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26.1 Preliminaries

A. M. Bruckner, R. J. O’Malley and B. S.Thomson in [4] investigated the no-
tion of a system of paths and studied a number of generalized derivatives. Prop-
erties of path continuous functions was intensively studied in [2], [6], [7], [8],
[9], [10], [11], [13]. Similar approach to the notion of continuity was used in
(51, [15].

We use this idea of path continuity for studying some notions of generalized
continuity connected with density of a set at a point. Some basic properties of
these classes of functions are presented.

First, we shall collect some of the notions and definitions which appear fre-
quently in the sequel. The symbol A*(E) denotes the Lebesgue outer measure
of E C R. In the whole paper we consider only real-valued functions defined
on an open interval I = (a,b).

Let E be a measurable subset of R and let x € R. According to [3], the
numbers

d"(E,x) = lim inf AEOE-x41))
o ’ =0+ !
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and
d"(E,x) = limsup w
t—0*
are called the right lower density of E at x and right upper density of E at x.
The left lower and upper densities of E at x are defined analogously. If

d*(E;x)=d (E,x) or d (Ex)=d (E,x),

then we call these numbers the right density and left density of E at x, respec-
tively. The numbers
- AMENx—t,x+k
d(E,x) =limsup (EQ=tx+)
r—0" k+1
k—07"

and

d(Ex) — liming EOE =10 +K)

t—0" k+1t
k—0*

are called the upper and lower density of E at x respectively.
If d(E,x) = d(E,x), we call this number the density of E at x and denote it by
d(E,x). It is clear that E has the density at x if and only if all four one-sided
densities are equal.

When d(E,x) = 1, we say that x is a point of density of E.

Definition 26.1. [7] Let E be a measurable subset of R and x € R.
1. For 0 < p <1 we say that x is a point of p-type upper density of E if

d(E,x) > p.
2. We say that x is a point of 1-type upper density of E if d(E,x) = 1.

Definition 26.2. [7] A real-valued function f defined on an open interval / is
called p-upper continuous at x provided that there is a measurable set E C [
such that the point x is a point of p-type upper density of E, x € E and fig is
continuous at x. If f is p-upper continuous at every point of / we say that f is
p-upper continuous.

We will denote the class of all p-continuous functions defined on an open
intervals I by UC,.

Definition 26.3. [13] Let E be a measurable subset of R and x € R.
l.For 0 <A <p <1 we say that x is a point of [A,p]-density of E if

d(E,x) > p and d(E,x) > A.
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2. For 0 < A < 1 we say that x is a point of [A, 1]-density of E if d(E,x) = 1
and d(E,x) > A. B
3. We say that x is a point of [1, 1]-density of E if d(E,x) = d(E,x) = 1.

Definition 26.4. [8], [13] Let 0 < A < p < 1. A real-valued function f defined
on an open interval / is called [A, p]-continuous at x € I provided that there is
a measurable set E C I such that x is a point of [A, p]-density of E, x € E and
fiE is continuous at x. If f is [A, p]-continuous at each point of / we say that f
is [A, p]-continuous.

We will denote the class of all [A, p]-continuous functions by C|4 p). Itis clear

that Cy; j is exactly the class of approximately continuous functions.
Sometimes density of a set at a point is defined in other, symmetric, way.

According to, for example [14], the lower density of E atx and u%)per density of

E at x are defined as liminf w and lim sup 20 x L) | respectively.
t—0T 0+

We will denote these densities by s-d " (E,x) and s-d (E,x), respectively. If
s-d(E,x) = s-d(E,x) then we call this number the symmetric density of E at x
and denote it by s-d(E, x).

Corollary 26.5. For each measurable E C R and x € R we have

1. s-d(E,x) <d(E,x),

2. s-d(E,x) > d(E,x),

3. x is a point of the density of E, if and only if x is a point of symmetric
density of E.

Definition 26.6. Let £ be a measurable subset of R and x € R.

1. For 0 < p < 1, then we say that x is a point of sp-type upper density of E
if s-d(E,x) > p. B
2. We say that x is a point of s-1-type upper density of E if s-d(E,x) = 1.

Definition 26.7. A real-valued function f, defined on an open interval I, is
called sp-upper continuous at x, provided that there is a measurable set E C [
such that the point x is a point of sp-type upper density of E, x € E and f|g is
continuous at x. If f is sp-upper continuous at every point of /, we say that f
is sp-upper continuous.

We will denote the class of all p-continuous functions defined on an open
intervals I by sUC,.

Definition 26.8. Let £ be a measurable subset of R and x € R.
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1. For 0 <A <p <1 we say that x is a point of s-[A,p]-density of E if
s-d(E,x) > p and s-d(E,x) > A.

2.For 0<A <1 we say that x is a point of s-[A,1]-density of E if
s-d(E,x) =1 and s-d(E,x) > A.

3. We say that x is a point of s-[1, 1]-density of E if s-d(E,x) = s-d(E,x) = 1.

Definition 26.9. Let 0 < A < p < 1. A real-valued function f defined on an
open interval / is called s-[A, p]-continuous at x € I, provided that there is a
measurable set E C [ such that x is a point of s-[A, p]-density of E, x € E and
fiE is continuous at x. If f is s-[A, p]-continuous at each point of 7, we say that
f is s-[A, p]-continuous.

We will denote the class of all s-[A, p]-continuous functions by sCis o).

Corollary 26.10. C,, C Cip p) NsCip p) for each 0 <A < p <1 and Cpp =
C[l,l] = SC[I,I]'

26.2 Basic properties

Lemma 26.11. Let 0 < A < p < 1. The following inclusions are obvious.

1. C[A,p] C UCP,
2. SC[A.,p] - SUCP,
3. SC[AyP] - UCp,
4. sUCp CUC,.

Theorem 26.12. Let 0 < p < 1. Then each function f fromUC, is measurable.

Proof. Assume that there exists f € U/Cp which is not measurable. Then we
can find a number a € R for which at least one of the sets {x € I: f(x) < a},
{x€I: f(x) > a} is nonmeasurable. Without loss of generality we may assume
that the set {x € I': f(x) < a} is nonmeasurable. Denote

A={xel: f(x)<a}, B={xel: f(x)>a}.

It is obvious that B =1\ A is also nonmeasurable. Consider a measurable sets
A} C A, B; C Bsuchthat A\ A; and B\ B; do not contain a measurable set of
positive measure. Therefore A\ A; and B\ B; are nonmeasurable sets. Let

F= (A\AI)U(B\BI) :I\(AIUBl).
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Then F' is measurable. Let @;(F) be a set of all density points of F. By the
well-known Lebesgue Density Theorem, A(F \ @,4(F)) = 0. Therefore there
exists xo € (A\ A1) NPy (F).

Since f is p-upper continuous at xo, it follows that there exists a measurable
set E C R such that xo € E, d(E,xy) > p and Jie 1s continuous at xo. Since
xo € A, we have f(xo) < a. Therefore it is possible to find 6 > 0 such that
EN(xo—8,x0+0) CA. Let E' = EN(xo — 8,x0+ &). Hence xo € E', fip is
continuous at xg, £’ C A and

E(E,,X()) = E(E,)Co) >p>0. (26.1)

We have
E'=(E'NA)U(E'N(A\A))).

Since E' and E' NA| are measurable, E' N (A \ A1) is measurable, too. Hence
A(E'N(A\A;)) = 0. Moreover,

d(E'NA1,x0) = 1-d(R\(E'NA),x0) < 1—d(F,xo) =1-1=0,
because (E'NA1)NF = 0. It follows that
d(E',x0) <d(E'NA,xp) +d(E'N(A\A),x0) =0+0=0,

contradicting (26.1). Thus the assumption that f may be nonmeasurable is
false. O

Corollary 26.13. All considered classes of functions Cja p}, sCip p), UCp and
sUC, consist of Lebesgue measurable functions.

Lemma 26.14. Let 0 < p < 1, x € R and let {E,: n € N} be a decreasing
family of measurable sets such that d(E,,x) > p for n > 1. Then there exists a
measurable set E such that d(E,x) > p and for each n € N there exists 8, > 0
for which EN[x — 8y,x+ &8,] C E,.
Proof By assumptions, d ' (E,,x) > p or d (E,,x) > p for each n. Hence
there exists an infinite sequence {E,, : k € N} such that d (Ey,,x) > p for all
k>1ord (E,,x)>p forall k> 1. Without loss of generality we may as-
sume that the first possibility occurs. Then 3+(E,,,x) > p forall n > 1, because
{E,: n € N} is a decreasing family.

Let x; > x be any point for which W
Next, we can find x < x» < x; such that

A(E1 N [x2,x1]) ~p <1 B 1> ’ A(ExN[x,x2]) ~p <1 B i)

X]—X 2 Xy —X

>p(1—%) and x; —x < 1.

1
and x; —x < >
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Xi—1—X

>p(1- 21—,,) and x, —x < % Then there

Assume that points x1,x3, . ..,x, are chosen, x < x,, < ... < Xxj, >

P(l—z,l,l) forizzw_,n’w
exists x < x,41 < X, such that

A(Enﬁ[xn+1,xn])>p<l_l> A(En+1m[x,xn+1])>p<l_ 1 >
s on+l

Xp—X 2" Xpal —X

1
andx,H_] —x< P

We have constructed inductively a decreasing sequence {x, },>; such that

)L(En N [anrlaxn]) >
X, —X

p(l—%) forn> 1. (26.2)

oo

Let E = U (EyN[xp41,%,]) U{x}. Since

n=1
AEN AE, N 1
timsup MEABID & i o ME O Bnr 13D <p - ) —p,
H—yo0 Xp—X N—yoo Xp—X n—oo n

we have d(E,x) > p.
By definition of E, for each n there exists &, = x,, — x > 0 such that

EN[x—0,,x+6,) =EN|x,x,] CE,.
The proof is complete. O
We will give a condition equivalent to p-upper continuity at a point x.

Theorem 26.15. Let 0 < p < 1 and let f: I — R be a measurable function.
Then f is p-upper continuous at x € I if and only if

lim d({yel: |fx) - fO) <elx) >p if 0<p<1

or

d({yel: |f(x)—fy)|<e},x)=1 foralle>0 if p=1.

Proof. Assume that f is p-upper continuous at x. Let E C I be a measurable set
such that x € E, f|g is continuous at x and d(E,x) > p forp < 1,ord(E,x) = 1
if p = 1. Since fjg is continuous at x, for each € > 0 we can find 6 > 0 such
that [x —6,x+ 8| NE C {y: |f(x) — f(y)| < €}. Hence

d({yel: [f(x)=fO)| <ehx) Zd({y € E: |[f(x) = f()| < &}, x) =d(E,x)
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for each € > 0. Therefore

Jim d({y eIz [f(x) = f()[ < e}x) 2d(Ex) >p ifp <1
or
d({yel:|f(x)—f(y)| <e},x) >d(E,x)=1 foreache >0, ifp=1.

Finally, assume that
pr=limd({yel: |fx) - fO) <e}x)>p if p<I

or

d({yel:|f(x)—f(y)| <e},x) =1foreache >0 if p=1.

Applying Lemma 26.14 for sets E, = {y € I: |f(x) — f(y)| < 1}, we can con-
struct a measurable set E such that x € E,

dE.x)>pr>p if 0<p<l or dEx)=1 if p=1

and for each n there exists 6, > 0 for which E N [x — &,,x + &,] C E,. The
last condition implies that f|g is continuous at x. It follows that f is p-upper
continuous at x. O

Corollary 26.16.
ﬂ UC, =UCy.
0<p<l1
Lemma 26.17. Let 0 < p < 1, x € R and let {E,: n € N} be a decreasing
family of measurable sets such that s-d(E,,x) > p for n > 1. Then there exists
a measurable set E such that s-d(E,x) > p and for each n € N there exists
O, > 0 for which EN[x — &,,x+ 8,] C E,.

Proof. Let 6; > 0 be such that %W >p (1 - %) and 0; < 1. Next,
we can find &, € (0, 6;) such that

AEIN([x—81,x— &|U[x+62,x+d1])) 1
26, >p<1_>’

AMEN[x— 1
( 2 [x &7)(:‘*_&]) >p 1—=
26, 4
and & < % Assume that real positive numbers &;,6,...,0, are chosen,
0 < 01 <...< 6y,
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)

fori=2,...,n, %{W >p (1 —2—1") and §, < % Then there exists

81 € (0,8,) such that AEOE=ducd bbb o (g 1

20,
l(En+lﬂ[x75n+lvx+5”+lD 1 !
B >p (1—or) and 81 < i

We have constructed inductively a decreasing sequence {5, },>1 of positive
numbers such that forn > 1

AE_1N([x—8-1,x—&]U[x+ &,x+ 5_1]) S - 1
26 1 —x P\ "2

AE, N ([x— 8pyx— Ops1| U x4+ 8yt1,x+ 64)))
26,

>p (1 . %) (26.3)

Let E = {x}U U (EyN ([x— 8,5~ 8ye1] U+ 8pa1,x+ 8,])). Since
n=1

AEN[x— 8y, x+6,)) -

lim sup

n—oo 25n o
sy A= Bt Bl B ) g (1Y,
n—yoo 26n n—soo n

we have s-d(E,x) > p.
By definition of E, we have E N [x — &,,x + &,] = EN[x,x,] C E, for each
n. The proof is complete. O

Now, we can give a condition equivalent to sp-upper continuity at a point x.

Theorem 26.18. Let 0 < p < 1 and let f: I — R be a measurable function.
Then f is sp-upper continuous at x € I if and only if

Jim s-d({y €12 [f(x) = f()[ <e}x) >p if 0<p<l1

or

s-d({yel:|f(x)—f(y)|<e},x)=1 foralle>0 if p=1.

Proof. The proof is analogous to the proof of Theorem 26.15. The unique dif-

ference is that we use Lemma 26.17 instead of Lemma 26.14. O
Corollary 26.19.
ﬂ sUC, = sUCy.
0<p<l

Remark 26.20. Conditions stated in Theorem 26.15 and 26.15 are similar to
the general condition of path continuity discussed in [15, Theorem 14.3].
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Lemma 26.21. Let A € (0,1]. IfE is a measurable subset of R and d* (E,x) >
A then for each n € N there exists €, > 0 such that

AEN [x—l;)z‘;,x—i-b]) Al

foreach 0 <a<b<eg,.

Proof. Fix any n € N. Since d* (E,x) > A, there exists €, € (0,1) such that
AERlxte) A — L foreach ¢ € (0,6,). If 0 < a < b < &, then

C

AMEN[x+ £ x+b)) = A(EN[x,x+b]) — A(EN[x,x+ £]) >

>b(1—5)— £ >bA-1.

A(EN[x+7, x+b)) SA_l -

Hence 5 .
n

Lemma 26.22. Let 0 < p < 1 and let x € R. Assume that E C R is measurable
andd" (E,x) > p. For every n € N there exists decreasing sequence {04y }meN
of positive reals converging to 0 such that

AEN[x+ §2,x+ o))
(0

S =

for eachm € N.

Proof. Fix n € N. Since d (E,x) > p, there exists a decreasing sequence
{Bm }men of positive reals such that
AEN -
tim MEOEXTB)) G g s ).

m—yoo ﬁm

(EN[x,x+PBn])
B

Then we can find m such that A >p— % for all m > mg. Hence,

AMEOL+ 5 x+B)) | AENK+Ba)  AENx+5])

> >p—y
for each m > my. Then the sequence {0, }nen, Where 0y, = Byym, form € N,
has all the required properties. O

Lemma 26.23. Let 0 < A < p < 1 and let {E, },en be a decreasing sequence
of measurable sets such that x € (\ E,, d*(E,,x) > A and d(E,,x) > p for all

n=1
n € N. Then there exists a measurable set E such that d(E,x) > A, d(E,x) > p,
x € E and for each n € N there exists 6, > 0 for which EN[x— 8,,x+ ,] C E,
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Proof. As in the proof of Lemma 26.14, we can assume that a’ (En,x) > p for
all n. By Lemma 26.21, for each n € N there exists &, > such that
AE, N [x+ 5., x+D]) 1

A
b = n

forall 0 < a,b < g,. By Lemma 26.22, for each n € N we can find decreasing
sequence {a; }uen such that

A(Enn ot %2 x+ ot]) .

%y

for all m,n € N. We will construct inductively a sequence of positive reals
{an }nen such that for each n € N

1. a, < &g,
2. an+1 < %,

n
O,y

3. there exists m, € N for which [ - ,06,’]1’1] C [an+1,an)-

Choose any a; < €. Assume that we have chosen ay,...,a, satisfying condi-
tions 1) —3). Then we can find m, € N such that ¢, < a,. Now, we can take

an arbitrary a,+| € (O,min{en+1, O;—@}) Put

oo

F= U (En N [x+an+23x+an+l])'

n=1

Lety € [x,x+az], y=x+c . Then ¢ € [ay41,a,] for some n. Since %4 >

a,+2, we have

FNlapi2,x+c] D (E,Nx+ani2,x+ ape1])U
U(En—1 N[x+aps1,x+¢]) D E,N [x+ %L x+c].

Hence

AFN[x,x+c]) > )L(Enm [x 4 ozt x—l—c]) >c(A -1

2n n

and M > A — 1. Therefore d* (F,x) > A.
On the other hand,

FNlox+op ] D E,Nx+apa,x+a) ] DE,N[x+ %L x+ap |.

A (Fﬁ[x,x+a,’,‘,n])

Therefore o >p— % for n € N and
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_ A(FN "
F,x) > limsup HXT O, > limsup (p— =) =p.
- (F O+ a,)) }1

n
n—yoo o, n—yoo

Finally, we can easily see that for each n € N we can choose 6, = g, for
which EN[x,x+ 6,] C E,.

Similarly, we can construct a measurable set G C (—oo,x) such that
d (G,x) > A and for each n € N, GN [x — 6,,x] C E, for some positive J,.
Then the set E = F UG U {x} has all the required properties. O

Theorem 26.24. Let 0 < A < p < 1. A measurable function f: I — R is [A, p]-
continuous at x if and only if

Tim d({xe 15 [£(x) — f(0)] < }x0) > A

and B
Tim d({x € 1+ |£(0) — f(xo)| < £},%0) > p.

Proof. asasAssume that a measurable f is [A, p]-continuous at xy. Then there
exists measurable E C R such that xo € E, d(E,x0) > A, d(E,xo) > p and fig
is continuous at xy. By the continuity of f at xg, for each € > 0 we can find
0 > 0 for which [xg — 6,x0+ 0] C {x: |f(x) — f(x0)| < €}. Hence

d({x: [f(x) = f(x0)| <&},x0) 2d({x € E: [ f(x) = f(x0)| <€}, x0) = d(E,x0)

and

d({x: |f(x)—f(xo)| < &}, x0) > d({x € E: | f(x) — f(x0)| < &}, x0) =d(E, x0).

Therefore
lim d({xe€l: |f(x)— f(x0)| < €},x0) > A
e—0*

and
Tim d({x €1+ |£(x) ~ f(x0)| < €},30) > p.

Now assume that

Ar= lim d({x€ 12 |f(0) = f(x0)] < £},%0) > A

and
p1 = lim d({x 1+ [£(x) — f(x0)| < £},30) > p.

Applying Lemma 26.23 for E, = {x € I: | f(x) — f(x0)| <é} we can find a
measurable set E C R such that xg € E, d(E,xo) > A1 > A,d(E,xp) > p1 >p
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and for each n € N there exists §, > 0 such that £ N [xg — &,,x0 + 8] C E,.
Hence, f|¢ is continuous at xo andf is [A, p]-continuous. O

Theorem 26.25. Let 0 < A < 1. A measurable function f: 1 — R is [A,1]-
continuous at xq if and only if

lim d({xel: |f(x)—f(x0)| <€},x0)>A

e—0*

and
d({xel:|f(x) = f(xo)| < €},x0) =1
for each € > 0.
Proof. Assume that a measurable f is [A, 1]—continuousﬁ at xo. Then there exists
a measurable £ C R such that xo € E, d(E,x0) > A, d(E,xp) = 1 and fig is

continuous at xo. By the continuity of f at x¢, for each € > 0 we can find § > 0
for which E N [xo — 8,x0+ 6] C {x: | f(x) — f(x0)| < €}. Hence

d({x: |f(x) = f(x0)| < &},x0) Zd({x € E: |f(x) — f(x0)| < €},x0) = d(E,x0)

and

d({x: |f(x) = f(xo)| <&}, x0) =d({x € E: | f(x) — f(x0)| < £},x0) =d(E,x0).

Therefore
lim d({xel: |f(x)—f(x0)| <€},x0) >A

-0t
and

d({x €I |f(x) = f(x0)| < &}, x0) = 1.

Now assume that
A= lim d({xel:|f(x)—f(xo0)| < €},x0) > A
e—0t

and
Elgg)lﬁ({x €l |f(x)— f(xo)| <€},x0) =1

for each € > 0. Applying Lemma 26.23 for E, = {x € I: | f(x) — f(x0)| < 1},
we can find a measurable set E C R such that x € E, d(E,x0) > M > A,

d(E,xo) = 1 and for each n € N there exists &, > 0 such that E N [xg — §,,x0 +
0,] C E,,. Hence fig is continuous at xp and f is [A, p]-continuous. 0

Corollary 26.26.
ﬂ Cla.p) = Cap-

0<A<p<l1
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Lemma 26.27. Let A € (0,1]. IfE C R is measurable and s-d* (E,x) > A then
for each n € N there exists €, > 0 such that

AEN([x—b,x—5-]U x4+ 5-,x+b]))
2b

>A—

S =

foreach 0 <a<b<eg,.
Proof. Fix any n € N. There exists &, € (0, 1) such that M >A—5
for each ¢ € (0,¢,). If 0 <a < b < g, then

AMEN(([x—=b,x— 5. |U[x+ 55,x+Db])) = A(E [x—bx+b])—
—A(Em[ L x+AD)>2b(1—4)— 34 > bA L.

O

Lemma 26.28. Let 0 < p < 1 and let x € R. Assume that E C R is measur-
able and s-d (E,x) > p. For every n € N there exists a decreasing sequence
{0} men of positive reals converging to 0 such that

AEN([x— ap,x— %,"]U[H %,H O))) Sp_1
200, n

foreachm € N,

Proof. Fix n € N. There exists a decreasing sequence {f,}en of positive
reals such that

A(E N [x = Bnyx + B))

. gt
ngxlo 2B =s-d (E,x)>p.
Then we can find mq such thatw > p—%for all m > my. Hence
MEN ([r— B x— Ba] Ulx+ B2 x4+ Bu]))
2B -
AEN[—Bux+Bal)  AEN[— 2 x4 2]) p1
- 2B 2B n

for each m > my. Then the sequence {0y, }men, Where 0y, = Byim, form € N,
has all the required properties. O
Lemma 26.29. Let 0 < A < p < 1 and let {E, },en be a decreasing sequence
of measurable sets such that x € (| E,, s-d* (E,,x) > A and s-d(E,,x) > p

n=1
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foi all n € N. Then there exists a measurable set E such that s-d(E,x) > A,
s-d(E,x) > p, x € E and for each n € N there exists a positive real 8, > 0 for
which EN[x—6,,x+ 6, CE,

Proof. By Lemma 26.27, for each n € N there exists €, > such that

AE, - -4 AL
(B0 (r—box— &UR+ & 48) 1
2b n

forall 0 <a < b < g,. By Lemma 26.28, for each n € N we can find decreasing
sequence {a; },,en such that

AE N (x— o, x— 2] U [+ 22, x+ o)) !
2o n

for all m,n € N. As in the proof of Lemma 26.23, we will construct inductively
a sequence of positive reals {a, },en such that for each n € N

1. a, <&,
2' an+1 < %’

n
amn

3. there exists m,, € N for which [ o ,a,ﬁ;n] C [an+1,an)-

Let ¢ € [ay41,a,) for some n. Since 4t > a4, we have

FN([x—c,x—ap2]Ux+apiz,x+c]) D
O (Ey N ([x = aps1,X — apy2] U X+ dng2, X+ api1]) U
U(Epmi N(x—c,x —an )UK+ apy1,x+c])) D
S B (- 25U 25 ]

Hence

A(FN[x—c,x+c]) zl(Enﬂ([x—c,x— Bt ]y [x+ 2t x—i—c])) >c(A-1)

2n 2n n

and M > A — 1. Therefore s-d" (F,x) > A.
On the other hand,

FOlx—ay x+0o, | DEN([x—0oy X —an2]Ux+an2,x+0 ]) D
D EuN (b= tx =, JU [t o555

(FOx—og, x+05,1)
204,

It follows that * >p—1LforneNand
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- AFNx—al x+a
s-d " (F,x) > limsup (F A= o, x+ 0, ]) > limsup (p — 1) = p.

n
n—oo 204mn f—yoo

Finally, we can easily see that for each n € N we can choose 6, = g, for
which E N [x — &,,x+ 6,) C E,,. O

Theorem 26.30. Let 0 < A < p < 1. A measurable function f: I — R is
s[A, p]-continuous at xy, if and only if

Jim s-d({x € I |f(x) = f(x0)| < €},x0) > A

and B
Tim s-d({x € 1+ 17(0) — f(xo)| < e},50) > p.

Proof. Assume that a measurable f is s[A,p]-continuous at xo. Then there
exists a measurable E C I such that xq € E, s-d(E,xo) > A, s-d(E,x) > p and
/e 1s continuous at xo. By the continuity of f at xo, for each € > 0 we can find
0 > 0 for which EN[xg— 6,x0+ 8] C {x: |f(x) — f(x0)| < €}. Hence

s-d({x: |f(x) = f(xo)| < €},x0) > s-d({x € E: |f(x) — f(x0)| < €},x0) =

= s-d(E,xo)
and
s-d({x: |f(x) = f(x0)| < €},x0) > s-d({x € E: |f(x) — f(x0)| < €},x0) =
= 5-d(E,x)
Therefore
Tim s-d({x€1: |£(x) — f(x0)| < },%) > A
and

lim s-d({x € I: |f(x)— f(x0)| < €},x0) > p.
-0t
Now assume that

A= lir(r)1+s—4({xelz |f(x) = f(x0)| < €},x0) > A

and
p1= lim s-d({x e I |f(x) = f(x0)| < &},x0) > p.

Applying Lemma 26.29 for E, = {x € I: |f(x) — f(x0)| < 1}, we can find a
measurable set E C I such thatxg € E, s-d(E,xo) > A > A, s-d(E,x0) > p1 > p
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and for each n € N there exists §, > 0 such that £ N [xg — &,,x0 + 8] C E,.
Hence f|g is continuous at xo. Thus f is s[A, p]-continuous at xo. O

Theorem 26.31. Let 0 < A < 1. A measurable function f: I — R is s-[A, 1]-
continuous at xo, if and only if

lim s-d({x € 1+ |f(x) — f(0)] < e} %) > A

and
s-d({x €l: |f(x) = fxo)| <&},x0) =1
for each € > 0.
Proof. Assume that a measurable f is s-[A, 1]-continuous at xy. Then there
exists measurable E C R such that x € E, s-d(E,xo) > A, s-d(E,xp) = 1 and

J|e 1s continuous at xo. By the continuity of f at xo, for each € > 0 we can find
0 > 0 for which E N [xg — &,x0+ 6] C {x: |f(x) — f(x0)| < €}. Hence

s-d({x: |f(x) = f(x0)| < €}, x0) = s-d({x € E: | f(x) — f(x0)| < €}, x0) =

= s5-d(E,xp)
and
s-d({x: |f(0) — fxo)| < €}x0) = s-d({x € E: |f(x) — f(x0)] < },%0) =
=s-d(E,xp).
Therefore
Tim s-d({x €13 |£(x) ~ f(x0)| < },x) > A
and

ssd({x € l: |f(x)— f(xo)| < €},x0) = 1.

Now assume that
A= lim s-d({xel:|f(x)— f(x)| <€},x)>A
e—0t

and
Jim s-d({x € I+ [ £(x) = f(x0)| < €},%0) = 1

for each € > 0. Applying Lemma 26.29 for E, = {x € I: | f(x) — f(x0)| < 1},
we can find a measurable set E C R such that xo € E, d(E,xo) > A} > A,

d(E,xp) = 1 and for each n € N there exists §, > 0 such that E N [xg — &,,x0 +
0, C E,,. Hence, f|g is continuous at xp and f is s[A, p]-continuous. O
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Corollary 26.32.
N Ciapl =Cap

0<A<p<]
Definition 26.33. We say that a real-valued function f defined on an open in-
terval / has Denjoy property at xy € /, if it is measurable and

VesoVss0 A({x € (x0—8,x0+6): [f(x) = f(x) <&}) >0

We say that f has Denjoy property, if it has Denjoy property at each point x € /.

We will denote the class of all functions with Denjoy property by Den. By
Theorem 26.12 and definition of ¢/C, we have.

Corollary 26.34. Let 0 < p < 1. If f € UC) then f has Denjoy property.

Corollary 26.35. By Lemma 26.11, all defined classes of functions have Den-
joy property.

The diagram shows the relations among the considered classes of functions.

SC[A p SZ/le
\ Den
Ciap] Cp

No other implication can be stated as a few examples show.

Example 26.36. There exists f: R — Rsuch that f € (sUCp NUC, )\ (sC p)U
Ciap)) forall0 < p <1,A € (0,p].
Let {[an,bn) tnen and {[cy,dy]}nen be two sequences of closed intervals

[Cln,bn],O) =1,

oo

suchthat0<...dn+1<cn<an<bn<dn<...<d1,3+( U

n=1

a*( U (ans2],0) =0 and " ( U (e @n] U b)), 0) = 0. Define f: R —
n=1 n=1

R letting

0 forx € U ([an, n]U[_bna_an])U{0}7

n=1

flx)= I forxeR\ ({O} Ungl([cn,dn] U[—dy, —Cn]))a

linear in intervals [c,, ay|, [y, dy], [—an, —cul, [—dn, —bp],n=1,....
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It is clear that f is continuous at each point except at 0. Let E = | ([an, b U

n=
[—bu,—a,]) U{0}. Then fiz is constant and d(E,0) = s-d(E,0) = 1. Therefore
f€sUC,NUC, for p € (0,1]. On the other hand,

d({x: |f(x)| < 1},0) = s-d({x: |f(x)| < 1},0) = 1 —d(E,0) = 0.
Thus f ¢ sCix p)UCja p) forany 0 < p <1, A € (0,p].
Example 26.37. For each 0 < A < p <1 there exists f: R — R such that
fe (UCP ﬁc[/\,p]) \ (SC[A,p] USUCp).

Let0 < A < p < 1. There exists a, 8 € (0,1] such that ot > A, ‘”ﬁ < p and

B>pifp<lorB=1ifp=1.Let{[an,bu]}nen, {[cn,dn] tnen, {[ a),,b)]}nen,

{[¢},,d},] }nen be four sequences of closed intervals such that

< <d, <b,<d, < <...<0< . dpp1 <cp<an<by<dy,<...,

d+<0[an, b), ) (Qan,b; )

n=1

" (U (lensan] U b, ,)),0) = 0 and d" (
n=1
Define f: R — R letting

n»~n nn

S
1cs =

([, d] U [B,.d)), o) — 0.

0 forx € U ([an, n] [anab;])U{O}W

n=1

fx) = lfOI'XER\({O}UG([Cm dn] U ey, dy))),

n %n
n=1

linear in intervals [c,,ay], [bn,dn], [c), dl], [D),,d))],n

oo

The function f is continuous at each point except at 0. Let E = |J ([an, bn| U

n=1

[a,,b},]) U{0}. Then fi is constant, d(E,0) = B and d(E,0) > a. Therefore

f €UC,NCly p- But, s-d({x: [f(x)| < 1},0) = %P < p. Thus f ¢ sCjs 5 U
sUC,.

Example 26.38. For each 0 < A < p <1, A <1 there exists f: R — R such
thatf S SC[A o] \CA Pl
Fix 0 < A < p <1, A < 1. There exists a, € (0,1] such that ‘Hﬁ <A

and @ > A > B. Let {{an bl }aeri. {[ensdolbucst. {1 }ene {1chedi]baen
be four sequences of closed intervals such that

< <d, <b,<d, <1 <...<0<.dpp1 <cp<an<by<d,<...,
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—d!, = b, for all n, 3+< D [an, by, ) < G [d,,b]], )) =1,

n=1

d+(nL_Jl[a,,,b,, >_ad (L_Jan,b; ) :

d" (U (lenan] U [on.i]).0) = 0 and @ ( U (fepcs] U 0] ]).0) = 0.
n=1 n=1

Define f: R — R letting

0 forx € U ([am n] [an,b;])U{O},

n=1

flx) = 1fOI')C€R\({O}U©1([Cn7 dn) Ul dy))),

n-n

linear in intervals [cn,;n] (b, dy], [Chydl], [Pl dl],n=1,....

oo

Obviously, f is continuous except at 0. Let E = {J ([a,,b,] U [a,,b)]) U{0}.

n'-n
n=1

Then fg is constant, s-d(E,0) = 1 and s-d(E,0) = # > A. Therefore
f €5Ciap- Butd({x: [f(x)| <1},0) =B < A.Thus f ¢ Cy -

26.3 Relation between considered classes of functions for different
values A and p

The following proposition is obvious.

Proposition 26.39.

1. Let 0 < py < po < 1. ThenUC,, CUCy, and sUCp, C sUC),.
2. LetO< A < P1 <1,0<A < P2 <LA <Ay andp1 < P2 Then C[A27P2] C
C[/\l o] and SC[szpz] C SC[AI Pl

Example 26.40. For each 0 < p; < po < 1 there exists f € (UCp, NsUCy,) \
(UCp, UsUC),). Moreover, for each 0 < Ay < pp, we have f € (Cjp, o, N
SC[PlvPl]) \ (C[ALPZ] U SC[Az-,Pz])‘

Let {[an,bn) tnen and {[cy,dy]}nen be two sequences of closed intervals

such that 0 < ...dys) < cn < @y < by <dy < ... <di, d+( U [an,bn],O) —

n=1

LI2P2 and EJr( Ql([cn,an] U [bn,dn]),O) = 0. Define f: R — R letting
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0 for x € U ([an.bu] U [y, ~au)) U{0},

n=1

fO)=19 1forxe R\ ({0}uU U ([en, dn] U [—dn, —cal)),

linear in intervals [cn,an] [bn,dn],[—an, —cn],[—dn,—by),n=1,....

It is clear that f is continuous at each point except at 0. Let E = {0} U

U [an,bys]. Then fig is constant and d(E,0) = s-d(E,0) = BiZP2 > py. There-
n=1
fore f € sUC, NUCH, NClp, p,)NSClp, p,)- On the other hand,

oo

d({x: |f(0)] < 13,0) =s-d({x: | f(x)] < 1},0) < d(|J (len,da] U [~du, —ba]) =

n=1
_pitp
2

Thus f & UCp, UsUCp, UC|a, p,) USCla, p,] Tor any Ay € (0, p2].

< pP2.

From Proposition 26.39 and Example 26.40 we have.
Theorem 26.41.

1. Let py,ps € (0,1]. Then UC,, C UC,, if and only if py < pa. Moreover, if
p1 < P2 then UCPZ ; Z/{Cpl.

2. Let p1,p2 € (0,1]. Then sUC,, C sSUCy, if and only if pi < py. Moreover,
if p1 < p2 then sUCy, S sUC),.

Example 26.42. Let 0 < A} < p; < 1. For each A} < Ay <1 there exists f €
(Crarpi N5C1ALpi) \ (€10, 40] USClas 0])-
Let {[an,bn) tnen and {[c,,dy]}nen be two sequences of closed intervals

[an,bn],O) -

Aty EJr( !l[an,bn],0> =1 and E+( @1([6,,,61”] U [bn,dn]),o) = 0. Define

f: R — R letting

such that 0 < ...d,;{ <cn<an<bn<dn<...<d1,d+( U

n=1

0 forx € U ([an,bp) U [=by, —ay]) U {0},

n=1

FO)=9 1 forx € R\ ({010 U ([en, du] U —d, —cal)).
n=1
linear in intervals [c,,a,], [bn,dy], [—an, —cn], [—dn, —bn),n =1,....

It is clear that f is continuous at each point except at 0. Let E = {0} U
U ([@n, bn] U[—by, —ay,]). Then fig is constant d(E,0) = s-d(E,0) = Mty

n=1
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Ay and d(E,0) = s-d(E,0) = 1. Hence f € Cj5, ;1 N5Cla, p,)- On the other
hand,

d({x: [f(x)] <1},0) =s-d({x: [f(x)| <1},0) <

o ([en,dp] U [=dp, —c4]),0) = AL +A7A
1

2

S( <Ay
7”[

Thus f ¢ Ciz,,4,] USCiay Ay)-
From Proposition 26.39 and Examples 26.42 and 26.40 we have.
Theorem 26.43.
L Let O <Ay < py <1l and 0 <Ay < pr < 1. Then Cip, p,] C Cia, py) if and

only if Ay < Ay and py < pa. Moreover, if Ay < Ay or p1 < py then C[/\zpz] ;Ct

Clarpi]
2.Let 0 <Ay <p; <land 0< Ay <py <1]. Then 5Ciaypa] C SCia, ) i
and only if Ay < Ay and p1 < pa. Moreover, if Aj < Ay or p1 < pa then

SClAy.po) S SCiA,pi]-
Example 26.44. Let 0 < A} < p; < 1] and 0 < p, < 1. Then there exists

f € (UCPZ ﬂsucpz) \ (C[Ahp]] USC[A],pl})
Let {[an,bn) tnen and {[cy,dy]}nen be two sequences of closed intervals

suchthat 0 < ...d, 1 <c,<a,<b,<d, <. <d1,4+< U [a,,,b,,],o) =0,

n=1

a( Ql[an,bn],O) =1 and d'( Ql([cn,an] U [br,di]),0) = 0. Define

f: R — Rletting

0 forx e U ([an, bn] U [~by, —a,]) U{0},

n=1

fO)=9 1forxe R\ ({0}uU U ([en,dn] U [—=dn, —cal)),

linear in intervals [cn,an], [bn,dn], [—an, —cn],[—dn,—by),n=1,....

Clearly, f is continuous at each point except at 0. Let E = {0} U U ([an,bu] U

[~bu, —a,]). Then fig is constant d(E,0) = s-d(E,0) =0 and d(E 0) =
s-d(E,0) = 1. Hence f € UCp, NsUC),. On the other hand,
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d({x: [f(0)] <1},0) =s-d({x: [f(x)| < 1},0) <

U Cnyd n dn,—cn]) O):O

n=1
Thus f & C, p,] USCia, p1)-

Example 26.45. Let 0 < py < p; < 1. Then for each 0 < A < p, there exists
fe (C[A,pz] ﬁSC[A,pz]) \ (UCPI USZ/[CPI)

Let {[an,bn]}tnen and {[c,,dn] }nen be two sequences of closed intervals
such that 0 < ...dys | < cn < @y < by < dy < ... < di, d+( U [an,bn],O) -
=1

LS 3*( !1([cn,an]u[bn,dn]),0) = 1. Define f: R — R letting

0 for x € U ([an, bn] U [~by, —a,]) U{0},

n=1

TR=1 ttorxe B\ ({0} U ((end] U-dn. ~c:),

linear in intervals [cn,an] [bn,dn], [—an, —cn],[—dn,—by),n=1,....
The function f is continuous at each point except at 0. Let E = {0} U
U ([an, bn] U [~by, —ay,]). Then fig is constant d(E,0) = s-d(E,0) = bizer s
n=1
p2. Hence f € Cix p,)N5Cip p,)- On the other hand,

d({x: [f(x)] < 1},0) =s-d({x: |f(x)| <1},0) =

oo

—d (| ([en,da] U[—dn, —c]),0) = PLEP2
n=1

2

Thus f ¢ Z/{Cpl USUCPI .
From Proposition 26.39 and Examples 26.44 and 26.45 we have.

Theorem 26.46.

L. Let O <Ay < p1 <1and0<p, <1. Then UCp, C Cly, p,) if and only if
p1 < pa. Moreover, Cip, p, SUC,,.

2. Let0 <A1 <p1 <1land0< p2 < 1. Then sUCp, C sCjp, p,] if and only if
p1 < p2. Moreover, sCia, p S sSUCy,.
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