κ-algebrable, if there exists a κ-generated free algebra A contained
in E ∪{0}. The subset M of a Banach space X is spaceable if M ∪{0} con-
tains infinitely dimensional closed subspace Y of X . (More information of such
structures and a rich bibliography is presented in chapter 14.) In [2] it is proved
that

Theorem 21.27. C and I are strongly c-algebrable.MC is c-lineable.

Theorem 21.28. Let I1 be a subset of I which consists of those x ∈ `1 for
which E(x) is an interval. Then I1 is spaceable. Moreover, for any infinite-
dimensional closed subspace Y of `1, there is (yn)∈Y such that E(yn) contains
an interval.

Note that from the last assertion it follows that the set C - the biggest in the
topological sense - is not spaceable.
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[2] T. Banakh, A. Bartoszewicz, S. Głąb, E. Szymonik, Algebraic and topological prop-
erties of some sets in l1, Colloq. Math. 129 (2012), 75–85.

[3] C. R. Banerjee, B. K. Lahiri, On subseries of divergent series, Amer. Math. Monthly
71 (1964), 767–768

[4] E. Barone, Sul condominio di misure e di masse finite, Rend. Mat. Appl. 3 (1983),
229–238.

[5] A. Bartoszewicz, M. Filipczak, E. Szymonik, Muligeometric sequences and Cantor-
vals, to appear in CEJM.

[6] C. A. Cabrelli, K. E. Hare, U. M. Molter, Sums of Cantor sets, Ergodic Theory Dy-
namical systems 17 (1997), 1299–1313.



21. Topological and algebraic aspects of subsums of series 365

[7] C. Ferens, On the range of purely atomic measures, Studia Math. 77 (1984), 261–263.
[8] J. A. Guthrie, J. E. Nymann, The topological structure of the set of subsums of an

infinite series, Colloq. Math. 55 (1988), 323–327.
[9] H. Hornich, Über beliebige Teilsummen absolut konvergenter Reihen, Monasth.

Math. Phys. 49 (1941), 316–320.
[10] R. Jones, Achievement sets of sequences, Amer. Math. Monthly 118, no. 6 (2011),

508–521.
[11] S. Kakeya, On the partial sums of an infinite series, Tôhoku Sci. Rep. 3, no. 4 (1914),

159–164.
[12] S. Kakeya, On the set of partial sums of an infinite series, Proc. Tokyo Math.-Phys.

Soc. 2nd ser. 7 (1914), 250–251.
[13] A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Math. 156,

Springer, New York, 1995.
[14] P. Kesava Menon, On a class of perfect sets, Bull. Amer. Math. Soc. 54 (1948),

706–711.
[15] S. Koshi, H. Lai, The ranges of set functions, Hokkaido Math. J. 10 (special issue)

(1981), 348–360.
[16] P. Mendes, F. Oliveira, On the topological structure of arithmetic sum of two Cantor

sets, Nonlinearity 7 (1994), 329–343.
[17] M. Morán, Fractal series, Mathematica 36 (1989), 334–348.
[18] J. E. Nymann, R. A. Sáenz, On the paper of Guthrie and Nymann on subsums of an

infinite series, Colloq. Math. 83 (2000), 1–4.
[19] J. E. Nymann, R. A. Sáenz, The topoplogical structure of the set of P-sums of a

sequence, II, Publ. Math. Debrecen 56 (2000), 77–85.
[20] G. Pólya und G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Bd. I, Berlin, 1925.
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Institute of Mathematics, University of Szczecin
ul. Wielkopolska 15, PL-70-453 Szczecin, Poland
E-mail: wisniows@univ.szczecin.pl




