
Chapter 27
Decompositions of permutations of N with respect
to divergent permutations

ROMAN WITUŁA

2010 Mathematics Subject Classification: 40A05, 05A99.
Key words and phrases: divergent permutations, convergent permutations, sum-preserving
permutations.

27.1 Basic technical notions

A bijection of set A ⊂ N onto itself is called here a permutation of A. If p
is a permutation of N then the symbol pk denotes the product (composi-
tion is an equivalent term) of k permutations p, i.e., p1 := p, pk+1 := p ◦ pk,
k ∈ N. A permutation p of N will be called almost identity on N if there exists
k = k(p) ∈ N such that p(n) = n for each n ∈ N, n> k.

We note that any permutation p of N can be written as a product of distinct
(meaning "disjoint" in this paper) cycles:

– finite cycles:
(
a = pn(a), p(a), p2(a), . . . , pn−1(a)

)
where a ∈ N and n is

called the length of this cycle,
– infinite cycles:

(
. . . , p−2(a), p−1(a),a, p(a), p2(a), . . .

)
where a ∈ N.

Also any product of distinct cycles represents a permutation. A cycle of
length 2 is called a transposition.

Family of permutations of N will be denoted by P. Let p ∈ P. The
p-order of element a ∈ N is defined to be the smallest positive integer k satis-
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fying relation pk(a) = a. If such an integer does not exist we say that p-order
of a is infinite. It is obvious that in this case the p-cycle generated by a has
the form (. . . , p−2(a), p−1(a),a, p(a), p2(a), . . .), i.e. it is the infinite cycle and
pk(a) 6= pl(a) for any two different integers k and l. Set G ⊂ N will be called
a minimal set of generators of p if G is a set of values of any choice function
on the family of sets of members of all distinct cycles of p. The p-cycle gen-
erated by a will be denoted by cycle(p,a). Moreover, we say that (a,b,c, . . .)
or (. . . ,β ,α,a,b,c, . . .) are p-cycles if all a,b,c,α,β , . . . are positive integers
and b = p(a), c = p2(a), α = p−1(a), β = p−2(a) and so on. Finally the order
of permutation p ∈P is defined to be the smallest positive integer k such that
pk = id(N), where the symbol id(A) denotes the identity function on A for ev-
ery nonempty A⊂N. If such an integer does not exist we say that order of p is
infinite.

In this paper the inclusion will be denoted by ⊆. Sign ⊂ is reserved for
the proper inclusion, i.e., A ⊂ B if A ⊆ B and A 6= B. Finite set I ⊂ N will be
called an interval or an interval of N if there exist m,n ∈ N, m 6 n, such that
I = {k ∈ N : m 6 k 6 n}. Only this type of intervals will be discussed in the
paper.

We say that a nonempty set A ⊂ N is a union of n MSI (or of at most n
MSI or of at least n MSI) if there exists a family F of n (or of at most n or of
at least n, respectively) intervals of N forming a partition of A and such that
dist(I,J) > 2 for any two different elements I,J of F. MSI is the abbreviated
form of the notion of mutually separated intervals.

A countable family {An} of nonempty and finite subsets of N will be called
an increasing sequence if maxAn < minAn+1 for every n ∈N. Let a,b ∈N and
/0 6= A⊂ N. Then we will write a < A < b if a < α < b for every α ∈ A.

27.2 Main notions and results

Permutation p∈P rearranging some convergent real series ∑an into divergent
series ∑ap(n) is called a divergent permutation. Family of all permutations of
that kind will be denoted by D. Whereas the subset of D composed of all per-
mutations p such that p−1 is also a divergent permutation, will be denoted by
DD and called, after Kronrod [2] and myself, the family of two-sided diver-
gent permutations.

For contrast, permutation p∈ C :=P\D is called a convergent permutation
because it rearranges each convergent real series ∑an into a series which is
convergent as well.
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In the paper we will use permanently the following combinatorial charac-
terization of divergent permutations (dual to the Agnew’s combinatorial char-
acterization of convergent permutations [1], [5], [6]). Let p ∈P. Then p ∈D

if and only if for every n ∈ N there exists an interval I ⊂ N such that set p(I)
is a union of at least n MSI. There exist also many other characterizations of
divergent permutations (see [7], [12], [8]) but they will be not used in this
paper.

We say that a nonempty familyA⊂P is algebraically small if P\G(A) 6=
/0, where G(A) denotes the group of permutations generated by A. Similarly
we say that a family A ⊂ P is algebraically big if A◦A := {p ◦ q : p,q ∈
A} =P. Henceforward the symbol ◦ of composition of permutations will be
also used with regard to the superposition of any nonempty sets A,B⊂P, i.e.

A◦B :=
{

p◦q : p ∈ A and q ∈ B
}
.

It is known that C is algebraically small. This fact was proven by Pleasants [3],
[4].

Remark 27.1. There exist subsets of P which are neither algebraically small
nor algebraically big. For example, any set G of generators of P such that
G ◦G 6=P possesses this property. In the following example the construction
of such set of generators of P will be presented.

Example 27.2. Using transfinite induction we can construct a transfinite se-
quence {Gω}ω∈Ω of subsets of P such that

Gend =
⋃

ω∈Ω

Gω

is a set of generators of P and for every ω0 ∈Ω if G is a group of permutations
generated by set

⋃
ω<ω0

Gω then

Gω0 = {p}∪
⋃

ω<ω0

Gω

and a permutation p = p(G) is chosen from set P\G.
Hence we can prove that if p ∈ Gend then there exists n ∈ N such that

pn 6∈ Gend ◦Gend .

With this end in view we consider first the following case. Suppose that there
exist p, pk ∈ Gend , where

k := min
{

n ∈ N : n > 1 and pn ∈ Gend
}
.
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We prove, by definition of sets Gω , ω ∈Ω , that there exists n ∈ N, n≥ 2 such
that both pk n and pk (n+1) do not belong to Gend . To this aim let us suppose
that for some n ∈N both pk n and pk (n+1) belong to Gend . Then by definition of
sets Gω , ω ∈Ω , both pk n and pk (n+1) are predecessors of the chosen pk which
leads to a contradiction since pk = pk (n+1) ◦ p−k n 6∈ Gend .

So, the two cases are possible: either all p2nk ∈ Gend , which is impossible
since the last chosen p2n0k = p6n0k ◦ p−4n0k is not in Gend , or all p(2n+1)k are in
Gend which is also impossible, since pk = p3k ◦ p5k ◦ p−7k 6∈ Gend .

Therefore let us assume that pkn 6∈ Gend , pk(n+1) 6∈ Gend and

pkn ∈ Gend ◦Gend ,

more precisely

pkn = ϕ ◦ψ, ϕ,ψ ∈ Gend , ϕ,ψ 6∈ {pm : m ∈ N}.

Then both ϕ and ψ would be chosen before choosing pk – on the other hand
either ϕ = pkn ◦ψ−1 6∈Gend or ψ = ϕ−1 ◦ pkn 6∈Gend , which gives a contradic-
tion. Then we would have

pk(n+1) 6∈ Gend ◦Gend ,

because in opposite case pk(n+1) = ϕ1 ◦ψ1, ϕ1,ψ1 ∈Gend , ϕ1, ψ1 are predeces-
sors of pk. In consequence pk = ϕ1 ◦ψ1 ◦ψ−1 ◦ϕ−1 = pk(n+1) ◦ p−kn 6∈ Gend ,
which leads to contradiction.

One more important case is left, i.e. when

pkn = pr ◦ ps

and pr, ps ∈ Gend . If also
pk(n+1) = pr1 ◦ ps1

and pr1 , ps1 ∈ Gend , then by definition of the power k we obtain

pk = pr1 ◦ ps1 ◦ p−r ◦ p−s 6∈ Gend

which is impossible again.
The remaining cases can be discussed similarly and will be omitted here.

Thus indeed
Gend ◦Gend 6=P.

There exists one more interesting family S⊂P of permutations preserving
the sum of rearranged series. We say that p ∈S if for each convergent real se-
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ries ∑an the fact that series ∑ap(n) is convergent implies the equality of sums
of both series: ∑an = ∑ap(n). Certainly C ⊂ S but family S is already alge-
braically big which was proven by Kronrod [2] (see also [8] for more details).

Similarly, family D and even family DD are algebraically big. However
it seems that this idea with reference to these families quite poorly describes
the algebraic nature of these two sets. Aim of this paper is to emphasize "the
greatness" and "the internal variety" of families D and DD through more com-
plicated algebraic operations on subfamilies of D and DD. These operations
are included in the following collection of theorems (proofs of all these results
are given in Section 3 of this paper).

For brevity for any p,q ∈P the composition of permutations p with q will
be henceforward denoted by pq (i.e. pq(n) := p(q(n)), n ∈ N).

Theorem 27.3.

(i) Let k,n ∈ {2,3, . . .}. Then each permutation p ∈P can be expressed in the
form p = qn

2qk
1 for some q1,q2 ∈DD.

(ii) Every permutation p ∈ P is a composition of two permutations, both of
infinite order, belonging to DD.

Corollary 27.4. We have{
pk : p ∈DD

}
◦
{

ps : p ∈DD
}
=P

for every k,s ∈N such that k and s are simultaneously not smaller than two or
k = s = 1.

We note that Theorem 27.3 (i) results easily from the following proposition
and lemma.

Proposition 27.5. Let q ∈P and let G denote a minimal set of generators of q
(with respect to inclusion). Let O := {n ∈ N : q(n) 6= n}. If the set G∩O is
infinite and q-orders of any two elements a,b ∈ (G∩O) are the same, then
for every k = 2,3, . . ., the equation pk = q has a solution p ∈ DD such that
O= {n ∈ N : p(n) 6= n}. This means that p is a root of k-th order of q.

We may suppose that permutation p possesses the following property: for
each n∈N there exist intervals I, J and sets A⊂ p(I), B⊂ p−1(J), both having
the cardinality n, such that

|a−a∗|> card I and |b−b∗|> cardJ

for any two different a,a∗ ∈ A and b,b∗ ∈ B, respectively.
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Lemma 27.6. Each permutation p ∈ P is a product of two permutations q1

and q2 of N having the following form

∏
n∈N

(
a2n−1,a2n

)
, (27.1)

where {an} is some one-to-one sequence of all positive integers. In other
words, both q1 and q2 are products of infinitely many distinct transpositions.

Theorem 27.7. Let p ∈P.

(i) If there exists an infinite set of generators of p, which is minimal with
respect to inclusion, then for each k = 2,3, . . . there exist permutations
φi = φi(k) ∈DD and ψi = ψi(k) ∈DD, i = 1,2, all having infinite order,
such that φ2φ k

1 = ψk
2ψ1 = p.

(ii) If there exist a finite set of generators of p, then for every k = 2,3, . . . there
exist permutations φi = φi(k) ∈ CC and ψi = ψi(k) ∈P for i = 1,2, such
that ψk

1φ1 = φ2ψk
2 = p.

Moreover, if p belongs to D or DD then ψ1 and ψ2 can be chosen to
belong also to D or DD, respectively. This result follows at once from the
relations (see [8], [10], [11]):

C◦C= C, DC◦DC=DC, DC◦CC= CC◦DC=DC.

Theorem 27.8. Let us denote by I the family of all almost identity permuta-
tions on N. Then for any k = 2,3, . . . ,∞ there exists a group of permutations
Gk ⊂ I∪DD with the following properties:

(i) qk is the identity function of N for every element q ∈Gk,
(ii) the set of all elements q ∈ Gk ∩DD, whose order is precisely equal to k,

has the cardinality of the continuum,
(iii) if k is a prime number or k = ∞ then the order of any element q∈Gk∩DD

is precisely equal to k.

Final remark

The following relation holds as well

∞⋃
k=2

DDk 6=P, (27.2)
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where DDk := {pk : p ∈DD}, k = 2,3, . . .. A reason for this relation is given
by the following fact.

If p ∈ DDk, where k > 2 and in the decomposition of permutation p into
cycles there are only finitely many infinite cycles , then number of these cy-
cles is divisible by k. Whereas we know that there exist permutations p ∈DD

which are infinite cycles (see Example 27.9). Thus

DD\
∞⋃

k=2

DDk 6= /0. (27.3)

Simultaneously it means that relations (27.2) and (27.3) are of algebraic nature.
By the way we would like to notice that we do not know whether

∞⋃
k=1

DDk =P.

We do not know either if there exists a permutation p ∈ DC which is an
infinite cycle.

Example 27.9. In this example we present a permutation q ∈ (DD∩S) which
is an infinite cycle.

Let {In} be an increasing sequence of intervals of positive integers forming
a partition of N and satisfying the condition

card I2n−1 = card I2n = 3n, n ∈ N.

Then permutation q is given by relation(
. . . ,c5,c3,c1,c2,c4,c6, . . .

)
,

where cγn is "a finite cycle" of the form

cγn =
(
iγn
3n, i

γn
n , i

γn
3n−2, i

γn
n−1, i

γn
3n−4, i

γn
n−2, . . .

. . . , iγn
n+2, i

γn
1 , i

γn
3n−1, i

γn
3n−3, i

γn
3n−5, . . . i

γn
n+1

)
,

whereas Gγn = {i
γn
s : s = 1,2, . . . ,3n} – here γn denotes the upper index – is

the increasing sequence of all elements of interval Iγn for γn ∈ {2n−1,2n} for
each n ∈ N.

Since each of two following sets

q([iγn
1 , i

γn
n ]) and q−1([iγn

1 , i
γn
n ])

is a union of n MSI for each n ∈ N, therefore q ∈DD.
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Next, from the relations given below

q(G2n+1) =
(
G2n+1 \{i2n+1

3n+3}
)
∪{i2n−1

3n },
q(G1) =

(
G1 \{i13}

)
∪{i23},

q(G2n) =
(
G2n \{i2n

3n}
)
∪{i2n+2

3n+3},

which hold for any n ∈ N, we get that q ∈S.

27.3 Proofs

Proof of Proposition 27.5. Let us fix k ∈ N, k > 1. Suppose that the sets
{a(n)1 ,a(n)2 , . . . ,a(n)kn }, n ∈ N, form the partition of G∩O. We can assume that

|u− v|> max
{

a(n)i : i = 1,2, . . . ,n
}

(27.4)

for any two different u,v∈{a(n)i+n : i= 1,2, . . . ,n}. Let r be the q-order common
for each element ofO and let the permutation p be given by following formula

p = ∏
n∈N

n

∏
i=1

p(i,n)

in case when r = ∞ and by the formula

p = ∏
n∈N

n

∏
i=1

q(i,n)

in the case when r < ∞. Notations p(i,n) and q(i,n) designate here the cycles
defined in the following way

p(i,n) :=
(
. . . ,q−1(b(n)i

)
,q−1(b(n)i+n

)
,q−1(a(n)i+2n

)
, . . . ,q−1(a(n)i+(k−1)n

)
,

b(n)i ,b(n)i+n,a
(n)
i+2n, . . . ,a

(n)
i+(k−1)n,

q
(
b(n)i

)
,q
(
b(n)i+n

)
,q
(
a(n)i+2n

)
, . . . ,q

(
a(n)i+(k−1)n

)
, . . .
)

and
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q(i,n) :=
(

b(n)i ,b(n)i+n,a
(n)
i+2n, . . . ,a

(n)
i+(k−1)n,

q
(
b(n)i

)
,q
(
b(n)i+n

)
,q
(
a(n)i+2n

)
, . . . ,q

(
a(n)i+(k−1)n

)
, . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

qr−1(b(n)i

)
,qr−1(b(n)i+n

)
,qr−1(a(n)i+2n

)
, . . . ,qr−1(a(n)i+(k−1)n

))
,

where b(n)i = τn(a(n)i ), b(n)i+n = τn(a(n)i+n) and τ = τ(i,n) denotes the transposition

of elements a(n)i and a(n)i+n for every i= 1, . . . ,n and n∈N. Then we easily verify
that pk = q and O = {n ∈ N : p(n) 6= n}. As a result we have the following
inclusion

{a(n)1+n,a
(n)
2+n, . . . ,a

(n)
2n } ⊂ γ(In),

where In =
[
1,max{a(n)i : i = 1, . . . ,n}

]
and γ = p if n ∈ 2N and γ = p−1 if

n ∈ 2N− 1. By (27.4) we conclude that each of the sets p(In), n ∈ 2N, and
p−1(In), n ∈ 2N−1, is a union of at least n MSI. Thus q ∈DD as desired. ut

Proof of Theorem 27.3 (i). This assertion follows immediately from Proposi-
tion 27.5 applied to Lemma 27.6. ut

Proof of Lemma 27.6. Let p ∈P. If p is a finite cycle having one of the fol-
lowing forms

p =
(
b−n,b−n+1, . . . ,b−1,b0,b1, . . . ,bn−1,bn

)
or

p =
(
b−n,b−n+1, . . . ,b−1,b1, . . . ,bn−1,bn

)
,

then  p = q2q1, where

q1 =
n−1
∏
k=i

(bk,b−k−1) and q2 =
n
∏

k=1
(bk,b−k)

(27.5)

for i = 0 or 1, respectively.
Next, if p is an infinite cycle of the form

p =
(
. . . ,b−2,b−1,b0,b1,b2, . . .

)
,

then {
p = q2q1, where
q1 = ∏

k∈N0

(bk,b−k−1) and q2 = ∏
k∈N

(bk,b−k). (27.6)
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In general case, if set {n ∈N : p(n) 6= n} is infinite then we can apply decom-
positions (27.5) and (27.6) to all the finite and infinite p-cycles, respectively.
On the other hand, if p is almost identity on N, then by applying decomposi-
tion (27.5) to all the nontrivial p-cycles and, additionally, by using the follow-
ing decomposition

the identity function of f is equal to qq,

where f := { fn : n ∈ N} is a sequence of all fixed points of p and
q = ∏k∈N( f2k−1, f2k), we may express p as a composition of two permuta-
tions of form (27.1). This completes the proof of lemma. ut

Proof of Theorem 27.3 (ii). Let us fix p∈P. In the sequel we will construct the
permutations q1,q2 ∈DD, both having infinite order, and such that q2q1 = p.
First we choose inductively an increasing sequence {In} of intervals satisfying
the conditions

card In = 5n, (27.7)

sets
⋃

n∈N
I2n−1 and

⋃
n∈N

p−1(I2n) are disjoint, (27.8)

complements of the following two sets:
⋃

n∈N In and⋃
n∈N I2n−1∪ p−1(I2n) in N are infinite.

(27.9)

Next we define permutation φ of set
⋃

n∈N In by the following formula{
φ(i+a) = 2i+1+a,
φ(i+n+a) = 2i+a,

(27.10)

{
φ(2i+1+2n+a) = i+2n+a,
φ(2i+2n+a) = i+3n+a,

(27.11)

φ(i+4n+a) = (i+1)(modn)+4n+a, (27.12)

where a = min In for every i = 0,1, . . . ,n−1 and n ∈ N. Hence φ(In) = In for
every n ∈ N. Now we can define the permutations q1 and q2.

Let q1 be an increasing map of the complement of set
⋃

n∈N I2n−1∪ p−1(I2n)

in N onto the complement of set
⋃

n∈N In in N. Suppose also that q1 is equal
to the restriction of φ to

⋃
n∈N I2n−1. On the other hand, let q2 be equal to the

restriction of φ to
⋃

n∈N I2n. The values of q1 and q2 corresponding to all the
other elements of N are defined by the equation p = q2q1.

The main properties of q1 and q2, required to be verified, are as follows:

q1,q2 ∈DD, (27.13)
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orders of q1 and q2 are infinite. (27.14)

To check (27.13) we observe that, by (27.10) and (27.11), each of the fol-
lowing sets

φ
(
[min In,n−1+min In]

)
and φ

−1([2n+min In,3n−1+min In]
)

is a union of n MSI. Now, if we use the definitions of q1 and q2, the assertion
follows.

To prove (27.14) it is sufficient to use the definitions of q1 and q2 in the
same manner as above, together with an observation that, by (27.12), for every
n ∈ N the permutation φ has a cycle of length n and the domain of which is
contained in In. ut

Proof of Theorem 27.7 (i). Let k ∈N, k > 1. We aim to construct permutations
φi,ψi ∈DD, i = 1,2, satisfying condition φ2φ k

1 = ψk
2ψ1 = p and all having the

infinite order. We shall distinguish two cases.
First, let us suppose that p has infinitely many infinite cycles. Let G ⊂ N

denote the family of generators of all infinite p-cycles which is minimal with
respect to inclusion. Next, suppose that the infinite sets G1 and G2 form a par-
tition ofG and in turn that the sets

{
a(n)1 ,a(n)2 , . . . ,a(n)n

}
, n∈N, form a partition

of G1. Let s(i,n) be positive integers for every i = 1, . . . ,n, chosen so that

|u− v|> max
{

a(n)i : i = 1, . . . ,n
}

(27.15)

for every two different u and v from the set{
pεs(i,n)(a(n)i

)
: i = 1, . . . ,n and ε =±1

}
.

Then the cycle
(
. . . , p−1(a(n)i ),a(n)i , p

(
a(n)i

)
, . . .
)

can be written in the form

ξ
(n)
i

(
ζ
(n)
i

)k
,

where ξ
(n)
i and ζ

(n)
i are the cycles defined as follows

ξ
(n)
i =

(
. . . , p−2−s(a), p−1−s(a), p−s(a),a, ps(a), p2s(a), . . . ,

p(k−1)s(a), p1+(k−1)s(a), p2+(k−1)s(a), . . .
)

and
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ζ
(n)
i =

(
p−s(a),a, ps(a), p2s(a), . . . , p(k−2)s(a),

p1−s(a), p(a), p1+s(a), p1+2s(a), . . . , p1+(k−2)s(a),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p−2(a), ps−2(a), p2s−2(a), p3s−2(a), . . . , p(k−1)s−2(a),

p−1(a), ps−1(a), p2s−1(a), p3s−1(a), . . . , p(k−1)s−1(a)
)
.

Here we have s = s(i,n) and a = a(n)i for i = 1, . . . ,n and n ∈ N.
Let us put

φ1 = q ∏
n∈N

n

∏
i=1

ζ
(n)
i

and

φ2 =
(

∏
a∈G3

cycle(p,a)
)
◦
(

∏
n∈N

n

∏
i=1

ξ
(n)
i

)
,

whereG3 ⊂N is a family of generators of all finite p-cycles, which is minimal
with respect to the inclusion, and q denotes a permutation of N such that

qk = ∏
a∈G2

(
. . . , p−1(a),a, p(a), . . .

)
and {

n ∈ N : q(n) 6= n
}
=
{

pm(a) : m ∈ Z and a ∈G2
}
. (27.16)

The existence of q results from Proposition 27.5. Additionally, we require that
q has the property from Proposition 27.5. This and (27.16) yield that φ1 ∈DD.
From the definition of φ2 it follows that{

pεs(i,n)(a(n)i

)
: i = 1, . . . ,n

}
⊂ φ

ε
2 (In),

where In := [1,max{a(n)i : i = 1, . . . ,n}], for ε = ±1 and for every n ∈ N.
Henceforth and from (27.15) we conclude that any of the sets φ ε

2 (In), ε =±1,
is a union of at least n MSI, so that φ2 ∈DD, as required. A trivial verification
shows that φ2φ k

1 = p and that the orders of φ1 and φ2 are infinite.
Construction of permutations ψ1 and ψ2 may be carried out in the similar

way. Then it is sufficient to set ψ1 = φ2 and ψ2 = φ1 and to define cycles ζ
(n)
i

in the following way
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ζ
(n)
i =

(
p1−s(a), p(a), ps+1(a), p2s+1(a), . . . , p(k−2)s+1(a),

p2−s(a), p2(a), ps+2(a), p2s+2(a), . . . , p(k−2)s+2(a),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p−1(a), ps−1(a), p2s−1(a), p3s−1(a), . . . , p(k−1)s−1(a),

a, ps(a), p2s(a), p3s(a), . . . , p(k−1)s(a)
)
.

Definition of ξ
(n)
i is the same as above.

Now we consider the case in which permutation p has infinitely many of
finite cycles. Let F⊂ N denote a family of generators of all finite p-cycles but
such that any two different elements a,b ∈ F generate different p-cycles.

Suppose that the infinite sets Fn, n ∈ N, form a partition of F. Now we fix
a one-to-one sequence a(n)i , i ∈ Z, of all elements of family Fn for each n ∈ N.
The choice of these sequences is such that the following inequality holds

|u− v|> max
{

γ
(
a(n)2i

)
: i ∈ Z and |i|6 n+1

}
(27.17)

for any two different elements u and v of set{
γ
(
a(n)2i−1

)
: i ∈ Z and |i|6 n+1

}
,

where γ = p or γ is the identity function on N, for every n ∈ N. Let us denote
by s(i,n) p-order of element a(n)i for all indices i∈Z and n∈N. Now we define
the auxiliary cycles

σn =
(
. . . , p

(
a(n)2

)
, p
(
a(n)1

)
, p
(
a(n)0

)
, p
(
a(n)−1

)
, p
(
a(n)−2

)
, . . .
)
,

δn =
(
. . . , p

(
a(n)−1

)
, p2(a(n)−1

)
, . . . , ps(−1,n)(a(n)−1

)
,

p
(
a(n)0

)
, p2(a(n)0

)
, . . . , ps(0,n)(a(n)0

)
,

p
(
a(n)1

)
, p2(a(n)1

)
, . . . , ps(1,n)(a(n)1

)
, . . .
)
,

ζn =
(
. . . , p

(
a(n)1

)
, p2(a(n)1

)
, . . . , ps(1,n)(a(n)1

)
,

p
(
a(n)0

)
, p2(a(n)0

)
, . . . , ps(0,n)(a(n)0

)
,

p
(
a(n)−1

)
, p2(a(n)−1

)
, . . . , ps(−1,n)(a(n)−1

)
, . . .
)
,

and
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ξn =
(
. . . ,a(n)−2,a

(n)
−1,a

(n)
0 ,a(n)1 ,a(n)2 , . . .

)
,

for every n ∈ N.
Since ps(i,n)

(
a(n)i

)
= a(n)i for all i ∈ Z and n ∈ N, a trivial verification shows

that

σnδn = ζnξn = ∏
i∈Z

(
p
(
a(n)i

)
, p2(a(n)i

)
, . . . , ps(i,n)(a(n)i

))
(27.18)

for every n ∈ N. Let us define

φ2 = ∏
n∈N

σn and ψ1 = ∏
n∈N

ξn.

Then the following inclusions follow immediately

p
(
A(n)

1

)
⊆ φ

([
1,max p

(
A(n)

2

)])
and A(n)

1 ⊆ ψ

([
1,maxA(n)

2

])
,

where φ ∈ {φ2,φ
−1
2 }, ψ ∈ {ψ1,ψ

−1
1 }, A(n)

1 =
{

a(n)2i−1 : i ∈ Z and |i| 6 n
}

and

A(n)
2 =

{
a(n)2i : i ∈ Z and |i| 6 n+1

}
, n ∈ N. This forces, by (27.17), that any

of the following sets φ
([

1,max p
(
A(n)

2

)])
and ψ

([
1,maxA(n)

2

])
is a union of

at least (2n+ 1) MSI for every φ ∈ {φ2,φ
−1
2 }, ψ ∈ {ψ1,ψ

−1
1 } and for every

n ∈ N. Thus φ2,ψ1 ∈DD.
It remains to define the permutations φ1 and ψ2. To this aim let us observe

that, by Proposition 27.5, there exist solutions φ ,ψ ∈ DD of the following
equations

φ
k = ∏

ω∈Γ1

ω and ψ
k = ∏

ω∈Γ2

ω,

where

Γ1 =
{

ω : ω = δn for some n ∈ N or ω is an infinite p-cycle
}
,

Γ2 =
{

ω : ω = ζn for some n ∈ N or ω is an infinite p-cycle
}
.

Put φ1 = φ and ψ2 = ψ . Hence, from the fact that any of permutations φ2 and
ψ1 has an infinite cycle, we see that all four permutations φi, ψi, i = 1,2, are
of infinite order. Moreover, relation (27.18) makes it obvious that

φ2φ
k
1 = ψ

k
2ψ1 = p.

This completes the proof. ut

Proof of Theorem 27.7 (ii). Let us fix k ∈ {2,3, . . .}. Let G⊂ N be a minimal
set of generators of p (with respect to inclusion). Suppose that H is the sub-
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set of G of all elements having the infinite p-order. Since, by hypothesis, G
is finite, therefore set H is nonempty. Let a ∈ H and let n(s), s ∈ Z, be an in-
creasing sequence of integers corresponding to such choice of a. The required
properties of n(s), s ∈ Z, on this occasion are the following

n(s)< 0 iff s < 0, s ∈ Z, and n(0) = 0, (27.19)

n(s+1)≡ n(s)(modk), s ∈ Z, (27.20)

pn(s)(a)<
{

pt(a) : t ∈Z and n(s+1)6 t 6 n(s+2)
}
< pn(s+3)(a), (27.21)

for every s ∈ Z, s> 0, and

pn(s−3)(a)>
{

pt(a) : t ∈Z and n(s−2)6 t 6 n(s−1)
}
> pn(s)(a), (27.22)

for every s ∈ Z, s6 0.
Now define three auxiliary cycles. We put

ξ
(a)
1 = ∏

s∈Z

(
pn(s)−w(s)+1(a), pn(s)−2w(s)+1(a), . . . , pn(s)−kw(s)+1(a),

pn(s)−w(s)+2(a), pn(s)−2w(s)+2(a), . . . , pn(s)−kw(s)+2(a),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pn(s)−1(a), pn(s)−w(s)−1(a), . . . , pn(s)−(k−1)w(s)−1(a),

pn(s)(a), pn(s)−w(s)(a), . . . , pn(s)−(k−1)w(s)(a)
)
,

ξ
(a)
2 = ∏

s∈Z

(
pn(s)(a), pn(s)+v(s)(a), . . . , pn(s)+(k−1)v(s)(a),

pn(s)+1(a), pn(s)+v(s)+1(a), . . . , pn(s)+(k−1)v(s)+1(a),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pn(s)+v(s)−1(a), pn(s)+2v(s)−1(a), . . . , pn(s)+kv(s)−1(a)
)
,

and

ζ
(a) =

(
. . . , pn(−1)(a), pn(−1)+v(−1)(a), . . . , pn(−1)+(k−1)v(−1)(a),

pn(0)(a), pn(0)+v(0)(a), . . . , pn(0)+(k−1)v(0)(a),

pn(1)(a), pn(1)+v(1)(a), . . . , pn(1)+(k−1)v(1)(a), . . .
)

for every a ∈G, where v(s) = k−1
(
n(s+1)−n(s)

)
and w(s) = v(s−1), s ∈ Z.

Since the sequence n(s), s ∈ Z, is increasing, we obtain from (27.20) that all
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indices v(s), s∈Z, are positive integers. Verification of the following equalities
may be then carried out immediately. We have(

ξ
(a)
1

)k
ζ
(a) = ζ

(a)(
ξ
(a)
2

)k
=
(
. . . , p−1(a),a, p(a), . . .

)
for each a ∈H, and consequently

ψ
k
1φ1 = φ2ψ

k
2 = p,

where

φi :=
(

∏
a∈G\H

cycle(p,a)
)
◦
(

∏
a∈H

ζ
(a)
)

and ψi := ∏
a∈H

ξ
(a)
i

for i = 1,2. To see that φ1,φ2 ∈ CC we just have to show that ζ (a) ∈ CC for
each a ∈H. For this the following suffices.

Let a ∈ H and let I be an interval such that a 6∈ I and J := I∩{pn(a) : n ∈
Z} 6= /0. Set n(s)=minJ and n(t)=maxJ. Then, in view of conditions (27.19),
(27.21) and (27.22), the following inclusion is fulfilled(

ζ
(a))ε

(I)⊃ I \
{

pl(a) : l = n(τ)− iw(τ) or l = n(τ)+ iv(τ)

where τ = s or t and for i = 0,1, . . . ,k
}
,

where ε = −1 or 1. Hence we check at once that set ζ (a)(I) is a union of at
most 4(k+1) MSI. Thus we have ζ (a) ∈ CC as claimed.

Let us notice additionally that if p belongs to D or to DD then the above
constructions of permutations ψ1 and ψ2 imply that ψ1 and ψ2 can be then se-
lected such that they belong also to D or DD, respectively. This result follows
at once from the relations (see [8], [10], [11]):

C◦C= C, DC◦DC=DC, DC◦CC= CC◦DC=DC.

This completes also the proof of theorem. ut

Proof of Theorem 27.8. Let us fix k ∈ {2,3, . . . ,∞}. Let pn, n ∈ N, be a se-
quence of prime numbers whose range is infinite. This sequence does not nec-
essarily contain all prime numbers and may not be a one-to-one sequence.
Assume that the increasing sequence {In} of intervals is a partition of N and
that we have

card In =

{
(2k−1)n for every n ∈ N whenever k ∈ N,
(2pn−1)n for every n ∈ N when k = ∞.
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Now we define an auxiliary permutation qn of In for each n ∈ N. We set

qn
(
sn + t

)
= sn +n+2t,

qn
(
sn +(2i−1)n+2t

)
= sn +(2i+1)n+2t,

qn
(
sn +(2l−3)n+2t

)
= sn + t,

for t = 0,1, . . . ,n−1, and for i = 1,2, . . . , l−2, where l = k whenever k ∈ N,
or l = pn when k = ∞. For the remaining t ∈ In we put qn(t) = t. Then a trivial
verification shows that

ql
n = id(In), (27.23)

qi
n
(
[sn,sn +n−1]

)
=
{

sn +(2i−1)n+2t : t = 0,1, . . . ,n−1
}

(27.24)

and(
qi

n
)−1(

[sn,sn +n−1]
)
=
{

sn +(2(l− i)+1)n+2t : t = 0,1, . . . ,n−1
}
,

(27.25)
i.e. each of two sets qi

n([sn,sn + n− 1]) and (qi
n)
−1([sn,sn + n− 1]) is a union

of n MSI for each i = 1,2, . . . , l− 1, where l = k whenever k ∈ N, or l = pn

when k = ∞. Let M(k) denote the family of all sequences {an} such that

an ∈ {1,2, . . . ,k} for all n ∈ N whenever k ∈ N

or
an ∈ {1,2, . . . , pn} for all n ∈ N when k = ∞.

Now we are ready to define family Gk. We put

Gk =
{

q : q = ∏
n∈N

qan
n and {an} ∈M(k)

}
,

where permutation q = ∏n∈N qan
n is defined as follows

q(t) = qan
n (t) for every t ∈ In and n ∈ N.

Observe that intervals In, n ∈ N, are pairwise disjoint and hence this definition
is correct. It is obvious that if k is finite then qk = id(N). Let q ∈ Gk, q =

∏n∈N qan
n . If the inequality an < ln holds for infinitely many indices n ∈ N,

where

ln :=
{

k for all n ∈ N whenever k ∈ N,
pn for all n ∈ N when k = ∞,

then, by (27.24) and (27.25), we get q ∈ DD. Furthermore, if k is a prime
number or k = ∞ then the order of this q is precisely equal to k as required. ut
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