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26.1 Preliminaries

A. M. Bruckner, R. J. O’Malley and B. S.Thomson in [4] investigated the no-
tion of a system of paths and studied a number of generalized derivatives. Prop-
erties of path continuous functions was intensively studied in [2], [6], [7], [8],
[9], [10], [11], [13]. Similar approach to the notion of continuity was used in
[5], [15].

We use this idea of path continuity for studying some notions of generalized
continuity connected with density of a set at a point. Some basic properties of
these classes of functions are presented.

First, we shall collect some of the notions and definitions which appear fre-
quently in the sequel. The symbol λ ∗(E) denotes the Lebesgue outer measure
of E ⊂ R. In the whole paper we consider only real-valued functions defined
on an open interval I = (a,b).

Let E be a measurable subset of R and let x ∈ R. According to [3], the
numbers

d+(E,x) = liminf
t→0+

λ (E∩[x,x+t])
t
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and
d
+
(E,x) = limsup

t→0+

λ (E∩[x,x+t])
t

are called the right lower density of E at x and right upper density of E at x.
The left lower and upper densities of E at x are defined analogously. If

d+(E,x) = d
+
(E,x) or d−(E,x) = d

−
(E,x),

then we call these numbers the right density and left density of E at x, respec-
tively. The numbers

d(E,x) = limsup
t→0+
k→0+

λ (E ∩ [x− t,x+ k])
k+ t

and

d(E,x) = liminf
t→0+
k→0+

λ (E ∩ [x− t,x+ k])
k+ t

are called the upper and lower density of E at x respectively.
If d(E,x) = d(E,x), we call this number the density of E at x and denote it by
d(E,x). It is clear that E has the density at x if and only if all four one-sided
densities are equal.

When d(E,x) = 1, we say that x is a point of density of E.

Definition 26.1. [7] Let E be a measurable subset of R and x ∈ R.

1. For 0 < ρ < 1 we say that x is a point of ρ-type upper density of E if
d(E,x)> ρ .

2. We say that x is a point of 1-type upper density of E if d(E,x) = 1.

Definition 26.2. [7] A real-valued function f defined on an open interval I is
called ρ-upper continuous at x provided that there is a measurable set E ⊂ I
such that the point x is a point of ρ-type upper density of E, x ∈ E and f|E is
continuous at x. If f is ρ-upper continuous at every point of I we say that f is
ρ-upper continuous.

We will denote the class of all ρ-continuous functions defined on an open
intervals I by UCρ .

Definition 26.3. [13] Let E be a measurable subset of R and x ∈ R.

1. For 0 < Λ ≤ ρ < 1 we say that x is a point of [Λ ,ρ]-density of E if
d(E,x)> ρ and d(E,x)> Λ .
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2. For 0 < Λ < 1 we say that x is a point of [Λ ,1]-density of E if d(E,x) = 1
and d(E,x)> Λ .

3. We say that x is a point of [1,1]-density of E if d(E,x) = d(E,x) = 1.

Definition 26.4. [8], [13] Let 0 < λ ≤ ρ ≤ 1. A real-valued function f defined
on an open interval I is called [Λ ,ρ]-continuous at x ∈ I provided that there is
a measurable set E ⊂ I such that x is a point of [Λ ,ρ]-density of E, x ∈ E and
f|E is continuous at x. If f is [Λ ,ρ]-continuous at each point of I we say that f
is [Λ ,ρ]-continuous.

We will denote the class of all [Λ ,ρ]-continuous functions by C[Λ ,ρ]. It is clear
that C[1,1] is exactly the class of approximately continuous functions.

Sometimes density of a set at a point is defined in other, symmetric, way.
According to, for example [14], the lower density of E at x and upper density of
E at x are defined as liminf

t→0+
λ (E∩[x−t,x+t])

2t and limsup
t→0+

λ (E∩[x−t,x+t])
2t , respectively.

We will denote these densities by s-d+(E,x) and s-d
+
(E,x), respectively. If

s-d(E,x) = s-d(E,x) then we call this number the symmetric density of E at x
and denote it by s-d(E,x).

Corollary 26.5. For each measurable E ⊂ R and x ∈ R we have

1. s-d(E,x)≤ d(E,x),
2. s-d(E,x)≥ d(E,x),
3. x is a point of the density of E, if and only if x is a point of symmetric

density of E.

Definition 26.6. Let E be a measurable subset of R and x ∈ R.

1. For 0 < ρ < 1, then we say that x is a point of sρ-type upper density of E
if s-d(E,x)> ρ .

2. We say that x is a point of s-1-type upper density of E if s-d(E,x) = 1.

Definition 26.7. A real-valued function f , defined on an open interval I, is
called sρ-upper continuous at x, provided that there is a measurable set E ⊂ I
such that the point x is a point of sρ-type upper density of E, x ∈ E and f|E is
continuous at x. If f is sρ-upper continuous at every point of I, we say that f
is sρ-upper continuous.

We will denote the class of all ρ-continuous functions defined on an open
intervals I by sUCρ .

Definition 26.8. Let E be a measurable subset of R and x ∈ R.
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1. For 0 < Λ ≤ ρ < 1 we say that x is a point of s-[Λ ,ρ]-density of E if
s-d(E,x)> ρ and s-d(E,x)> Λ .

2. For 0 < Λ < 1 we say that x is a point of s-[Λ ,1]-density of E if
s-d(E,x) = 1 and s-d(E,x)> Λ .

3. We say that x is a point of s-[1,1]-density of E if s-d(E,x) = s-d(E,x) = 1.

Definition 26.9. Let 0 < Λ ≤ ρ ≤ 1. A real-valued function f defined on an
open interval I is called s-[Λ ,ρ]-continuous at x ∈ I, provided that there is a
measurable set E ⊂ I such that x is a point of s-[Λ ,ρ]-density of E, x ∈ E and
f|E is continuous at x. If f is s-[Λ ,ρ]-continuous at each point of I, we say that
f is s-[Λ ,ρ]-continuous.

We will denote the class of all s-[Λ ,ρ]-continuous functions by sC[Λ ,ρ].

Corollary 26.10. Cap ⊂ C[Λ ,ρ] ∩ sC[Λ ,ρ] for each 0 < Λ ≤ ρ ≤ 1 and Cap =

C[1,1] = sC[1,1].

26.2 Basic properties

Lemma 26.11. Let 0 < Λ ≤ ρ ≤ 1. The following inclusions are obvious.

1. C[Λ ,ρ] ⊂ UCρ ,
2. sC[Λ ,ρ] ⊂ sUCρ ,
3. sC[Λ ,ρ] ⊂ UCρ ,
4. sUCρ ⊂ UCρ .

Theorem 26.12. Let 0< ρ ≤ 1. Then each function f from UCρ is measurable.

Proof. Assume that there exists f ∈ UCρ which is not measurable. Then we
can find a number a ∈ R for which at least one of the sets {x ∈ I : f (x) < a},
{x∈ I : f (x)> a} is nonmeasurable. Without loss of generality we may assume
that the set {x ∈ I : f (x)< a} is nonmeasurable. Denote

A = {x ∈ I : f (x)< a}, B = {x ∈ I : f (x)≥ a}.

It is obvious that B = I \A is also nonmeasurable. Consider a measurable sets
A1 ⊂ A, B1 ⊂ B such that A\A1 and B\B1 do not contain a measurable set of
positive measure. Therefore A\A1 and B\B1 are nonmeasurable sets. Let

F = (A\A1)∪ (B\B1) = I \ (A1∪B1).
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Then F is measurable. Let Φd(F) be a set of all density points of F . By the
well-known Lebesgue Density Theorem, λ (F \Φd(F)) = 0. Therefore there
exists x0 ∈ (A\A1)∩Φd(F).

Since f is ρ-upper continuous at x0, it follows that there exists a measurable
set E ⊂ R such that x0 ∈ E, d(E,x0) > ρ and f|E is continuous at x0. Since
x0 ∈ A, we have f (x0) < a. Therefore it is possible to find δ > 0 such that
E ∩ (x0− δ ,x0 + δ ) ⊂ A. Let E ′ = E ∩ (x0− δ ,x0 + δ ). Hence x0 ∈ E ′, f|E ′ is
continuous at x0, E ′ ⊂ A and

d(E ′,x0) = d(E,x0)> ρ > 0. (26.1)

We have
E ′ = (E ′∩A1)∪ (E ′∩ (A\A1)).

Since E ′ and E ′ ∩A1 are measurable, E ′ ∩ (A \A1) is measurable, too. Hence
λ (E ′∩ (A\A1)) = 0. Moreover,

d(E ′∩A1,x0) = 1−d(R\ (E ′∩A1),x0)≤ 1−d(F,x0) = 1−1 = 0,

because (E ′∩A1)∩F = /0. It follows that

d(E ′,x0)≤ d(E ′∩A,x0)+d(E ′∩ (A\A1),x0) = 0+0 = 0,

contradicting (26.1). Thus the assumption that f may be nonmeasurable is
false. ut
Corollary 26.13. All considered classes of functions C[Λ ,ρ], sC[Λ ,ρ], UCρ and
sUCρ consist of Lebesgue measurable functions.

Lemma 26.14. Let 0 < ρ ≤ 1, x ∈ R and let {En : n ∈ N} be a decreasing
family of measurable sets such that d(En,x)≥ ρ for n≥ 1. Then there exists a
measurable set E such that d(E,x)≥ ρ and for each n ∈ N there exists δn > 0
for which E ∩ [x−δn,x+δn]⊂ En.

Proof. By assumptions, d
+
(En,x) ≥ ρ or d

−
(En,x) ≥ ρ for each n. Hence

there exists an infinite sequence {Enk : k ∈ N} such that d
+
(Enk ,x)≥ ρ for all

k ≥ 1 or d
−
(Enk ,x) ≥ ρ for all k ≥ 1. Without loss of generality we may as-

sume that the first possibility occurs. Then d
+
(En,x)≥ ρ for all n≥ 1, because

{En : n ∈ N} is a decreasing family.
Let x1 > x be any point for which λ (E1∩[x,x1])

x1−x > ρ
(
1− 1

2

)
and x1− x < 1.

Next, we can find x < x2 < x1 such that

λ (E1∩ [x2,x1])

x1− x
> ρ

(
1− 1

2

)
,

λ (E2∩ [x,x2])

x2− x
> ρ

(
1− 1

4

)
and x2−x<

1
2
.
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Assume that points x1,x2, . . . ,xn are chosen, x < xn < .. . < x1, λ (Ei−1∩[xi,xi−1])
xi−1−x >

ρ
(
1− 1

2i−1

)
for i = 2, . . . ,n, λ (En∩[x,xn])

xn−x > ρ
(
1− 1

2n

)
and xn−x < 1

n . Then there
exists x < xn+1 < xn such that

λ (En∩ [xn+1,xn])

xn− x
> ρ

(
1− 1

2n

)
,

λ (En+1∩ [x,xn+1])

xn+1− x
> ρ

(
1− 1

2n+1

)
and xn+1− x < 1

n+1 .

We have constructed inductively a decreasing sequence {xn}n≥1 such that

λ (En∩ [xn+1,xn])

xn− x
> ρ

(
1− 1

2n

)
for n≥ 1. (26.2)

Let E =
∞⋃

n=1

(
En∩ [xn+1,xn]

)
∪{x}. Since

limsup
n→∞

λ (E ∩ [x,xn])

xn− x
≥ limsup

n→∞

λ (En∩ [xn+1,xn])

xn− x
≥ lim

n→∞

(
ρ− 1

2n

)
= ρ,

we have d(E,x)≥ ρ .
By definition of E, for each n there exists δn = xn− x > 0 such that

E ∩ [x−δn,x+δn] = E ∩ [x,xn]⊂ En.

The proof is complete. ut

We will give a condition equivalent to ρ-upper continuity at a point x.

Theorem 26.15. Let 0 < ρ ≤ 1 and let f : I → R be a measurable function.
Then f is ρ-upper continuous at x ∈ I if and only if

lim
ε→0+

d
(
{y ∈ I : | f (x)− f (y)|< ε},x

)
> ρ if 0 < ρ < 1

or

d
(
{y ∈ I : | f (x)− f (y)|< ε},x

)
= 1 for all ε > 0 if ρ = 1.

Proof. Assume that f is ρ-upper continuous at x. Let E ⊂ I be a measurable set
such that x∈ E, f|E is continuous at x and d(E,x)> ρ for ρ < 1, or d(E,x) = 1
if ρ = 1. Since f|E is continuous at x, for each ε > 0 we can find δ > 0 such
that [x−δ ,x+δ ]∩E ⊂ {y : | f (x)− f (y)|< ε}. Hence

d
(
{y ∈ I : | f (x)− f (y)|< ε},x

)
≥ d
(
{y ∈ E : | f (x)− f (y)|< ε},x

)
= d(E,x)
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for each ε > 0. Therefore

lim
ε→0+

d
(
{y ∈ I : | f (x)− f (y)|< ε},x

)
≥ d(E,x)> ρ if ρ < 1

or

d
(
{y ∈ I : | f (x)− f (y)|< ε},x

)
≥ d(E,x) = 1 for each ε > 0, if ρ = 1.

Finally, assume that

ρ1 = lim
ε→0+

d
(
{y ∈ I : | f (x)− f (y)|< ε},x

)
> ρ if ρ < 1

or

d
(
{y ∈ I : | f (x)− f (y)|< ε},x

)
= 1 for each ε > 0 if ρ = 1.

Applying Lemma 26.14 for sets En = {y ∈ I : | f (x)− f (y)|< 1
n}, we can con-

struct a measurable set E such that x ∈ E,

d(E,x)≥ ρ1 > ρ if 0 < ρ < 1 or d(E,x) = 1 if ρ = 1

and for each n there exists δn > 0 for which E ∩ [x− δn,x + δn] ⊂ En. The
last condition implies that f|E is continuous at x. It follows that f is ρ-upper
continuous at x. ut

Corollary 26.16. ⋂
0<ρ<1

UCρ = UC1.

Lemma 26.17. Let 0 < ρ ≤ 1, x ∈ R and let {En : n ∈ N} be a decreasing
family of measurable sets such that s-d(En,x)≥ ρ for n≥ 1. Then there exists
a measurable set E such that s-d(E,x) ≥ ρ and for each n ∈ N there exists
δn > 0 for which E ∩ [x−δn,x+δn]⊂ En.

Proof. Let δ1 > 0 be such that λ (E1∩[x−δ1,x+δ1])
2δ1

> ρ
(
1− 1

2

)
and δ1 < 1. Next,

we can find δ2 ∈ (0,δ1) such that

λ (E1∩ ([x−δ1,x−δ2]∪ [x+δ2,x+δ1]))

2δ1
> ρ

(
1− 1

2

)
,

λ (E2∩ [x−δ2,x+δ2])

2δ2
> ρ

(
1− 1

4

)
and δ2 < 1

2 . Assume that real positive numbers δ1,δ2, . . . ,δn are chosen,
δn < δn−1 < .. . < δ1,
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λ (Ei−1∩ ([x−δi−1,x−δi]∪ [x+δi,x+δi−1])

2δi−1− x
> ρ

(
1− 1

2i−1

)
for i = 2, . . . ,n, λ (En∩[x−δn,x+δn])

2δn
> ρ

(
1− 1

2n

)
and δn < 1

n . Then there exists

δn+1 ∈ (0,δn) such that λ (En∩([x−δn,x−δn+1]∪[x+δn+1,x+δn])
2δn

> ρ
(
1− 1

2n

)
,

λ (En+1∩[x−δn+1,x+δn+1])
2δn+1

> ρ
(
1− 1

2n+1

)
and δn+1 <

1
n+1 .

We have constructed inductively a decreasing sequence {δn}n≥1 of positive
numbers such that for n≥ 1

λ (En∩ ([x−δn,x−δn+1]∪ [x+δn+1,x+δn]))

2δn
> ρ

(
1− 1

2n

)
. (26.3)

Let E = {x}∪
∞⋃

n=1

(
En∩ ([x−δn,x−δn+1]∪ [x+δn+1,x+δn])

)
. Since

limsup
n→∞

λ (E ∩ [x−δn,x+δn])

2δn
≥

≥ limsup
n→∞

λ (En∩ ([x−δn,x−δn+1]∪ [x+δn+1,x+δn]))

2δn
≥ lim

n→∞

(
ρ− 1

2n

)
= ρ,

we have s-d(E,x)≥ ρ .
By definition of E, we have E ∩ [x− δn,x+ δn] = E ∩ [x,xn] ⊂ En for each

n. The proof is complete. ut

Now, we can give a condition equivalent to sρ-upper continuity at a point x.

Theorem 26.18. Let 0 < ρ ≤ 1 and let f : I → R be a measurable function.
Then f is sρ-upper continuous at x ∈ I if and only if

lim
ε→0+

s-d
(
{y ∈ I : | f (x)− f (y)|< ε},x

)
> ρ if 0 < ρ < 1

or

s-d
(
{y ∈ I : | f (x)− f (y)|< ε},x

)
= 1 for all ε > 0 if ρ = 1.

Proof. The proof is analogous to the proof of Theorem 26.15. The unique dif-
ference is that we use Lemma 26.17 instead of Lemma 26.14. ut

Corollary 26.19. ⋂
0<ρ<1

sUCρ = sUC1.

Remark 26.20. Conditions stated in Theorem 26.15 and 26.15 are similar to
the general condition of path continuity discussed in [15, Theorem 14.3].
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Lemma 26.21. Let Λ ∈ (0,1]. If E is a measurable subset of R and d+(E,x)≥
Λ then for each n ∈ N there exists εn > 0 such that

λ (E ∩ [x+ a
2n ,x+b])

b
> Λ − 1

n

for each 0 < a < b < εn.

Proof. Fix any n ∈ N. Since d+(E,x) ≥ Λ , there exists εn ∈ (0,1) such that
λ (E∩[x,x+c])

c > Λ − 1
2n for each c ∈ (0,εn). If 0 < a < b < εn, then

λ (E ∩ [x+ a
2n ,x+b]) = λ (E ∩ [x,x+b])−λ (E ∩ [x,x+ a

2n ])≥
≥ b(1− 1

2n)−
a

2n > bΛ − b
n .

Hence
λ (E∩[x+ a

2n ,x+b])
b > Λ − 1

n . ut

Lemma 26.22. Let 0 < ρ ≤ 1 and let x ∈R. Assume that E ⊂R is measurable
and d

+
(E,x)≥ ρ . For every n ∈ N there exists decreasing sequence {αm}m∈N

of positive reals converging to 0 such that

λ (E ∩ [x+ αm
2n ,x+αm])

αm
> ρ− 1

n

for each m ∈ N.

Proof. Fix n ∈ N. Since d
+
(E,x) ≥ ρ , there exists a decreasing sequence

{βm}m∈N of positive reals such that

lim
m→∞

λ (E ∩ [x,x+βm])

βm
= d

+
(E,x)≥ ρ.

Then we can find m0 such that λ (E∩[x,x+βm])
βm

> ρ− 1
n for all m≥ m0. Hence,

λ (E ∩ [x+ βm
2m ,x+βm])

βm
≥ λ (E ∩ [x,x+βm])

βm
−

λ (E ∩ [x,x+ βm
2m ])

βm
> ρ− 1

n

for each m≥ m0. Then the sequence {αm}m∈N, where αm = βm+m0 for m ∈ N,
has all the required properties. ut

Lemma 26.23. Let 0 < Λ ≤ ρ ≤ 1 and let {En}n∈N be a decreasing sequence

of measurable sets such that x ∈
∞⋂

n=1
En, d+(En,x)≥Λ and d(En,x)≥ ρ for all

n∈N. Then there exists a measurable set E such that d(E,x)≥Λ , d(E,x)≥ ρ ,
x ∈ E and for each n ∈N there exists δn > 0 for which E∩ [x−δn,x+δn]⊂ En
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Proof. As in the proof of Lemma 26.14, we can assume that d
+
(En,x)≥ ρ for

all n. By Lemma 26.21, for each n ∈ N there exists εn > such that

λ (En∩ [x+ a
2n ,x+b])

b
> Λ − 1

n

for all 0 < a,b < εn. By Lemma 26.22, for each n ∈ N we can find decreasing
sequence {αn

m}m∈N such that

λ (En∩ [x+ αn
m

2n ,x+αn
m])

αn
m

> ρ− 1
n

for all m,n ∈ N. We will construct inductively a sequence of positive reals
{an}n∈N such that for each n ∈ N

1. an < εn,
2. an+1 <

an
2n ,

3. there exists mn ∈ N for which
[

αn
mn

2n ,αn
mn

]
⊂ [an+1,an].

Choose any a1 < ε1. Assume that we have chosen a1, . . . ,an satisfying condi-
tions 1)−3). Then we can find mn ∈ N such that αn

mn
< an. Now, we can take

an arbitrary an+1 ∈
(

0,min{εn+1,
αn

mn
2n }

)
. Put

F =
∞⋃

n=1

(En∩ [x+an+2,x+an+1]).

Let y ∈ [x,x+ a2], y = x+ c . Then c ∈ [an+1,an] for some n. Since an+1
2n >

an+2, we have

F ∩ [an+2,x+ c]⊃ (En∩ [x+an+2,x+an+1])∪
∪ (En−1∩ [x+an+1,x+ c])⊃ En∩

[
x+ an+1

2n ,x+ c
]
.

Hence

λ (F ∩ [x,x+ c])≥ λ

(
En∩

[
x+ an+1

2n ,x+ c
])

> c(Λ − 1
n)

and λ (F∩[x,x+c])
c > Λ − 1

n . Therefore d+(F,x)≥Λ .
On the other hand,

F ∩ [x,x+α
n
mn
]⊃ En∩ [x+an+2,x+α

n
mn
]⊃ En∩

[
x+ an+1

2n ,x+α
n
mn

]
.

Therefore λ (F∩[x,x+αn
mn ])

αn
mn

> ρ− 1
n for n ∈ N and
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d
+
(F,x)≥ limsup

n→∞

λ (F ∩ [x,x+αn
mn
])

αn
mn

≥ limsup
n→∞

(
ρ− 1

n

)
= ρ.

Finally, we can easily see that for each n ∈ N we can choose δn = an+1 for
which E ∩ [x,x+δn]⊂ En.

Similarly, we can construct a measurable set G ⊂ (−∞,x) such that
d−(G,x) ≥ λ and for each n ∈ N, G∩ [x− δn,x] ⊂ En for some positive δn.
Then the set E = F ∪G∪{x} has all the required properties. ut

Theorem 26.24. Let 0<Λ ≤ ρ < 1. A measurable function f : I→R is [Λ ,ρ]-
continuous at x0 if and only if

lim
ε→0+

d({x ∈ I : | f (x)− f (x0)|< ε},x0)> Λ

and
lim

ε→0+
d({x ∈ I : | f (x)− f (x0)|< ε},x0)> ρ.

Proof. asasAssume that a measurable f is [Λ ,ρ]-continuous at x0. Then there
exists measurable E ⊂ R such that x0 ∈ E, d(E,x0)> Λ , d(E,x0)> ρ and f|E
is continuous at x0. By the continuity of f at x0, for each ε > 0 we can find
δ > 0 for which [x0−δ ,x0 +δ ]⊂ {x : | f (x)− f (x0)|< ε}. Hence

d({x : | f (x)− f (x0)|< ε},x0)≥ d({x∈ E : | f (x)− f (x0)|< ε},x0) = d(E,x0)

and

d({x : | f (x)− f (x0)|< ε},x0)≥ d({x∈E : | f (x)− f (x0)|< ε},x0)= d(E,x0).

Therefore
lim

ε→0+
d({x ∈ I : | f (x)− f (x0)|< ε},x0)> Λ

and
lim

ε→0+
d({x ∈ I : | f (x)− f (x0)|< ε},x0)> ρ.

Now assume that

Λ1 = lim
ε→0+

d({x ∈ I : | f (x)− f (x0)|< ε},x0)> Λ

and
ρ1 = lim

ε→0+
d({x ∈ I : | f (x)− f (x0)|< ε},x0)> ρ.

Applying Lemma 26.23 for En = {x ∈ I : | f (x)− f (x0)| < 1
n}, we can find a

measurable set E ⊂R such that x0 ∈ E, d(E,x0)≥Λ1 >Λ , d(E,x0)≥ ρ1 > ρ
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and for each n ∈ N there exists δn > 0 such that E ∩ [x0− δn,x0 + δn] ⊂ En.
Hence, f|E is continuous at x0 and f is [Λ ,ρ]-continuous. ut

Theorem 26.25. Let 0 < Λ < 1. A measurable function f : I → R is [Λ ,1]-
continuous at x0 if and only if

lim
ε→0+

d({x ∈ I : | f (x)− f (x0)|< ε},x0)> Λ

and
d({x ∈ I : | f (x)− f (x0)|< ε},x0) = 1

for each ε > 0.

Proof. Assume that a measurable f is [Λ ,1]-continuous at x0. Then there exists
a measurable E ⊂ R such that x0 ∈ E, d(E,x0) > Λ , d(E,x0) = 1 and f|E is
continuous at x0. By the continuity of f at x0, for each ε > 0 we can find δ > 0
for which E ∩ [x0−δ ,x0 +δ ]⊂ {x : | f (x)− f (x0)|< ε}. Hence

d({x : | f (x)− f (x0)|< ε},x0)≥ d({x∈ E : | f (x)− f (x0)|< ε},x0) = d(E,x0)

and

d({x : | f (x)− f (x0)|< ε},x0)≥ d({x∈E : | f (x)− f (x0)|< ε},x0)= d(E,x0).

Therefore
lim

ε→0+
d({x ∈ I : | f (x)− f (x0)|< ε},x0)> Λ

and
d({x ∈ I : | f (x)− f (x0)|< ε},x0) = 1.

Now assume that

Λ1 = lim
ε→0+

d({x ∈ I : | f (x)− f (x0)|< ε},x0)> Λ

and
lim

ε→0+
d({x ∈ I : | f (x)− f (x0)|< ε},x0) = 1

for each ε > 0. Applying Lemma 26.23 for En = {x ∈ I : | f (x)− f (x0)|< 1
n},

we can find a measurable set E ⊂ R such that x0 ∈ E, d(E,x0) ≥ λ1 > λ ,
d(E,x0) = 1 and for each n ∈N there exists δn > 0 such that E ∩ [x0−δn,x0 +

δn]⊂ En. Hence f|E is continuous at x0 and f is [Λ ,ρ]-continuous. ut

Corollary 26.26. ⋂
0<Λ≤ρ<1

C[Λ ,ρ] = Cap.
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Lemma 26.27. Let Λ ∈ (0,1]. If E ⊂R is measurable and s-d+(E,x)≥Λ then
for each n ∈ N there exists εn > 0 such that

λ (E ∩ ([x−b,x− a
2n ]∪ [x+

a
2n ,x+b]))

2b
> Λ − 1

n

for each 0 < a < b < εn.

Proof. Fix any n∈N. There exists εn ∈ (0,1) such that λ (E∩[x−c,x+c])
2c >Λ− 1

2n
for each c ∈ (0,εn). If 0 < a < b < εn, then

λ (E ∩ (([x−b,x− a
2n ]∪ [x+

a
2n ,x+b])) = λ (E ∩ [x−b,x+b])−

−λ (E ∩ [x− a
2n ,x+

a
2n ])≥ 2b(1− 1

2n)−
2a
2n > bΛ − b

n .

ut

Lemma 26.28. Let 0 < ρ ≤ 1 and let x ∈ R. Assume that E ⊂ R is measur-
able and s-d

+
(E,x) ≥ ρ . For every n ∈ N there exists a decreasing sequence

{αm}m∈N of positive reals converging to 0 such that

λ (E ∩ ([x−αm,x− αm
2n ]∪ [x+

αm
2n ,x+αm]))

2αm
> ρ− 1

n

for each m ∈ N.

Proof. Fix n ∈ N. There exists a decreasing sequence {βm}m∈N of positive
reals such that

lim
m→∞

λ (E ∩ [x−βm,x+βm])

2βm
= s-d

+
(E,x)≥ ρ.

Then we can find m0 such that λ (E∩[x−βm,x+βm])
2βm

> ρ− 1
n for all m≥ m0. Hence

λ (E ∩ ([x−βm,x− βm
2m ]∪ [x+

βm
2m ,x+βm]))

2βm
≥

≥ λ (E ∩ [x−βm,x+βm])

2βm
−

λ (E ∩ [x− βm
2m ,x+

βm
2m ])

2βm
> ρ− 1

n

for each m≥ m0. Then the sequence {αm}m∈N, where αm = βm+m0 for m ∈ N,
has all the required properties. ut

Lemma 26.29. Let 0 < Λ ≤ ρ ≤ 1 and let {En}n∈N be a decreasing sequence

of measurable sets such that x ∈
∞⋂

n=1
En, s-d+(En,x) ≥ Λ and s-d(En,x) ≥ ρ
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for all n ∈ N. Then there exists a measurable set E such that s-d(E,x) ≥ Λ ,
s-d(E,x)≥ ρ , x ∈ E and for each n ∈ N there exists a positive real δn > 0 for
which E ∩ [x−δn,x+δn]⊂ En

Proof. By Lemma 26.27, for each n ∈ N there exists εn > such that

λ (En∩ ([x−b,x− a
2n ]∪ [x+

a
2n ,x+b]))

2b
> Λ − 1

n

for all 0 < a < b < εn. By Lemma 26.28, for each n∈Nwe can find decreasing
sequence {αn

m}m∈N such that

λ (En∩ ([x−αn
m,x−

αn
m

2n ]∪ [x+
αn

m
2n ,x+αn

m]))

2αn
m

> ρ− 1
n

for all m,n∈N. As in the proof of Lemma 26.23, we will construct inductively
a sequence of positive reals {an}n∈N such that for each n ∈ N

1. an < εn,
2. an+1 <

an
2n ,

3. there exists mn ∈ N for which
[

αn
mn

2n ,αn
mn

]
⊂ [an+1,an].

Let c ∈ [an+1,an] for some n. Since an+1
2n > an+2, we have

F ∩ ([x− c,x−an+2]∪ [x+an+2,x+ c])⊃
⊃
(
En∩ ([x−an+1,x−an+2]∪ [x+an+2,x+an+1])

)
∪

∪
(
En−1∩ ([x− c,x−an+1]∪ [x+an+1,x+ c])

)
⊃

⊃ En∩
([

x− c,x− an+1
2n

]
∪
[
x+ an+1

2n ,x+ c
])
.

Hence

λ (F∩[x−c,x+c])≥ λ

(
En∩

([
x− c,x− an+1

2n

]
∪
[
x+ an+1

2n ,x+ c
]))

> c(Λ− 1
n)

and λ (F∩[x−c,x+c])
c > Λ − 1

n . Therefore s-d+(F,x)≥Λ .
On the other hand,

F ∩ [x−α
n
mn
,x+α

n
mn
]⊃ En∩ ([x−α

n
mn
,x−an+2]∪ [x+an+2,x+α

n
mn
])⊃

⊃ En∩
([

x− αn+1
2n ,x−α

n
mn

]
∪
[
x+α

n
mn
,x+ αn+1

2n

])
.

It follows that λ (F∩[x−αn
mn ,x+αn

mn ])

2αn
mn

> ρ− 1
n for n ∈ N and
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s-d
+
(F,x)≥ limsup

n→∞

λ (F ∩ [x−αn
mn
,x+αn

mn
])

2αn
mn

≥ limsup
n→∞

(
ρ− 1

n

)
= ρ.

Finally, we can easily see that for each n ∈ N we can choose δn = an+1 for
which E ∩ [x−δn,x+δn]⊂ En. ut

Theorem 26.30. Let 0 < Λ ≤ ρ < 1. A measurable function f : I → R is
s[Λ ,ρ]-continuous at x0, if and only if

lim
ε→0+

s-d({x ∈ I : | f (x)− f (x0)|< ε},x0)> Λ

and
lim

ε→0+
s-d({x ∈ I : | f (x)− f (x0)|< ε},x0)> ρ.

Proof. Assume that a measurable f is s[Λ ,ρ]-continuous at x0. Then there
exists a measurable E ⊂ I such that x0 ∈ E, s-d(E,x0)>Λ , s-d(E,x0)> ρ and
f|E is continuous at x0. By the continuity of f at x0, for each ε > 0 we can find
δ > 0 for which E ∩ [x0−δ ,x0 +δ ]⊂ {x : | f (x)− f (x0)|< ε}. Hence

s-d({x : | f (x)− f (x0)|< ε},x0)≥ s-d({x ∈ E : | f (x)− f (x0)|< ε},x0) =

= s-d(E,x0)

and

s-d({x : | f (x)− f (x0)|< ε},x0)≥ s-d({x ∈ E : | f (x)− f (x0)|< ε},x0) =

= s-d(E,x0).

Therefore
lim

ε→0+
s-d({x ∈ I : | f (x)− f (x0)|< ε},x0)> Λ

and
lim

ε→0+
s-d({x ∈ I : | f (x)− f (x0)|< ε},x0)> ρ.

Now assume that

Λ1 = lim
ε→0+

s-d({x ∈ I : | f (x)− f (x0)|< ε},x0)> Λ

and
ρ1 = lim

ε→0+
s-d({x ∈ I : | f (x)− f (x0)|< ε},x0)> ρ.

Applying Lemma 26.29 for En = {x ∈ I : | f (x)− f (x0)| < 1
n}, we can find a

measurable set E ⊂ I such that x0 ∈E, s-d(E,x0)≥ λ1 > λ , s-d(E,x0)≥ ρ1 > ρ
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and for each n ∈ N there exists δn > 0 such that E ∩ [x0− δn,x0 + δn] ⊂ En.
Hence f|E is continuous at x0. Thus f is s[Λ ,ρ]-continuous at x0. ut

Theorem 26.31. Let 0 < Λ < 1. A measurable function f : I→ R is s-[Λ ,1]-
continuous at x0, if and only if

lim
ε→0+

s-d({x ∈ I : | f (x)− f (x0)|< ε},x0)> Λ

and
s-d({x ∈ I : | f (x)− f (x0)|< ε},x0) = 1

for each ε > 0.

Proof. Assume that a measurable f is s-[Λ ,1]-continuous at x0. Then there
exists measurable E ⊂ R such that x0 ∈ E, s-d(E,x0)> Λ , s-d(E,x0) = 1 and
f|E is continuous at x0. By the continuity of f at x0, for each ε > 0 we can find
δ > 0 for which E ∩ [x0−δ ,x0 +δ ]⊂ {x : | f (x)− f (x0)|< ε}. Hence

s-d({x : | f (x)− f (x0)|< ε},x0)≥ s-d({x ∈ E : | f (x)− f (x0)|< ε},x0) =

= s-d(E,x0)

and

s-d({x : | f (x)− f (x0)|< ε},x0)≥ s-d({x ∈ E : | f (x)− f (x0)|< ε},x0) =

= s-d(E,x0).

Therefore
lim

ε→0+
s-d({x ∈ I : | f (x)− f (x0)|< ε},x0)> Λ

and
s-d({x ∈ I : | f (x)− f (x0)|< ε},x0) = 1.

Now assume that

Λ1 = lim
ε→0+

s-d({x ∈ I : | f (x)− f (x0)|< ε},x0)> Λ

and
lim

ε→0+
s-d({x ∈ I : | f (x)− f (x0)|< ε},x0) = 1

for each ε > 0. Applying Lemma 26.29 for En = {x ∈ I : | f (x)− f (x0)|< 1
n},

we can find a measurable set E ⊂ R such that x0 ∈ E, d(E,x0) ≥ Λ1 > Λ ,
d(E,x0) = 1 and for each n ∈N there exists δn > 0 such that E ∩ [x0−δn,x0 +

δn]⊂ En. Hence, f|E is continuous at x0 and f is s[Λ ,ρ]-continuous. ut
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Corollary 26.32. ⋂
0<Λ≤ρ<1

sC[Λ ,ρ] = Cap.

Definition 26.33. We say that a real-valued function f defined on an open in-
terval I has Denjoy property at x0 ∈ I, if it is measurable and

∀ε>0∀δ>0 λ ({x ∈ (x0−δ ,x0 +δ ) : | f (x)− f (x0)|< ε})> 0.

We say that f has Denjoy property, if it has Denjoy property at each point x∈ I.

We will denote the class of all functions with Denjoy property by Den. By
Theorem 26.12 and definition of UCρ we have.

Corollary 26.34. Let 0 < ρ < 1. If f ∈ UCρ then f has Denjoy property.

Corollary 26.35. By Lemma 26.11, all defined classes of functions have Den-
joy property.

The diagram shows the relations among the considered classes of functions.

Cap

sC[Λ ,ρ]

C[Λ ,ρ]

sUCρ

UCρ

Den
�
�
���

@
@
@
@R -

-

�
�
�
��

@
@
@
@R

?

@
@
@
@
@
@
@R

No other implication can be stated as a few examples show.

Example 26.36. There exists f : R→R such that f ∈ (sUCρ∩UCρ)\(sC[Λ ,ρ]∪
C[Λ ,ρ]) for all 0 < ρ ≤ 1, Λ ∈ (0,ρ].

Let {[an,bn]}n∈N and {[cn,dn]}n∈N be two sequences of closed intervals

such that 0 < .. .dn+1 < cn < an < bn < dn < .. . < d1, d
+
( ∞⋃

n=1
[an,bn],0

)
= 1,

d+
( ∞⋃

n=1
[an,bn],0

)
= 0 and d

+
( ∞⋃

n=1
([cn,an]∪ [bn,dn]),0

)
= 0. Define f : R→

R letting

f (x) =


0 for x ∈

∞⋃
n=1

([an,bn]∪ [−bn,−an])∪{0},

1 for x ∈ R\
(
{0}∪

∞⋃
n=1

([cn,dn]∪ [−dn,−cn])
)
,

linear in intervals [cn,an], [bn,dn], [−an,−cn], [−dn,−bn],n = 1, . . . .
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It is clear that f is continuous at each point except at 0. Let E =
∞⋃

n=1
([an,bn]∪

[−bn,−an])∪{0}. Then f|E is constant and d(E,0) = s-d(E,0) = 1. Therefore
f ∈ sUCρ ∩UCρ for ρ ∈ (0,1]. On the other hand,

d({x : | f (x)|< 1},0) = s-d({x : | f (x)|< 1},0) = 1−d(E,0) = 0.

Thus f /∈ sC[Λ ,ρ]∪C[Λ ,ρ] for any 0 < ρ ≤ 1, Λ ∈ (0,ρ].

Example 26.37. For each 0 < Λ < ρ ≤ 1 there exists f : R → R such that
f ∈ (UCρ ∩C[Λ ,ρ])\ (sC[Λ ,ρ]∪ sUCρ).

Let 0 <Λ < ρ ≤ 1. There exists α,β ∈ (0,1] such that α >Λ , α+β

2 < ρ and
β > ρ if ρ < 1 or β = 1 if ρ = 1. Let {[an,bn]}n∈N, {[cn,dn]}n∈N, {[a′n,b′n]}n∈N,
{[c′n,d′n]}n∈N be four sequences of closed intervals such that

. . . < c′n < a′n < b′n < d′n < c′n+1 < .. . < 0 < .. .dn+1 < cn < an < bn < dn < .. . ,

d+
( ∞⋃

n=1

[an,bn],0
)
= β ,d−

( ∞⋃
n=1

[a′n,b
′
n],0
)
= α,

d
+
( ∞⋃

n=1
([cn,an] ∪ [bn,dn]),0

)
= 0 and d

−
( ∞⋃

n=1
([c′n,a

′
n] ∪ [b′n,d

′
n]),0

)
= 0.

Define f : R→ R letting

f (x) =


0 for x ∈

∞⋃
n=1

([an,bn]∪ [a′n,b′n])∪{0},

1 for x ∈ R\ ({0}∪
∞⋃

n=1
([cn,dn]∪ [c′n,d′n])),

linear in intervals [cn,an], [bn,dn], [c′n,a
′
n], [b

′
n,d
′
n],n = 1, . . . .

The function f is continuous at each point except at 0. Let E =
∞⋃

n=1
([an,bn]∪

[a′n,b
′
n])∪{0}. Then f|E is constant, d(E,0) = β and d(E,0) ≥ α . Therefore

f ∈ UCρ ∩C[Λ ,ρ]. But, s-d({x : | f (x)|< 1},0) = α+β

2 < ρ . Thus f /∈ sC[Λ ,ρ]∪
sUCρ .

Example 26.38. For each 0 < Λ ≤ ρ ≤ 1, Λ < 1 there exists f : R→ R such
that f ∈ sC[Λ ,ρ] \C[Λ ,ρ].

Fix 0 < Λ < ρ ≤ 1, Λ < 1. There exists α,β ∈ (0,1] such that α+β

2 < Λ

and α > Λ > β . Let {[an,bn]}n∈N, {[cn,dn]}n∈N, {[a′n,b′n]}n∈N, {[c′n,d′n]}n∈N
be four sequences of closed intervals such that

. . . < c′n < a′n < b′n < d′n < c′n+1 < .. . < 0 < .. .dn+1 < cn < an < bn < dn < .. . ,
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−a′n = bn for all n, d
+
( ∞⋃

n=1
[an,bn],0

)
= d

−
( ∞⋃

n=1
[a′n,b

′
n],0)

)
= 1,

d+
( ∞⋃

n=1

[an,bn],0
)
= α,d−

( ∞⋃
n=1

[a′n,b
′
n],0
)
= β ,

d
+
( ∞⋃

n=1
([cn,an] ∪ [bn,dn]),0

)
= 0 and d

−
( ∞⋃

n=1
([c′n,a

′
n] ∪ [b′n,d

′
n]),0

)
= 0.

Define f : R→ R letting

f (x) =


0 for x ∈

∞⋃
n=1

([an,bn]∪ [a′n,b′n])∪{0},

1 for x ∈ R\ ({0}∪
∞⋃

n=1
([cn,dn]∪ [c′n,d′n])),

linear in intervals [cn,an], [bn,dn], [c′n,a
′
n], [b

′
n,d
′
n],n = 1, . . . .

Obviously, f is continuous except at 0. Let E =
∞⋃

n=1
([an,bn]∪ [a′n,b′n])∪{0}.

Then f|E is constant, s-d(E,0) = 1 and s-d(E,0) = α+β

2 > Λ . Therefore
f ∈ sC[Λ ,ρ]. But d({x : | f (x)|< 1},0) = β < λ . Thus f /∈ C[Λ ,ρ].

26.3 Relation between considered classes of functions for different
values λ and ρ

The following proposition is obvious.

Proposition 26.39.

1. Let 0 < ρ1 ≤ ρ2 ≤ 1. Then UCρ2 ⊂ UCρ1 and sUCρ2 ⊂ sUCρ1 .
2. Let 0<Λ1≤ ρ1≤ 1, 0<Λ2≤ ρ2≤ 1, Λ1≤Λ2 and ρ1≤ ρ2. Then C[Λ2,ρ2]⊂
C[Λ1,ρ1] and sC[Λ2,ρ2] ⊂ sC[Λ1,ρ1].

Example 26.40. For each 0 < ρ1 < ρ2 ≤ 1 there exists f ∈ (UCρ1 ∩ sUCρ1) \
(UCρ2 ∪ sUCρ2). Moreover, for each 0 < Λ2 ≤ ρ2, we have f ∈ (C[ρ1,ρ1] ∩
sC[ρ1,ρ1])\ (C[Λ2,ρ2]∪ sC[Λ2,ρ2]).

Let {[an,bn]}n∈N and {[cn,dn]}n∈N be two sequences of closed intervals

such that 0 < .. .dn+1 < cn < an < bn < dn < .. . < d1, d+
( ∞⋃

n=1
[an,bn],0

)
=

ρ1+ρ2
2 and d

+
( ∞⋃

n=1
([cn,an]∪ [bn,dn]),0

)
= 0. Define f : R→ R letting
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f (x) =


0 for x ∈

∞⋃
n=1

([an,bn]∪ [−bn,−an])∪{0},

1 for x ∈ R\
(
{0}∪

∞⋃
n=1

([cn,dn]∪ [−dn,−cn])
)
,

linear in intervals [cn,an], [bn,dn], [−an,−cn], [−dn,−bn],n = 1, . . . .

It is clear that f is continuous at each point except at 0. Let E = {0} ∪
∞⋃

n=1
[an,bn]. Then f|E is constant and d(E,0) = s-d(E,0) = ρ1+ρ2

2 > ρ1. There-

fore f ∈ sUCρ ∩UCρ ∩C[ρ1,ρ1]∩ sC[ρ1,ρ1]. On the other hand,

d({x : | f (x)|< 1},0) =s-d({x : | f (x)|< 1},0)≤ d(
∞⋃

n=1

([cn,dn]∪ [−dn,−bn]) =

=
ρ1 +ρ2

2
< ρ2.

Thus f /∈ UCρ2 ∪ sUCρ2 ∪C[Λ2,ρ2]∪ sC[Λ2,ρ2] for any Λ2 ∈ (0,ρ2].

From Proposition 26.39 and Example 26.40 we have.

Theorem 26.41.

1. Let ρ1,ρ2 ∈ (0,1]. Then UCρ2 ⊂ UCρ1 if and only if ρ1 ≤ ρ2. Moreover, if
ρ1 < ρ2 then UCρ2 $ UCρ1 .

2. Let ρ1,ρ2 ∈ (0,1]. Then sUCρ2 ⊂ sUCρ1 if and only if ρ1 ≤ ρ2. Moreover,
if ρ1 < ρ2 then sUCρ2 $ sUCρ1 .

Example 26.42. Let 0 < Λ1 < ρ1 < 1. For each Λ1 < Λ2 ≤ 1 there exists f ∈
(C[Λ1,ρ1]∩ sC[Λ1,ρ1])\ (C[Λ2,Λ2]∪ sC[Λ2,Λ2]).

Let {[an,bn]}n∈N and {[cn,dn]}n∈N be two sequences of closed intervals

such that 0 < .. .dn+1 < cn < an < bn < dn < .. . < d1, d+
( ∞⋃

n=1
[an,bn],0

)
=

Λ1+Λ2
2 , d

+
( ∞⋃

n=1
[an,bn],0

)
= 1 and d

+
( ∞⋃

n=1
([cn,an]∪ [bn,dn]),0

)
= 0. Define

f : R→ R letting

f (x) =


0 for x ∈

∞⋃
n=1

([an,bn]∪ [−bn,−an])∪{0},

1 for x ∈ R\
(
{0}∪

∞⋃
n=1

([cn,dn]∪ [−dn,−cn])
)
,

linear in intervals [cn,an], [bn,dn], [−an,−cn], [−dn,−bn],n = 1, . . . .

It is clear that f is continuous at each point except at 0. Let E = {0} ∪
∞⋃

n=1
([an,bn]∪ [−bn,−an]). Then f|E is constant d(E,0) = s-d(E,0) = Λ1+Λ2

2 >
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Λ1 and d(E,0) = s-d(E,0) = 1. Hence f ∈ C[Λ1,ρ1] ∩ sC[Λ1,ρ1]. On the other
hand,

d({x : | f (x)|< 1},0) =s-d({x : | f (x)|< 1},0)≤

≤(
∞⋃

n=1

([cn,dn]∪ [−dn,−cn]),0) =
Λ1 +Λ2

2
< Λ2.

Thus f /∈ C[Λ2,Λ2]∪ sC[Λ2,Λ2].

From Proposition 26.39 and Examples 26.42 and 26.40 we have.

Theorem 26.43.

1. Let 0 < Λ1 ≤ ρ1 ≤ 1 and 0 < Λ2 ≤ ρ2 ≤ 1. Then C[Λ2,ρ2] ⊂ C[Λ1,ρ1] if and
only if Λ1≤Λ2 and ρ1≤ ρ2. Moreover, if Λ1 <Λ2 or ρ1 < ρ2 then C[Λ2,ρ2]$
C[Λ1,ρ1].

2. Let 0 < Λ1 ≤ ρ1 ≤ 1 and 0 < Λ2 ≤ ρ2 ≤ 1]. Then sC[Λ2,ρ2] ⊂ sC[Λ1,ρ1] if
and only if Λ1 ≤ Λ2 and ρ1 ≤ ρ2. Moreover, if Λ1 < Λ2 or ρ1 < ρ2 then
sC[Λ2,ρ2] $ sC[Λ1,ρ1].

Example 26.44. Let 0 < Λ1 ≤ ρ1 ≤ 1] and 0 < ρ2 ≤ 1. Then there exists
f ∈ (UCρ2 ∩ sUCρ2)\ (C[Λ1,ρ1]∪ sC[Λ1,ρ1])

Let {[an,bn]}n∈N and {[cn,dn]}n∈N be two sequences of closed intervals

such that 0 < .. .dn+1 < cn < an < bn < dn < .. . < d1, d+
( ∞⋃

n=1
[an,bn],0

)
= 0,

d
+
( ∞⋃

n=1
[an,bn],0

)
= 1 and d

+
( ∞⋃

n=1
([cn,an] ∪ [bn,dn]),0

)
= 0. Define

f : R→ R letting

f (x) =


0 for x ∈

∞⋃
n=1

([an,bn]∪ [−bn,−an])∪{0},

1 for x ∈ R\
(
{0}∪

∞⋃
n=1

([cn,dn]∪ [−dn,−cn])
)
,

linear in intervals [cn,an], [bn,dn], [−an,−cn], [−dn,−bn],n = 1, . . . .

Clearly, f is continuous at each point except at 0. Let E = {0}∪
∞⋃

n=1
([an,bn]∪

[−bn,−an]). Then f|E is constant d(E,0) = s-d(E,0) = 0 and d(E,0) =
s-d(E,0) = 1. Hence f ∈ UCρ2 ∩ sUCρ2 . On the other hand,
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d({x : | f (x)|< 1},0) =s-d({x : | f (x)|< 1},0)≤

≤d(
∞⋃

n=1

([cn,dn]∪ [−dn,−cn]),0) = 0.

Thus f /∈ C[Λ1,ρ1]∪ sC[Λ1,ρ1].

Example 26.45. Let 0 < ρ2 < ρ1 ≤ 1. Then for each 0 < Λ ≤ ρ2 there exists
f ∈ (C[Λ ,ρ2]∩ sC[Λ ,ρ2])\ (UCρ1 ∪ sUCρ1)

Let {[an,bn]}n∈N and {[cn,dn]}n∈N be two sequences of closed intervals

such that 0 < .. .dn+1 < cn < an < bn < dn < .. . < d1, d+
( ∞⋃

n=1
[an,bn],0

)
=

ρ1+ρ2
2 and d

+
( ∞⋃

n=1
([cn,an]∪ [bn,dn]),0

)
= 1. Define f : R→ R letting

f (x) =


0 for x ∈

∞⋃
n=1

([an,bn]∪ [−bn,−an])∪{0},

1 for x ∈ R\
(
{0}∪

∞⋃
n=1

([cn,dn]∪ [−dn,−cn])
)
,

linear in intervals [cn,an], [bn,dn], [−an,−cn], [−dn,−bn],n = 1, . . . .

The function f is continuous at each point except at 0. Let E = {0} ∪
∞⋃

n=1
([an,bn]∪ [−bn,−an]). Then f|E is constant d(E,0) = s-d(E,0) = ρ1+ρ2

2 >

ρ2. Hence f ∈ C[Λ ,ρ2]∩ sC[Λ ,ρ2]. On the other hand,

d({x : | f (x)|< 1},0) =s-d({x : | f (x)|< 1},0) =

=d(
∞⋃

n=1

([cn,dn]∪ [−dn,−cn]),0) =
ρ1 +ρ2

2
< ρ1.

Thus f /∈ UCρ1 ∪ sUCρ1 .

From Proposition 26.39 and Examples 26.44 and 26.45 we have.

Theorem 26.46.

1. Let 0 < Λ1 ≤ ρ1 ≤ 1 and 0 < ρ2 ≤ 1. Then UCρ2 ⊂ C[Λ1,ρ1] if and only if
ρ1 ≤ ρ2. Moreover, C[Λ1,ρ1] $ UCρ2 .

2. Let 0 < Λ1 ≤ ρ1 ≤ 1 and 0 < ρ2 ≤ 1. Then sUCρ2 ⊂ sC[Λ1,ρ1] if and only if
ρ1 ≤ ρ2. Moreover, sC[Λ1,ρ1] $ sUCρ2 .
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