http://dx.doi.org/10.18778/7525-971-1.26

# Chapter 26 Path continuity connected with the notion of density

#### STANISŁAW KOWALCZYK, KATARZYNA NOWAKOWSKA

2010 Mathematics Subject Classification: 26A15, 54C30.

*Key words and phrases:* density of a set at a point, lower density, upper density, continuous functions, approximately continuous functions, path continuity.

# **26.1** Preliminaries

A. M. Bruckner, R. J. O'Malley and B. S.Thomson in [4] investigated the notion of a system of paths and studied a number of generalized derivatives. Properties of path continuous functions was intensively studied in [2], [6], [7], [8], [9], [10], [11], [13]. Similar approach to the notion of continuity was used in [5], [15].

We use this idea of path continuity for studying some notions of generalized continuity connected with density of a set at a point. Some basic properties of these classes of functions are presented.

First, we shall collect some of the notions and definitions which appear frequently in the sequel. The symbol  $\lambda^*(E)$  denotes the Lebesgue outer measure of  $E \subset \mathbb{R}$ . In the whole paper we consider only real-valued functions defined on an open interval I = (a, b).

Let *E* be a measurable subset of  $\mathbb{R}$  and let  $x \in \mathbb{R}$ . According to [3], the numbers

$$\underline{d}^+(E,x) = \liminf_{t \to 0^+} \frac{\lambda(E \cap [x,x+t])}{t}$$

and

$$\overline{d}^+(E,x) = \limsup_{t \to 0^+} \frac{\lambda(E \cap [x,x+t])}{t}$$

are called the right lower density of E at x and right upper density of E at x. The left lower and upper densities of E at x are defined analogously. If

$$\underline{d}^+(E,x) = \overline{d}^+(E,x)$$
 or  $\underline{d}^-(E,x) = \overline{d}^-(E,x),$ 

then we call these numbers the right density and left density of E at x, respectively. The numbers

$$\overline{d}(E,x) = \limsup_{\substack{t \to 0^+ \\ k \to 0^+}} \frac{\lambda(E \cap [x-t,x+k])}{k+t}$$

and

$$\underline{d}(E,x) = \liminf_{\substack{t \to 0^+ \\ k \to 0^+}} \frac{\lambda(E \cap [x-t, x+k])}{k+t}$$

are called the upper and lower density of E at x respectively.

If  $\overline{d}(E,x) = \underline{d}(E,x)$ , we call this number the density of *E* at *x* and denote it by d(E,x). It is clear that *E* has the density at *x* if and only if all four one-sided densities are equal.

When d(E,x) = 1, we say that x is a point of density of E.

**Definition 26.1.** [7] Let *E* be a measurable subset of  $\mathbb{R}$  and  $x \in \mathbb{R}$ .

- 1. For  $0 < \rho < 1$  we say that x is a point of  $\rho$ -type upper density of E if  $\overline{d}(E,x) > \rho$ .
- 2. We say that x is a point of 1-type upper density of E if  $\overline{d}(E,x) = 1$ .

**Definition 26.2.** [7] A real-valued function f defined on an open interval I is called  $\rho$ -upper continuous at x provided that there is a measurable set  $E \subset I$  such that the point x is a point of  $\rho$ -type upper density of E,  $x \in E$  and  $f_{|E}$  is continuous at x. If f is  $\rho$ -upper continuous at every point of I we say that f is  $\rho$ -upper continuous.

We will denote the class of all  $\rho$ -continuous functions defined on an open intervals *I* by  $UC_{\rho}$ .

**Definition 26.3.** [13] Let *E* be a measurable subset of  $\mathbb{R}$  and  $x \in \mathbb{R}$ .

1. For  $0 < \Lambda \le \rho < 1$  we say that x is a point of  $[\Lambda, \rho]$ -density of E if  $\overline{d}(E, x) > \rho$  and  $\underline{d}(E, x) > \Lambda$ .

- 2. For  $0 < \Lambda < 1$  we say that x is a point of  $[\Lambda, 1]$ -density of E if  $\overline{d}(E, x) = 1$  and  $\underline{d}(E, x) > \Lambda$ .
- 3. We say that x is a point of [1,1]-density of E if  $\overline{d}(E,x) = \underline{d}(E,x) = 1$ .

**Definition 26.4.** [8], [13] Let  $0 < \lambda \le \rho \le 1$ . A real-valued function f defined on an open interval I is called  $[\Lambda, \rho]$ -continuous at  $x \in I$  provided that there is a measurable set  $E \subset I$  such that x is a point of  $[\Lambda, \rho]$ -density of  $E, x \in E$  and  $f_{|E}$  is continuous at x. If f is  $[\Lambda, \rho]$ -continuous at each point of I we say that fis  $[\Lambda, \rho]$ -continuous.

We will denote the class of all  $[\Lambda, \rho]$ -continuous functions by  $\mathcal{C}_{[\Lambda,\rho]}$ . It is clear that  $\mathcal{C}_{[1,1]}$  is exactly the class of approximately continuous functions.

Sometimes density of a set at a point is defined in other, symmetric, way. According to, for example [14], the lower density of *E* at *x* and upper density of *E* at *x* are defined as  $\liminf_{t\to 0^+} \frac{\lambda(E\cap[x-t,x+t])}{2t}$  and  $\limsup_{t\to 0^+} \frac{\lambda(E\cap[x-t,x+t])}{2t}$ , respectively. We will denote these densities by  $s \cdot \underline{d}^+(E,x)$  and  $s \cdot \overline{d}^+(E,x)$ , respectively. If  $s \cdot d(E,x) = s \cdot \overline{d}(E,x)$  then we call this number the symmetric density of *E* at *x* 

and denote it by s-d(E, x).

**Corollary 26.5.** *For each measurable*  $E \subset \mathbb{R}$  *and*  $x \in \mathbb{R}$  *we have* 

- 1.  $s \overline{d}(E, x) \le \overline{d}(E, x)$ ,
- 2.  $s \underline{d}(E, x) \ge \overline{d}(E, x)$ ,
- 3. x is a point of the density of E, if and only if x is a point of symmetric density of E.

**Definition 26.6.** Let *E* be a measurable subset of  $\mathbb{R}$  and  $x \in \mathbb{R}$ .

- 1. For  $0 < \rho < 1$ , then we say that x is a point of  $s\rho$ -type upper density of E if  $s \cdot \overline{d}(E, x) > \rho$ .
- 2. We say that x is a point of s-1-type upper density of E if  $s \cdot \overline{d}(E, x) = 1$ .

**Definition 26.7.** A real-valued function f, defined on an open interval I, is called  $s\rho$ -upper continuous at x, provided that there is a measurable set  $E \subset I$  such that the point x is a point of  $s\rho$ -type upper density of E,  $x \in E$  and  $f_{|E}$  is continuous at x. If f is  $s\rho$ -upper continuous at every point of I, we say that f is  $s\rho$ -upper continuous.

We will denote the class of all  $\rho$ -continuous functions defined on an open intervals *I* by  $sUC_{\rho}$ .

**Definition 26.8.** Let *E* be a measurable subset of  $\mathbb{R}$  and  $x \in \mathbb{R}$ .

- 1. For  $0 < \Lambda \le \rho < 1$  we say that x is a point of  $s \cdot [\Lambda, \rho]$ -density of E if  $s \cdot \overline{d}(E, x) > \rho$  and  $s \cdot \underline{d}(E, x) > \Lambda$ .
- 2. For  $0 < \Lambda < 1$  we say that x is a point of  $s [\Lambda, 1]$ -density of E if  $s \overline{d}(E, x) = 1$  and  $s \underline{d}(E, x) > \Lambda$ .
- 3. We say that x is a point of s-[1,1]-density of E if  $s \overline{d}(E, x) = s \underline{d}(E, x) = 1$ .

**Definition 26.9.** Let  $0 < \Lambda \le \rho \le 1$ . A real-valued function f defined on an open interval I is called s- $[\Lambda, \rho]$ -continuous at  $x \in I$ , provided that there is a measurable set  $E \subset I$  such that x is a point of s- $[\Lambda, \rho]$ -density of  $E, x \in E$  and  $f_{|E}$  is continuous at x. If f is s- $[\Lambda, \rho]$ -continuous at each point of I, we say that f is s- $[\Lambda, \rho]$ -continuous.

We will denote the class of all s- $[\Lambda, \rho]$ -continuous functions by  $sC_{[\Lambda, \rho]}$ .

**Corollary 26.10.**  $C_{ap} \subset C_{[\Lambda,\rho]} \cap sC_{[\Lambda,\rho]}$  for each  $0 < \Lambda \leq \rho \leq 1$  and  $C_{ap} = C_{[1,1]} = sC_{[1,1]}$ .

### **26.2 Basic properties**

**Lemma 26.11.** Let  $0 < \Lambda \le \rho \le 1$ . The following inclusions are obvious.

1.  $C_{[\Lambda,\rho]} \subset \mathcal{UC}_{\rho}$ , 2.  $sC_{[\Lambda,\rho]} \subset s\mathcal{UC}_{\rho}$ , 3.  $sC_{[\Lambda,\rho]} \subset \mathcal{UC}_{\rho}$ , 4.  $s\mathcal{UC}_{\rho} \subset \mathcal{UC}_{\rho}$ .

**Theorem 26.12.** Let  $0 < \rho \leq 1$ . Then each function f from  $UC_{\rho}$  is measurable.

*Proof.* Assume that there exists  $f \in UC_{\rho}$  which is not measurable. Then we can find a number  $a \in \mathbb{R}$  for which at least one of the sets  $\{x \in I : f(x) < a\}$ ,  $\{x \in I : f(x) > a\}$  is nonmeasurable. Without loss of generality we may assume that the set  $\{x \in I : f(x) < a\}$  is nonmeasurable. Denote

$$A = \{ x \in I : f(x) < a \}, \quad B = \{ x \in I : f(x) \ge a \}.$$

It is obvious that  $B = I \setminus A$  is also nonmeasurable. Consider a measurable sets  $A_1 \subset A$ ,  $B_1 \subset B$  such that  $A \setminus A_1$  and  $B \setminus B_1$  do not contain a measurable set of positive measure. Therefore  $A \setminus A_1$  and  $B \setminus B_1$  are nonmeasurable sets. Let

$$F = (A \setminus A_1) \cup (B \setminus B_1) = I \setminus (A_1 \cup B_1).$$

Then *F* is measurable. Let  $\Phi_d(F)$  be a set of all density points of *F*. By the well-known Lebesgue Density Theorem,  $\lambda(F \setminus \Phi_d(F)) = 0$ . Therefore there exists  $x_0 \in (A \setminus A_1) \cap \Phi_d(F)$ .

Since *f* is  $\rho$ -upper continuous at  $x_0$ , it follows that there exists a measurable set  $E \subset \mathbb{R}$  such that  $x_0 \in E$ ,  $\overline{d}(E, x_0) > \rho$  and  $f_{|E}$  is continuous at  $x_0$ . Since  $x_0 \in A$ , we have  $f(x_0) < a$ . Therefore it is possible to find  $\delta > 0$  such that  $E \cap (x_0 - \delta, x_0 + \delta) \subset A$ . Let  $E' = E \cap (x_0 - \delta, x_0 + \delta)$ . Hence  $x_0 \in E'$ ,  $f_{|E'}$  is continuous at  $x_0$ ,  $E' \subset A$  and

$$\overline{d}(E', x_0) = \overline{d}(E, x_0) > \rho > 0.$$
 (26.1)

We have

$$E' = (E' \cap A_1) \cup (E' \cap (A \setminus A_1)).$$

Since E' and  $E' \cap A_1$  are measurable,  $E' \cap (A \setminus A_1)$  is measurable, too. Hence  $\lambda(E' \cap (A \setminus A_1)) = 0$ . Moreover,

$$\overline{d}(E'\cap A_1, x_0) = 1 - \underline{d}(\mathbb{R} \setminus (E'\cap A_1), x_0) \le 1 - \underline{d}(F, x_0) = 1 - 1 = 0,$$

because  $(E' \cap A_1) \cap F = \emptyset$ . It follows that

$$\overline{d}(E',x_0) \leq \overline{d}(E' \cap A,x_0) + \overline{d}(E' \cap (A \setminus A_1),x_0) = 0 + 0 = 0,$$

contradicting (26.1). Thus the assumption that f may be nonmeasurable is false.  $\Box$ 

**Corollary 26.13.** All considered classes of functions  $C_{[\Lambda,\rho]}$ ,  $sC_{[\Lambda,\rho]}$ ,  $UC_{\rho}$  and  $sUC_{\rho}$  consist of Lebesgue measurable functions.

**Lemma 26.14.** Let  $0 < \rho \le 1$ ,  $x \in \mathbb{R}$  and let  $\{E_n : n \in \mathbb{N}\}$  be a decreasing family of measurable sets such that  $\overline{d}(E_n, x) \ge \rho$  for  $n \ge 1$ . Then there exists a measurable set E such that  $\overline{d}(E, x) \ge \rho$  and for each  $n \in \mathbb{N}$  there exists  $\delta_n > 0$  for which  $E \cap [x - \delta_n, x + \delta_n] \subset E_n$ .

*Proof.* By assumptions,  $\overline{d}^+(E_n, x) \ge \rho$  or  $\overline{d}^-(E_n, x) \ge \rho$  for each *n*. Hence there exists an infinite sequence  $\{E_{n_k} : k \in \mathbb{N}\}$  such that  $\overline{d}^+(E_{n_k}, x) \ge \rho$  for all  $k \ge 1$  or  $\overline{d}^-(E_{n_k}, x) \ge \rho$  for all  $k \ge 1$ . Without loss of generality we may assume that the first possibility occurs. Then  $\overline{d}^+(E_n, x) \ge \rho$  for all  $n \ge 1$ , because  $\{E_n : n \in \mathbb{N}\}$  is a decreasing family.

Let  $x_1 > x$  be any point for which  $\frac{\lambda(E_1 \cap [x,x_1])}{x_1 - x} > \rho(1 - \frac{1}{2})$  and  $x_1 - x < 1$ . Next, we can find  $x < x_2 < x_1$  such that

$$\frac{\lambda(E_1 \cap [x_2, x_1])}{x_1 - x} > \rho\left(1 - \frac{1}{2}\right), \quad \frac{\lambda(E_2 \cap [x, x_2])}{x_2 - x} > \rho\left(1 - \frac{1}{4}\right) \text{ and } x_2 - x < \frac{1}{2}$$

Assume that points  $x_1, x_2, \ldots, x_n$  are chosen,  $x < x_n < \ldots < x_1$ ,  $\frac{\lambda(E_{i-1}\cap[x_i, x_{i-1}])}{x_{i-1}-x} > \rho\left(1-\frac{1}{2^{i-1}}\right)$  for  $i = 2, \ldots, n$ ,  $\frac{\lambda(E_n\cap[x, x_n])}{x_n-x} > \rho\left(1-\frac{1}{2^n}\right)$  and  $x_n - x < \frac{1}{n}$ . Then there exists  $x < x_{n+1} < x_n$  such that

$$\frac{\lambda(E_n \cap [x_{n+1}, x_n])}{x_n - x} > \rho\left(1 - \frac{1}{2^n}\right), \ \frac{\lambda(E_{n+1} \cap [x, x_{n+1}])}{x_{n+1} - x} > \rho\left(1 - \frac{1}{2^{n+1}}\right)$$

and  $x_{n+1} - x < \frac{1}{n+1}$ .

We have constructed inductively a decreasing sequence  $\{x_n\}_{n\geq 1}$  such that

$$\frac{\lambda(E_n \cap [x_{n+1}, x_n])}{x_n - x} > \rho\left(1 - \frac{1}{2^n}\right) \quad \text{for } n \ge 1.$$
(26.2)

Let  $E = \bigcup_{n=1}^{\infty} (E_n \cap [x_{n+1}, x_n]) \cup \{x\}$ . Since

$$\limsup_{n\to\infty}\frac{\lambda(E\cap[x,x_n])}{x_n-x}\geq\limsup_{n\to\infty}\frac{\lambda(E_n\cap[x_{n+1},x_n])}{x_n-x}\geq\lim_{n\to\infty}\left(\rho-\frac{1}{2^n}\right)=\rho,$$

we have  $\overline{d}(E,x) \ge \rho$ .

By definition of *E*, for each *n* there exists  $\delta_n = x_n - x > 0$  such that

$$E\cap [x-\delta_n,x+\delta_n]=E\cap [x,x_n]\subset E_n.$$

The proof is complete.

We will give a condition equivalent to  $\rho$ -upper continuity at a point x.

**Theorem 26.15.** Let  $0 < \rho \le 1$  and let  $f: I \to \mathbb{R}$  be a measurable function. Then f is  $\rho$ -upper continuous at  $x \in I$  if and only if

$$\lim_{\varepsilon \to 0^+} \overline{d} \left( \{ y \in I : |f(x) - f(y)| < \varepsilon \}, x \right) > \rho \quad if \quad 0 < \rho < 1$$

or

$$\overline{d}(\{y \in I : |f(x) - f(y)| < \varepsilon\}, x) = 1 \quad \text{for all } \varepsilon > 0 \quad \text{if} \quad \rho = 1.$$

*Proof.* Assume that *f* is  $\rho$ -upper continuous at *x*. Let  $E \subset I$  be a measurable set such that  $x \in E$ ,  $f_{|E}$  is continuous at *x* and  $\overline{d}(E,x) > \rho$  for  $\rho < 1$ , or  $\overline{d}(E,x) = 1$  if  $\rho = 1$ . Since  $f_{|E}$  is continuous at *x*, for each  $\varepsilon > 0$  we can find  $\delta > 0$  such that  $[x - \delta, x + \delta] \cap E \subset \{y : |f(x) - f(y)| < \varepsilon\}$ . Hence

$$\overline{d}\big(\{y \in I \colon |f(x) - f(y)| < \varepsilon\}, x\big) \ge \overline{d}\big(\{y \in E \colon |f(x) - f(y)| < \varepsilon\}, x\big) = \overline{d}(E, x)$$

for each  $\varepsilon > 0$ . Therefore

$$\lim_{\varepsilon \to 0^+} \overline{d} (\{ y \in I : |f(x) - f(y)| < \varepsilon \}, x) \ge \overline{d}(E, x) > \rho \quad \text{if } \rho < 1$$

or

$$\overline{d}(\{y \in I \colon |f(x) - f(y)| < \varepsilon\}, x) \ge \overline{d}(E, x) = 1 \quad \text{for each } \varepsilon > 0, \quad \text{if } \rho = 1.$$

Finally, assume that

$$\rho_1 = \lim_{\varepsilon \to 0^+} \overline{d} \left( \{ y \in I \colon |f(x) - f(y)| < \varepsilon \}, x \right) > \rho \quad \text{if } \rho < 1$$

or

$$\overline{d}(\{y \in I \colon |f(x) - f(y)| < \varepsilon\}, x) = 1 \text{ for each } \varepsilon > 0 \quad \text{ if } \rho = 1.$$

Applying Lemma 26.14 for sets  $E_n = \{y \in I : |f(x) - f(y)| < \frac{1}{n}\}$ , we can construct a measurable set *E* such that  $x \in E$ ,

$$\overline{d}(E,x) \ge \rho_1 > \rho$$
 if  $0 < \rho < 1$  or  $\overline{d}(E,x) = 1$  if  $\rho = 1$ 

and for each *n* there exists  $\delta_n > 0$  for which  $E \cap [x - \delta_n, x + \delta_n] \subset E_n$ . The last condition implies that  $f|_E$  is continuous at *x*. It follows that *f* is  $\rho$ -upper continuous at *x*.

#### Corollary 26.16.

$$\bigcap_{0<\rho<1}\mathcal{UC}_{\rho}=\mathcal{UC}_{1}.$$

**Lemma 26.17.** Let  $0 < \rho \le 1$ ,  $x \in \mathbb{R}$  and let  $\{E_n : n \in \mathbb{N}\}$  be a decreasing family of measurable sets such that  $s \cdot \overline{d}(E_n, x) \ge \rho$  for  $n \ge 1$ . Then there exists a measurable set E such that  $s \cdot \overline{d}(E, x) \ge \rho$  and for each  $n \in \mathbb{N}$  there exists  $\delta_n > 0$  for which  $E \cap [x - \delta_n, x + \delta_n] \subset E_n$ .

*Proof.* Let  $\delta_l > 0$  be such that  $\frac{\lambda(E_1 \cap [x - \delta_l, x + \delta_l])}{2\delta_l} > \rho(1 - \frac{1}{2})$  and  $\delta_l < 1$ . Next, we can find  $\delta_2 \in (0, \delta_l)$  such that

$$\frac{\lambda(E_1 \cap ([x-\delta_1, x-\delta_2] \cup [x+\delta_2, x+\delta_1]))}{2\delta_1} > \rho\left(1-\frac{1}{2}\right),$$
$$\frac{\lambda(E_2 \cap [x-\delta_2, x+\delta_2])}{2\delta_2} > \rho\left(1-\frac{1}{4}\right)$$

and  $\delta_2 < \frac{1}{2}$ . Assume that real positive numbers  $\delta_1, \delta_2, \ldots, \delta_n$  are chosen,  $\delta_n < \delta_{n-1} < \ldots < \delta_1$ ,

$$\frac{\lambda(E_{i-1}\cap([x-\delta_{i-1},x-\delta_i]\cup[x+\delta_i,x+\delta_{i-1}])}{2\delta_{i-1}-x}>\rho\left(1-\frac{1}{2^{i-1}}\right)$$

for i = 2, ..., n,  $\frac{\lambda(E_n \cap [x - \delta_n, x + \delta_n])}{2\delta_n} > \rho\left(1 - \frac{1}{2^n}\right)$  and  $\delta_n < \frac{1}{n}$ . Then there exists  $\delta_{n+1} \in (0, \delta_n)$  such that  $\frac{\lambda(E_n \cap ([x - \delta_n, x - \delta_{n+1}] \cup [x + \delta_{n+1}, x + \delta_n])}{2\delta_n} > \rho\left(1 - \frac{1}{2^n}\right)$ ,  $\frac{\lambda(E_{n+1} \cap [x - \delta_{n+1}, x + \delta_{n+1}])}{2\delta_{n+1}} > \rho\left(1 - \frac{1}{2^{n+1}}\right)$  and  $\delta_{n+1} < \frac{1}{n+1}$ . We have constructed inductively a decreasing sequence  $\{\delta_n\}_{n\geq 1}$  of positive

numbers such that for  $n \ge 1$ 

$$\frac{\lambda(E_n \cap ([x - \delta_n, x - \delta_{n+1}] \cup [x + \delta_{n+1}, x + \delta_n]))}{2\delta_n} > \rho\left(1 - \frac{1}{2^n}\right).$$
(26.3)

Let  $E = \{x\} \cup \bigcup_{n=1}^{\infty} (E_n \cap ([x - \delta_n, x - \delta_{n+1}] \cup [x + \delta_{n+1}, x + \delta_n]))$ . Since

$$\limsup_{n \to \infty} \frac{\lambda(E \cap [x - \delta_n, x + \delta_n])}{2\delta_n} \ge \\ \ge \limsup_{n \to \infty} \frac{\lambda(E_n \cap ([x - \delta_n, x - \delta_{n+1}] \cup [x + \delta_{n+1}, x + \delta_n]))}{2\delta_n} \ge \lim_{n \to \infty} \left(\rho - \frac{1}{2^n}\right) = \rho$$

we have  $s - \overline{d}(E, x) \ge \rho$ .

By definition of *E*, we have  $E \cap [x - \delta_n, x + \delta_n] = E \cap [x, x_n] \subset E_n$  for each *n*. The proof is complete. 

Now, we can give a condition equivalent to  $s\rho$ -upper continuity at a point x.

**Theorem 26.18.** Let  $0 < \rho \leq 1$  and let  $f: I \to \mathbb{R}$  be a measurable function. Then f is sp-upper continuous at  $x \in I$  if and only if

$$\lim_{\varepsilon \to 0^+} s \cdot \overline{d} \left( \{ y \in I : |f(x) - f(y)| < \varepsilon \}, x \right) > \rho \quad if \quad 0 < \rho < 1$$

or

$$s \cdot \overline{d}(\{y \in I \colon |f(x) - f(y)| < \varepsilon\}, x) = 1 \text{ for all } \varepsilon > 0 \text{ if } \rho = 1.$$

*Proof.* The proof is analogous to the proof of Theorem 26.15. The unique difference is that we use Lemma 26.17 instead of Lemma 26.14. 

Corollary 26.19.

$$\bigcap_{0<\rho<1} s\mathcal{UC}_{\rho} = s\mathcal{UC}_{1}.$$

**Remark 26.20.** Conditions stated in Theorem 26.15 and 26.15 are similar to the general condition of path continuity discussed in [15, Theorem 14.3].

**Lemma 26.21.** Let  $\Lambda \in (0,1]$ . If E is a measurable subset of  $\mathbb{R}$  and  $\underline{d}^+(E,x) \ge \Lambda$  then for each  $n \in \mathbb{N}$  there exists  $\varepsilon_n > 0$  such that

$$\frac{\lambda(E \cap [x + \frac{a}{2n}, x + b])}{b} > \Lambda - \frac{1}{n}$$

for each  $0 < a < b < \varepsilon_n$ .

*Proof.* Fix any  $n \in \mathbb{N}$ . Since  $\underline{d}^+(E,x) \ge \Lambda$ , there exists  $\varepsilon_n \in (0,1)$  such that  $\frac{\lambda(E \cap [x,x+c])}{c} > \Lambda - \frac{1}{2n}$  for each  $c \in (0,\varepsilon_n)$ . If  $0 < a < b < \varepsilon_n$ , then

$$\lambda(E \cap [x + \frac{a}{2n}, x + b]) = \lambda(E \cap [x, x + b]) - \lambda(E \cap [x, x + \frac{a}{2n}]) \ge \\ \ge b(1 - \frac{1}{2n}) - \frac{a}{2n} > b\Lambda - \frac{b}{n}.$$

Hence  $\frac{\lambda(E \cap [x + \frac{a}{2n}, x + b])}{b} > \Lambda - \frac{1}{n}$ .

**Lemma 26.22.** Let  $0 < \rho \le 1$  and let  $x \in \mathbb{R}$ . Assume that  $E \subset \mathbb{R}$  is measurable and  $\overline{d}^+(E,x) \ge \rho$ . For every  $n \in \mathbb{N}$  there exists decreasing sequence  $\{\alpha_m\}_{m \in \mathbb{N}}$  of positive reals converging to 0 such that

$$\frac{\lambda(E\cap[x+\frac{\alpha_m}{2n},x+\alpha_m])}{\alpha_m}>\rho-\tfrac{1}{n}$$

for each  $m \in \mathbb{N}$ .

*Proof.* Fix  $n \in \mathbb{N}$ . Since  $\overline{d}^+(E,x) \ge \rho$ , there exists a decreasing sequence  $\{\beta_m\}_{m\in\mathbb{N}}$  of positive reals such that

$$\lim_{m\to\infty}\frac{\lambda(E\cap[x,x+\beta_m])}{\beta_m}=\overline{d}^+(E,x)\geq\rho.$$

Then we can find  $m_0$  such that  $\frac{\lambda(E \cap [x, x + \beta_m])}{\beta_m} > \rho - \frac{1}{n}$  for all  $m \ge m_0$ . Hence,

$$\frac{\lambda(E\cap[x+\frac{\beta_m}{2m},x+\beta_m])}{\beta_m} \geq \frac{\lambda(E\cap[x,x+\beta_m])}{\beta_m} - \frac{\lambda(E\cap[x,x+\frac{\beta_m}{2m}])}{\beta_m} > \rho - \frac{1}{n}$$

for each  $m \ge m_0$ . Then the sequence  $\{\alpha_m\}_{m \in \mathbb{N}}$ , where  $\alpha_m = \beta_{m+m_0}$  for  $m \in \mathbb{N}$ , has all the required properties.

**Lemma 26.23.** Let  $0 < \Lambda \le \rho \le 1$  and let  $\{E_n\}_{n\in\mathbb{N}}$  be a decreasing sequence of measurable sets such that  $x \in \bigcap_{n=1}^{\infty} E_n$ ,  $\underline{d}^+(E_n, x) \ge \Lambda$  and  $\overline{d}(E_n, x) \ge \rho$  for all  $n \in \mathbb{N}$ . Then there exists a measurable set E such that  $\underline{d}(E, x) \ge \Lambda$ ,  $\overline{d}(E, x) \ge \rho$ ,  $x \in E$  and for each  $n \in \mathbb{N}$  there exists  $\delta_n > 0$  for which  $E \cap [x - \delta_n, x + \delta_n] \subset E_n$ 

*Proof.* As in the proof of Lemma 26.14, we can assume that  $\overline{d}^+(E_n, x) \ge \rho$  for all *n*. By Lemma 26.21, for each  $n \in \mathbb{N}$  there exists  $\varepsilon_n >$  such that

$$\frac{\lambda(E_n \cap [x + \frac{a}{2n}, x + b])}{b} > \Lambda - \frac{1}{n}$$

for all  $0 < a, b < \varepsilon_n$ . By Lemma 26.22, for each  $n \in \mathbb{N}$  we can find decreasing sequence  $\{\alpha_m^n\}_{m \in \mathbb{N}}$  such that

$$\frac{\lambda(E_n \cap [x + \frac{\alpha_m^n}{2n}, x + \alpha_m^n])}{\alpha_m^n} > \rho - \frac{1}{n}$$

for all  $m, n \in \mathbb{N}$ . We will construct inductively a sequence of positive reals  $\{a_n\}_{n\in\mathbb{N}}$  such that for each  $n \in \mathbb{N}$ 

1.  $a_n < \varepsilon_n$ , 2.  $a_{n+1} < \frac{a_n}{2n}$ , 3. there exists  $m_n \in \mathbb{N}$  for which  $\left[\frac{\alpha_{m_n}^n}{2n}, \alpha_{m_n}^n\right] \subset [a_{n+1}, a_n]$ .

Choose any  $a_1 < \varepsilon_1$ . Assume that we have chosen  $a_1, \ldots, a_n$  satisfying conditions 1) – 3). Then we can find  $m_n \in \mathbb{N}$  such that  $\alpha_{m_n}^n < a_n$ . Now, we can take an arbitrary  $a_{n+1} \in \left(0, \min\{\varepsilon_{n+1}, \frac{\alpha_{m_n}^n}{2n}\}\right)$ . Put

$$F = \bigcup_{n=1}^{\infty} (E_n \cap [x + a_{n+2}, x + a_{n+1}]).$$

Let  $y \in [x, x + a_2]$ , y = x + c. Then  $c \in [a_{n+1}, a_n]$  for some *n*. Since  $\frac{a_{n+1}}{2n} > a_{n+2}$ , we have

$$F \cap [a_{n+2}, x+c] \supset (E_n \cap [x+a_{n+2}, x+a_{n+1}]) \cup \\ \cup (E_{n-1} \cap [x+a_{n+1}, x+c]) \supset E_n \cap [x+\frac{a_{n+1}}{2n}, x+c].$$

Hence

$$\lambda(F \cap [x, x+c]) \ge \lambda\left(E_n \cap \left[x + \frac{a_{n+1}}{2n}, x+c\right]\right) > c(\Lambda - \frac{1}{n})$$

and  $\frac{\lambda(F \cap [x,x+c])}{c} > \Lambda - \frac{1}{n}$ . Therefore  $\underline{d}^+(F,x) \ge \Lambda$ . On the other hand,

$$F \cap [x, x + \alpha_{m_n}^n] \supset E_n \cap [x + a_{n+2}, x + \alpha_{m_n}^n] \supset E_n \cap [x + \frac{a_{n+1}}{2n}, x + \alpha_{m_n}^n]$$
  
Therefore  $\frac{\lambda(F \cap [x, x + \alpha_{m_n}^n])}{\alpha_{m_n}^n} > \rho - \frac{1}{n}$  for  $n \in \mathbb{N}$  and

$$\overline{d}^+(F,x) \geq \limsup_{n\to\infty} \frac{\lambda(F\cap [x,x+\alpha_{m_n}^n])}{\alpha_{m_n}^n} \geq \limsup_{n\to\infty} \left(\rho - \frac{1}{n}\right) = \rho.$$

Finally, we can easily see that for each  $n \in \mathbb{N}$  we can choose  $\delta_n = a_{n+1}$  for which  $E \cap [x, x + \delta_n] \subset E_n$ .

Similarly, we can construct a measurable set  $G \subset (-\infty, x)$  such that  $\underline{d}^{-}(G, x) \geq \lambda$  and for each  $n \in \mathbb{N}$ ,  $G \cap [x - \delta_n, x] \subset E_n$  for some positive  $\delta_n$ . Then the set  $E = F \cup G \cup \{x\}$  has all the required properties.

**Theorem 26.24.** Let  $0 < \Lambda \le \rho < 1$ . A measurable function  $f: I \to \mathbb{R}$  is  $[\Lambda, \rho]$ -continuous at  $x_0$  if and only if

$$\lim_{\varepsilon \to 0^+} \underline{d}(\{x \in I \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) > \Lambda$$

and

$$\lim_{\varepsilon \to 0^+} \overline{d}(\{x \in I \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) > \rho$$

*Proof.* asasAssume that a measurable f is  $[\Lambda, \rho]$ -continuous at  $x_0$ . Then there exists measurable  $E \subset \mathbb{R}$  such that  $x_0 \in E$ ,  $\underline{d}(E, x_0) > \Lambda$ ,  $\overline{d}(E, x_0) > \rho$  and  $f_{|E}$  is continuous at  $x_0$ . By the continuity of f at  $x_0$ , for each  $\varepsilon > 0$  we can find  $\delta > 0$  for which  $[x_0 - \delta, x_0 + \delta] \subset \{x \colon |f(x) - f(x_0)| < \varepsilon\}$ . Hence

$$\underline{d}(\{x: |f(x) - f(x_0)| < \varepsilon\}, x_0) \ge \underline{d}(\{x \in E: |f(x) - f(x_0)| < \varepsilon\}, x_0) = \underline{d}(E, x_0)$$

and

$$\overline{d}(\{x\colon |f(x)-f(x_0)|<\varepsilon\},x_0)\geq \overline{d}(\{x\in E\colon |f(x)-f(x_0)|<\varepsilon\},x_0)=\overline{d}(E,x_0).$$

Therefore

$$\lim_{\varepsilon \to 0^+} \underline{d}(\{x \in I \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) > \Lambda$$

and

$$\lim_{\varepsilon \to 0^+} \overline{d}(\{x \in I \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) > \rho.$$

Now assume that

$$\Lambda_1 = \lim_{\varepsilon \to 0^+} \underline{d}(\{x \in I \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) > \Lambda$$

and

$$\rho_1 = \lim_{\varepsilon \to 0^+} \overline{d}(\{x \in I \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) > \rho.$$

Applying Lemma 26.23 for  $E_n = \{x \in I : |f(x) - f(x_0)| < \frac{1}{n}\}$ , we can find a measurable set  $E \subset \mathbb{R}$  such that  $x_0 \in E, \underline{d}(E, x_0) \ge \Lambda_1 > \Lambda, \overline{d}(E, x_0) \ge \rho_1 > \rho$ 

and for each  $n \in \mathbb{N}$  there exists  $\delta_n > 0$  such that  $E \cap [x_0 - \delta_n, x_0 + \delta_n] \subset E_n$ . Hence,  $f_{|E}$  is continuous at  $x_0$  and f is  $[\Lambda, \rho]$ -continuous.

**Theorem 26.25.** Let  $0 < \Lambda < 1$ . A measurable function  $f: I \to \mathbb{R}$  is  $[\Lambda, 1]$ -continuous at  $x_0$  if and only if

$$\lim_{\varepsilon \to 0^+} \underline{d}(\{x \in I \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) > \Lambda$$

and

$$\overline{d}(\{x \in I \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) = 1$$

for each  $\varepsilon > 0$ .

*Proof.* Assume that a measurable f is  $[\Lambda, 1]$ -continuous at  $x_0$ . Then there exists a measurable  $E \subset \mathbb{R}$  such that  $x_0 \in E$ ,  $\underline{d}(E, x_0) > \Lambda$ ,  $\overline{d}(E, x_0) = 1$  and  $f_{|E}$  is continuous at  $x_0$ . By the continuity of f at  $x_0$ , for each  $\varepsilon > 0$  we can find  $\delta > 0$ for which  $E \cap [x_0 - \delta, x_0 + \delta] \subset \{x \colon |f(x) - f(x_0)| < \varepsilon\}$ . Hence

$$\underline{d}(\{x: |f(x) - f(x_0)| < \varepsilon\}, x_0) \ge \underline{d}(\{x \in E: |f(x) - f(x_0)| < \varepsilon\}, x_0) = \underline{d}(E, x_0)$$

and

$$\overline{d}(\{x\colon |f(x)-f(x_0)|<\varepsilon\},x_0)\geq \overline{d}(\{x\in E\colon |f(x)-f(x_0)|<\varepsilon\},x_0)=\overline{d}(E,x_0)$$

Therefore

$$\lim_{\varepsilon \to 0^+} \underline{d}(\{x \in I \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) > \Lambda$$

and

$$\overline{d}(\{x \in I \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) = 1$$

Now assume that

$$\Lambda_1 = \lim_{\varepsilon \to 0^+} \underline{d}(\{x \in I \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) > \Lambda$$

and

$$\lim_{\varepsilon \to 0^+} \overline{d}(\{x \in I \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) = 1$$

for each  $\varepsilon > 0$ . Applying Lemma 26.23 for  $E_n = \{x \in I : |f(x) - f(x_0)| < \frac{1}{n}\}$ , we can find a measurable set  $E \subset \mathbb{R}$  such that  $x_0 \in E$ ,  $\underline{d}(E, x_0) \ge \lambda_1 > \lambda$ ,  $\overline{d}(E, x_0) = 1$  and for each  $n \in \mathbb{N}$  there exists  $\delta_n > 0$  such that  $E \cap [x_0 - \delta_n, x_0 + \delta_n] \subset E_n$ . Hence  $f_{|E}$  is continuous at  $x_0$  and f is  $[\Lambda, \rho]$ -continuous.

Corollary 26.26.

$$\bigcap_{0<\Lambda\leq\rho<1}\mathcal{C}_{[\Lambda,\rho]}=\mathcal{C}_{ap}.$$

**Lemma 26.27.** Let  $\Lambda \in (0, 1]$ . If  $E \subset \mathbb{R}$  is measurable and  $s \cdot \underline{d}^+(E, x) \ge \Lambda$  then for each  $n \in \mathbb{N}$  there exists  $\varepsilon_n > 0$  such that

$$\frac{\lambda(E\cap ([x-b,x-\frac{a}{2n}]\cup [x+\frac{a}{2n},x+b]))}{2b} > \Lambda - \frac{1}{n}$$

for each  $0 < a < b < \varepsilon_n$ .

*Proof.* Fix any  $n \in \mathbb{N}$ . There exists  $\varepsilon_n \in (0, 1)$  such that  $\frac{\lambda(E \cap [x-c,x+c])}{2c} > \Lambda - \frac{1}{2n}$  for each  $c \in (0, \varepsilon_n)$ . If  $0 < a < b < \varepsilon_n$ , then

$$\lambda(E \cap (([x-b, x-\frac{a}{2n}] \cup [x+\frac{a}{2n}, x+b])) = \lambda(E \cap [x-b, x+b]) - \lambda(E \cap [x-\frac{a}{2n}, x+\frac{a}{2n}]) \ge 2b(1-\frac{1}{2n}) - \frac{2a}{2n} > b\Lambda - \frac{b}{n}.$$

**Lemma 26.28.** Let  $0 < \rho \le 1$  and let  $x \in \mathbb{R}$ . Assume that  $E \subset \mathbb{R}$  is measurable and  $s \cdot \overline{d}^+(E, x) \ge \rho$ . For every  $n \in \mathbb{N}$  there exists a decreasing sequence  $\{\alpha_m\}_{m \in \mathbb{N}}$  of positive reals converging to 0 such that

$$\frac{\lambda(E \cap ([x - \alpha_m, x - \frac{\alpha_m}{2n}] \cup [x + \frac{\alpha_m}{2n}, x + \alpha_m]))}{2\alpha_m} > \rho - \frac{1}{n}$$

*for each*  $m \in \mathbb{N}$ *.* 

*Proof.* Fix  $n \in \mathbb{N}$ . There exists a decreasing sequence  $\{\beta_m\}_{m \in \mathbb{N}}$  of positive reals such that

$$\lim_{m\to\infty}\frac{\lambda(E\cap[x-\beta_m,x+\beta_m])}{2\beta_m}=s\cdot\overline{d}^+(E,x)\geq\rho.$$

Then we can find  $m_0$  such that  $\frac{\lambda(E \cap [x - \beta_m, x + \beta_m])}{2\beta_m} > \rho - \frac{1}{n}$  for all  $m \ge m_0$ . Hence

$$\frac{\lambda(E \cap ([x - \beta_m, x - \frac{\beta_m}{2m}] \cup [x + \frac{\beta_m}{2m}, x + \beta_m]))}{2\beta_m} \ge \\ \ge \frac{\lambda(E \cap [x - \beta_m, x + \beta_m])}{2\beta_m} - \frac{\lambda(E \cap [x - \frac{\beta_m}{2m}, x + \frac{\beta_m}{2m}])}{2\beta_m} > \rho - \frac{1}{n}$$

for each  $m \ge m_0$ . Then the sequence  $\{\alpha_m\}_{m \in \mathbb{N}}$ , where  $\alpha_m = \beta_{m+m_0}$  for  $m \in \mathbb{N}$ , has all the required properties.

**Lemma 26.29.** Let  $0 < \Lambda \le \rho \le 1$  and let  $\{E_n\}_{n \in \mathbb{N}}$  be a decreasing sequence of measurable sets such that  $x \in \bigcap_{n=1}^{\infty} E_n$ ,  $s \cdot \underline{d}^+(E_n, x) \ge \Lambda$  and  $s \cdot \overline{d}(E_n, x) \ge \rho$ 

for all  $n \in \mathbb{N}$ . Then there exists a measurable set E such that  $s \cdot \underline{d}(E, x) \ge \Lambda$ ,  $s \cdot \overline{d}(E, x) \ge \rho$ ,  $x \in E$  and for each  $n \in \mathbb{N}$  there exists a positive real  $\delta_n > 0$  for which  $E \cap [x - \delta_n, x + \delta_n] \subset E_n$ 

*Proof.* By Lemma 26.27, for each  $n \in \mathbb{N}$  there exists  $\varepsilon_n$  > such that

$$\frac{\lambda(E_n \cap ([x-b, x-\frac{a}{2n}] \cup [x+\frac{a}{2n}, x+b]))}{2b} > \Lambda - \frac{1}{n}$$

for all  $0 < a < b < \varepsilon_n$ . By Lemma 26.28, for each  $n \in \mathbb{N}$  we can find decreasing sequence  $\{\alpha_m^n\}_{m \in \mathbb{N}}$  such that

$$\frac{\lambda(E_n \cap ([x - \alpha_m^n, x - \frac{\alpha_m^n}{2n}] \cup [x + \frac{\alpha_m^n}{2n}, x + \alpha_m^n]))}{2\alpha_m^n} > \rho - \frac{1}{n}$$

for all  $m, n \in \mathbb{N}$ . As in the proof of Lemma 26.23, we will construct inductively a sequence of positive reals  $\{a_n\}_{n\in\mathbb{N}}$  such that for each  $n\in\mathbb{N}$ 

- 1.  $a_n < \varepsilon_n$ ,
- 2.  $a_{n+1} < \frac{a_n}{2n}$ ,

3. there exists  $m_n \in \mathbb{N}$  for which  $\left[\frac{\alpha_{m_n}^n}{2n}, \alpha_{m_n}^n\right] \subset [a_{n+1}, a_n]$ .

Let  $c \in [a_{n+1}, a_n]$  for some *n*. Since  $\frac{a_{n+1}}{2n} > a_{n+2}$ , we have

$$F \cap ([x - c, x - a_{n+2}] \cup [x + a_{n+2}, x + c]) \supset \\ \supset (E_n \cap ([x - a_{n+1}, x - a_{n+2}] \cup [x + a_{n+2}, x + a_{n+1}])) \cup \\ \cup (E_{n-1} \cap ([x - c, x - a_{n+1}] \cup [x + a_{n+1}, x + c])) \supset \\ \supset E_n \cap ([x - c, x - \frac{a_{n+1}}{2n}] \cup [x + \frac{a_{n+1}}{2n}, x + c]).$$

Hence

$$\lambda(F \cap [x-c,x+c]) \ge \lambda\left(E_n \cap \left(\left[x-c,x-\frac{a_{n+1}}{2n}\right] \cup \left[x+\frac{a_{n+1}}{2n},x+c\right]\right)\right) > c(\Lambda - \frac{1}{n})$$

and  $\frac{\lambda(F \cap [x-c,x+c])}{c} > \Lambda - \frac{1}{n}$ . Therefore  $s - \underline{d}^+(F,x) \ge \Lambda$ . On the other hand,

$$F \cap [x - \alpha_{m_n}^n, x + \alpha_{m_n}^n] \supset E_n \cap ([x - \alpha_{m_n}^n, x - a_{n+2}] \cup [x + a_{n+2}, x + \alpha_{m_n}^n]) \supset$$
$$\supset E_n \cap \left( \left[ x - \frac{\alpha_{n+1}}{2n}, x - \alpha_{m_n}^n \right] \cup \left[ x + \alpha_{m_n}^n, x + \frac{\alpha_{n+1}}{2n} \right] \right).$$

It follows that  $\frac{\lambda(F \cap [x - \alpha_{m_n}^n, x + \alpha_{m_n}^n])}{2\alpha_{m_n}^n} > \rho - \frac{1}{n}$  for  $n \in \mathbb{N}$  and

$$s - \overline{d}^+(F, x) \geq \limsup_{n \to \infty} \frac{\lambda(F \cap [x - \alpha_{m_n}^n, x + \alpha_{m_n}^n])}{2\alpha_{m_n}^n} \geq \limsup_{n \to \infty} \left(\rho - \frac{1}{n}\right) = \rho.$$

Finally, we can easily see that for each  $n \in \mathbb{N}$  we can choose  $\delta_n = a_{n+1}$  for which  $E \cap [x - \delta_n, x + \delta_n] \subset E_n$ .

**Theorem 26.30.** Let  $0 < \Lambda \leq \rho < 1$ . A measurable function  $f: I \to \mathbb{R}$  is  $s[\Lambda, \rho]$ -continuous at  $x_0$ , if and only if

$$\lim_{\varepsilon \to 0^+} s - \underline{d}(\{x \in I : |f(x) - f(x_0)| < \varepsilon\}, x_0) > \Lambda$$

and

$$\lim_{\varepsilon \to 0^+} s \cdot \overline{d}(\{x \in I \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) > \rho.$$

*Proof.* Assume that a measurable f is  $s[\Lambda, \rho]$ -continuous at  $x_0$ . Then there exists a measurable  $E \subset I$  such that  $x_0 \in E$ ,  $s \cdot \underline{d}(E, x_0) > \Lambda$ ,  $s \cdot \overline{d}(E, x_0) > \rho$  and  $f_{|E}$  is continuous at  $x_0$ . By the continuity of f at  $x_0$ , for each  $\varepsilon > 0$  we can find  $\delta > 0$  for which  $E \cap [x_0 - \delta, x_0 + \delta] \subset \{x : |f(x) - f(x_0)| < \varepsilon\}$ . Hence

$$s - \underline{d}(\{x \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) \ge s - \underline{d}(\{x \in E \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) =$$
$$= s - \underline{d}(E, x_0)$$

and

$$s - \overline{d}(\{x \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) \ge s - \overline{d}(\{x \in E \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) =$$
$$= s - \overline{d}(E, x_0).$$

Therefore

$$\lim_{\varepsilon \to 0^+} s \cdot \underline{d}(\{x \in I \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) > \Lambda$$

and

$$\lim_{\varepsilon \to 0^+} s \cdot \overline{d}(\{x \in I \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) > \rho$$

Now assume that

$$\Lambda_1 = \lim_{\varepsilon \to 0^+} s \cdot \underline{d}(\{x \in I \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) > \Lambda$$

and

$$\rho_1 = \lim_{\varepsilon \to 0^+} s \cdot \overline{d}(\{x \in I \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) > \rho.$$

Applying Lemma 26.29 for  $E_n = \{x \in I : |f(x) - f(x_0)| < \frac{1}{n}\}$ , we can find a measurable set  $E \subset I$  such that  $x_0 \in E$ ,  $s \cdot \underline{d}(E, x_0) \ge \lambda_1 > \lambda$ ,  $s \cdot \overline{d}(E, x_0) \ge \rho_1 > \rho$ 

and for each  $n \in \mathbb{N}$  there exists  $\delta_n > 0$  such that  $E \cap [x_0 - \delta_n, x_0 + \delta_n] \subset E_n$ . Hence  $f_{|E}$  is continuous at  $x_0$ . Thus f is  $s[\Lambda, \rho]$ -continuous at  $x_0$ .

**Theorem 26.31.** Let  $0 < \Lambda < 1$ . A measurable function  $f: I \to \mathbb{R}$  is s- $[\Lambda, 1]$ -*continuous at*  $x_0$ , *if and only if* 

$$\lim_{\varepsilon \to 0^+} s \cdot \underline{d}(\{x \in I \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) > \Lambda$$

and

$$s \cdot \overline{d}(\{x \in I \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) = 1$$

for each  $\varepsilon > 0$ .

*Proof.* Assume that a measurable f is  $s \cdot [\Lambda, 1]$ -continuous at  $x_0$ . Then there exists measurable  $E \subset \mathbb{R}$  such that  $x_0 \in E$ ,  $s \cdot \underline{d}(E, x_0) > \Lambda$ ,  $s \cdot \overline{d}(E, x_0) = 1$  and  $f_{|E}$  is continuous at  $x_0$ . By the continuity of f at  $x_0$ , for each  $\varepsilon > 0$  we can find  $\delta > 0$  for which  $E \cap [x_0 - \delta, x_0 + \delta] \subset \{x \colon |f(x) - f(x_0)| < \varepsilon\}$ . Hence

$$s - \underline{d}(\{x \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) \ge s - \underline{d}(\{x \in E \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) =$$
$$= s - \underline{d}(E, x_0)$$

and

$$s - \overline{d}(\{x \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) \ge s - \overline{d}(\{x \in E \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) = s - \overline{d}(E, x_0).$$

Therefore

$$\lim_{\varepsilon \to 0^+} s \cdot \underline{d}(\{x \in I \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) > \Lambda$$

and

$$s \cdot \overline{d}(\{x \in I \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) = 1.$$

Now assume that

$$\Lambda_1 = \lim_{\varepsilon \to 0^+} s - \underline{d}(\{x \in I \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) > \Lambda$$

and

$$\lim_{\varepsilon \to 0^+} s - \overline{d}(\{x \in I \colon |f(x) - f(x_0)| < \varepsilon\}, x_0) = 1$$

for each  $\varepsilon > 0$ . Applying Lemma 26.29 for  $E_n = \{x \in I : |f(x) - f(x_0)| < \frac{1}{n}\}$ , we can find a measurable set  $E \subset \mathbb{R}$  such that  $x_0 \in E$ ,  $\underline{d}(E, x_0) \ge \Lambda_1 > \Lambda$ ,  $\overline{d}(E, x_0) = 1$  and for each  $n \in \mathbb{N}$  there exists  $\delta_n > 0$  such that  $E \cap [x_0 - \delta_n, x_0 + \delta_n] \subset E_n$ . Hence,  $f_{|E}$  is continuous at  $x_0$  and f is  $s[\Lambda, \rho]$ -continuous.

Corollary 26.32.

$$\bigcap_{0<\Lambda\leq\rho<1}s\mathcal{C}_{[\Lambda,\rho]}=\mathcal{C}_{ap}.$$

**Definition 26.33.** We say that a real-valued function f defined on an open interval I has Denjoy property at  $x_0 \in I$ , if it is measurable and

$$\forall_{\varepsilon>0}\forall_{\delta>0} \quad \lambda(\{x \in (x_0 - \delta, x_0 + \delta) \colon |f(x) - f(x_0)| < \varepsilon\}) > 0.$$

We say that f has Denjoy property, if it has Denjoy property at each point  $x \in I$ .

We will denote the class of all functions with Denjoy property by *Den*. By Theorem 26.12 and definition of  $UC_{\rho}$  we have.

**Corollary 26.34.** *Let*  $0 < \rho < 1$ . *If*  $f \in UC_{\rho}$  *then* f *has Denjoy property.* 

**Corollary 26.35.** By Lemma 26.11, all defined classes of functions have Denjoy property.

The diagram shows the relations among the considered classes of functions.



No other implication can be stated as a few examples show.

*Example 26.36.* There exists  $f : \mathbb{R} \to \mathbb{R}$  such that  $f \in (s\mathcal{UC}_{\rho} \cap \mathcal{UC}_{\rho}) \setminus (s\mathcal{C}_{[\Lambda,\rho]} \cup \mathcal{C}_{[\Lambda,\rho]})$  for all  $0 < \rho \leq 1, \Lambda \in (0,\rho]$ .

Let  $\{[a_n, b_n]\}_{n \in \mathbb{N}}$  and  $\{[c_n, d_n]\}_{n \in \mathbb{N}}$  be two sequences of closed intervals such that  $0 < \ldots d_{n+1} < c_n < a_n < b_n < d_n < \ldots < d_1, \overline{d}^+ \left(\bigcup_{n=1}^{\infty} [a_n, b_n], 0\right) = 1,$  $\underline{d}^+ \left(\bigcup_{n=1}^{\infty} [a_n, b_n], 0\right) = 0$  and  $\overline{d}^+ \left(\bigcup_{n=1}^{\infty} ([c_n, a_n] \cup [b_n, d_n]), 0\right) = 0$ . Define  $f : \mathbb{R} \to \mathbb{R}$  letting

$$f(x) = \begin{cases} 0 \text{ for } x \in \bigcup_{n=1}^{\infty} ([a_n, b_n] \cup [-b_n, -a_n]) \cup \{0\}, \\ 1 \text{ for } x \in \mathbb{R} \setminus (\{0\} \cup \bigcup_{n=1}^{\infty} ([c_n, d_n] \cup [-d_n, -c_n])), \\ \text{ linear in intervals } [c_n, a_n], [b_n, d_n], [-a_n, -c_n], [-d_n, -b_n], n = 1, \dots. \end{cases}$$

It is clear that f is continuous at each point except at 0. Let  $E = \bigcup_{n=1}^{\infty} ([a_n, b_n] \cup [-b_n, -a_n]) \cup \{0\}$ . Then  $f_{|E}$  is constant and  $\overline{d}(E, 0) = s \cdot \overline{d}(E, 0) = 1$ . Therefore  $f \in sUC_{\rho} \cap UC_{\rho}$  for  $\rho \in (0, 1]$ . On the other hand,

$$\underline{d}(\{x: |f(x)| < 1\}, 0) = s \cdot \underline{d}(\{x: |f(x)| < 1\}, 0) = 1 - \overline{d}(E, 0) = 0.$$

Thus  $f \notin s\mathcal{C}_{[\Lambda,\rho]} \cup \mathcal{C}_{[\Lambda,\rho]}$  for any  $0 < \rho \leq 1, \Lambda \in (0,\rho]$ .

*Example 26.37.* For each  $0 < \Lambda < \rho \leq 1$  there exists  $f : \mathbb{R} \to \mathbb{R}$  such that  $f \in (\mathcal{UC}_{\rho} \cap \mathcal{C}_{[\Lambda,\rho]}) \setminus (s\mathcal{C}_{[\Lambda,\rho]} \cup s\mathcal{UC}_{\rho}).$ 

Let  $0 < \Lambda < \rho \le 1$ . There exists  $\alpha, \beta \in (0, 1]$  such that  $\alpha > \Lambda$ ,  $\frac{\alpha + \beta}{2} < \rho$  and  $\beta > \rho$  if  $\rho < 1$  or  $\beta = 1$  if  $\rho = 1$ . Let  $\{[a_n, b_n]\}_{n \in \mathbb{N}}, \{[c_n, d_n]\}_{n \in \mathbb{N}}, \{[a'_n, b'_n]\}_{n \in \mathbb{N}}, \{[c'_n, d'_n]\}_{n \in \mathbb{N}}$  be four sequences of closed intervals such that

$$\dots < c'_n < a'_n < b'_n < d'_n < c'_{n+1} < \dots < 0 < \dots d_{n+1} < c_n < a_n < b_n < d_n < \dots,$$
$$d^+ \Big(\bigcup_{n=1}^{\infty} [a_n, b_n], 0\Big) = \beta, d^- \Big(\bigcup_{n=1}^{\infty} [a'_n, b'_n], 0\Big) = \alpha,$$
$$\overline{d}^+ \Big(\bigcup_{n=1}^{\infty} ([c_n, a_n] \cup [b_n, d_n]), 0\Big) = 0 \text{ and } \overline{d}^- \Big(\bigcup_{n=1}^{\infty} ([c'_n, a'_n] \cup [b'_n, d'_n]), 0\Big) = 0.$$

Define  $f: \mathbb{R} \to \mathbb{R}$  letting

$$f(x) = \begin{cases} 0 \text{ for } x \in \bigcup_{n=1}^{\infty} ([a_n, b_n] \cup [a'_n, b'_n]) \cup \{0\}, \\ 1 \text{ for } x \in \mathbb{R} \setminus (\{0\} \cup \bigcup_{n=1}^{\infty} ([c_n, d_n] \cup [c'_n, d'_n])), \\ \text{ linear in intervals } [c_n, a_n], [b_n, d_n], [c'_n, a'_n], [b'_n, d'_n], n = 1, \dots. \end{cases}$$

The function f is continuous at each point except at 0. Let  $E = \bigcup_{n=1}^{\infty} ([a_n, b_n] \cup [a'_n, b'_n]) \cup \{0\}$ . Then  $f_{|E}$  is constant,  $\overline{d}(E, 0) = \beta$  and  $\underline{d}(E, 0) \ge \alpha$ . Therefore  $f \in \mathcal{UC}_{\rho} \cap \mathcal{C}_{[\Lambda,\rho]}$ . But,  $s \cdot \underline{d}(\{x \colon |f(x)| < 1\}, 0) = \frac{\alpha + \beta}{2} < \rho$ . Thus  $f \notin s\mathcal{C}_{[\Lambda,\rho]} \cup s\mathcal{UC}_{\rho}$ .

*Example 26.38.* For each  $0 < \Lambda \le \rho \le 1$ ,  $\Lambda < 1$  there exists  $f : \mathbb{R} \to \mathbb{R}$  such that  $f \in s\mathcal{C}_{[\Lambda,\rho]} \setminus \mathcal{C}_{[\Lambda,\rho]}$ .

Fix  $0 < \Lambda < \rho \le 1$ ,  $\Lambda < 1$ . There exists  $\alpha, \beta \in (0, 1]$  such that  $\frac{\alpha+\beta}{2} < \Lambda$ and  $\alpha > \Lambda > \beta$ . Let  $\{[a_n, b_n]\}_{n \in \mathbb{N}}, \{[c_n, d_n]\}_{n \in \mathbb{N}}, \{[a'_n, b'_n]\}_{n \in \mathbb{N}}, \{[c'_n, d'_n]\}_{n \in \mathbb{N}}$ be four sequences of closed intervals such that

$$\ldots < c'_n < a'_n < b'_n < d'_n < c'_{n+1} < \ldots < 0 < \ldots d_{n+1} < c_n < a_n < b_n < d_n < \ldots,$$

$$-a'_{n} = b_{n} \text{ for all } n, \overline{d}^{+} \left( \bigcup_{n=1}^{\infty} [a_{n}, b_{n}], 0 \right) = \overline{d}^{-} \left( \bigcup_{n=1}^{\infty} [a'_{n}, b'_{n}], 0 \right) = 1,$$
  
$$\underline{d}^{+} \left( \bigcup_{n=1}^{\infty} [a_{n}, b_{n}], 0 \right) = \alpha, \underline{d}^{-} \left( \bigcup_{n=1}^{\infty} [a'_{n}, b'_{n}], 0 \right) = \beta,$$
  
$$\overline{d}^{+} \left( \bigcup_{n=1}^{\infty} ([c_{n}, a_{n}] \cup [b_{n}, d_{n}]), 0 \right) = 0 \text{ and } \overline{d}^{-} \left( \bigcup_{n=1}^{\infty} ([c'_{n}, a'_{n}] \cup [b'_{n}, d'_{n}]), 0 \right) = 0.$$
  
Define  $f \colon \mathbb{R} \to \mathbb{R}$  letting

$$f(x) = \begin{cases} 0 \text{ for } x \in \bigcup_{n=1}^{\infty} ([a_n, b_n] \cup [a'_n, b'_n]) \cup \{0\}, \\ 1 \text{ for } x \in \mathbb{R} \setminus (\{0\} \cup \bigcup_{n=1}^{\infty} ([c_n, d_n] \cup [c'_n, d'_n])), \\ \text{ linear in intervals } [c_n, a_n], [b_n, d_n], [c'_n, a'_n], [b'_n, d'_n], n = 1, \dots. \end{cases}$$

Obviously, f is continuous except at 0. Let  $E = \bigcup_{n=1}^{\infty} ([a_n, b_n] \cup [a'_n, b'_n]) \cup \{0\}$ . Then  $f_{|E}$  is constant,  $s \cdot \overline{d}(E, 0) = 1$  and  $s \cdot \underline{d}(E, 0) = \frac{\alpha + \beta}{2} > \Lambda$ . Therefore  $f \in s\mathcal{C}_{[\Lambda,\rho]}$ . But  $\underline{d}(\{x: |f(x)| < 1\}, 0) = \beta < \lambda$ . Thus  $f \notin \mathcal{C}_{[\Lambda,\rho]}$ .

# 26.3 Relation between considered classes of functions for different values $\lambda$ and $\rho$

The following proposition is obvious.

#### Proposition 26.39.

- 1. Let  $0 < \rho_1 \leq \rho_2 \leq 1$ . Then  $\mathcal{UC}_{\rho_2} \subset \mathcal{UC}_{\rho_1}$  and  $s\mathcal{UC}_{\rho_2} \subset s\mathcal{UC}_{\rho_1}$ .
- 2. Let  $0 < \Lambda_1 \leq \rho_1 \leq 1$ ,  $0 < \Lambda_2 \leq \rho_2 \leq 1$ ,  $\Lambda_1 \leq \Lambda_2$  and  $\rho_1 \leq \rho_2$ . Then  $\mathcal{C}_{[\Lambda_2,\rho_2]} \subset \mathcal{C}_{[\Lambda_1,\rho_1]}$  and  $s\mathcal{C}_{[\Lambda_2,\rho_2]} \subset s\mathcal{C}_{[\Lambda_1,\rho_1]}$ .

*Example 26.40.* For each  $0 < \rho_1 < \rho_2 \le 1$  there exists  $f \in (\mathcal{UC}_{\rho_1} \cap s\mathcal{UC}_{\rho_1}) \setminus (\mathcal{UC}_{\rho_2} \cup s\mathcal{UC}_{\rho_2})$ . Moreover, for each  $0 < \Lambda_2 \le \rho_2$ , we have  $f \in (\mathcal{C}_{[\rho_1,\rho_1]} \cap s\mathcal{C}_{[\rho_1,\rho_1]}) \setminus (\mathcal{C}_{[\Lambda_2,\rho_2]} \cup s\mathcal{C}_{[\Lambda_2,\rho_2]})$ .

Let  $\{[a_n, b_n]\}_{n \in \mathbb{N}}$  and  $\{[c_n, d_n]\}_{n \in \mathbb{N}}$  be two sequences of closed intervals such that  $0 < \dots d_{n+1} < c_n < a_n < b_n < d_n < \dots < d_1, d^+ \left(\bigcup_{n=1}^{\infty} [a_n, b_n], 0\right) = \frac{\rho_1 + \rho_2}{2}$  and  $\overline{d}^+ \left(\bigcup_{n=1}^{\infty} ([c_n, a_n] \cup [b_n, d_n]), 0\right) = 0$ . Define  $f \colon \mathbb{R} \to \mathbb{R}$  letting

$$f(x) = \begin{cases} 0 \text{ for } x \in \bigcup_{n=1}^{\infty} ([a_n, b_n] \cup [-b_n, -a_n]) \cup \{0\}, \\ 1 \text{ for } x \in \mathbb{R} \setminus (\{0\} \cup \bigcup_{n=1}^{\infty} ([c_n, d_n] \cup [-d_n, -c_n])), \\ \text{ linear in intervals } [c_n, a_n], [b_n, d_n], [-a_n, -c_n], [-d_n, -b_n], n = 1, \dots. \end{cases}$$

It is clear that f is continuous at each point except at 0. Let  $E = \{0\} \cup \bigcup_{n=1}^{\infty} [a_n, b_n]$ . Then  $f|_E$  is constant and  $d(E, 0) = s \cdot d(E, 0) = \frac{\rho_1 + \rho_2}{2} > \rho_1$ . Therefore  $f \in s\mathcal{UC}_{\rho} \cap \mathcal{UC}_{\rho} \cap \mathcal{C}_{[\rho_1, \rho_1]} \cap s\mathcal{C}_{[\rho_1, \rho_1]}$ . On the other hand,

$$\underline{d}(\{x: |f(x)| < 1\}, 0) = s \cdot \underline{d}(\{x: |f(x)| < 1\}, 0) \le \overline{d}(\bigcup_{n=1}^{\infty} ([c_n, d_n] \cup [-d_n, -b_n]) = \frac{\rho_1 + \rho_2}{2} < \rho_2.$$

Thus  $f \notin \mathcal{UC}_{\rho_2} \cup s\mathcal{UC}_{\rho_2} \cup \mathcal{C}_{[\Lambda_2,\rho_2]} \cup s\mathcal{C}_{[\Lambda_2,\rho_2]}$  for any  $\Lambda_2 \in (0,\rho_2]$ .

From Proposition 26.39 and Example 26.40 we have.

#### Theorem 26.41.

- *1.* Let  $\rho_1, \rho_2 \in (0, 1]$ . Then  $\mathcal{UC}_{\rho_2} \subset \mathcal{UC}_{\rho_1}$  if and only if  $\rho_1 \leq \rho_2$ . Moreover, if  $\rho_1 < \rho_2$  then  $\mathcal{UC}_{\rho_2} \subsetneq \mathcal{UC}_{\rho_1}$ .
- 2. Let  $\rho_1, \rho_2 \in (0, 1]$ . Then  $\mathfrak{SUC}_{\rho_2} \subset \mathfrak{SUC}_{\rho_1}$  if and only if  $\rho_1 \leq \rho_2$ . Moreover, if  $\rho_1 < \rho_2$  then  $\mathfrak{SUC}_{\rho_2} \subsetneq \mathfrak{SUC}_{\rho_1}$ .

*Example 26.42.* Let  $0 < \Lambda_1 < \rho_1 < 1$ . For each  $\Lambda_1 < \Lambda_2 \le 1$  there exists  $f \in (\mathcal{C}_{[\Lambda_1,\rho_1]} \cap s\mathcal{C}_{[\Lambda_1,\rho_1]}) \setminus (\mathcal{C}_{[\Lambda_2,\Lambda_2]} \cup s\mathcal{C}_{[\Lambda_2,\Lambda_2]})$ . Let  $\{[a_n,b_n]\}_{n\in\mathbb{N}}$  and  $\{[c_n,d_n]\}_{n\in\mathbb{N}}$  be two sequences of closed intervals

Let  $\{[a_n, b_n]\}_{n \in \mathbb{N}}$  and  $\{[c_n, d_n]\}_{n \in \mathbb{N}}$  be two sequences of closed intervals such that  $0 < \ldots d_{n+1} < c_n < a_n < b_n < d_n < \ldots < d_1, \underline{d}^+ \left(\bigcup_{n=1}^{\infty} [a_n, b_n], 0\right) =$  $\frac{A_1 + A_2}{2}, \overline{d}^+ \left(\bigcup_{n=1}^{\infty} [a_n, b_n], 0\right) = 1$  and  $\overline{d}^+ \left(\bigcup_{n=1}^{\infty} ([c_n, a_n] \cup [b_n, d_n]), 0\right) = 0$ . Define  $f \colon \mathbb{R} \to \mathbb{R}$  letting

$$f(x) = \begin{cases} 0 \text{ for } x \in \bigcup_{n=1}^{\infty} ([a_n, b_n] \cup [-b_n, -a_n]) \cup \{0\}, \\ 1 \text{ for } x \in \mathbb{R} \setminus (\{0\} \cup \bigcup_{n=1}^{\infty} ([c_n, d_n] \cup [-d_n, -c_n])), \\ \text{ linear in intervals } [c_n, a_n], [b_n, d_n], [-a_n, -c_n], [-d_n, -b_n], n = 1, \dots. \end{cases}$$

It is clear that f is continuous at each point except at 0. Let  $E = \{0\} \cup \bigcup_{n=1}^{\infty} ([a_n, b_n] \cup [-b_n, -a_n])$ . Then  $f_{|E}$  is constant  $\underline{d}(E, 0) = s \cdot \underline{d}(E, 0) = \frac{\Lambda_1 + \Lambda_2}{2} > 0$ 

 $\Lambda_1$  and  $\overline{d}(E,0) = s \cdot \overline{d}(E,0) = 1$ . Hence  $f \in \mathcal{C}_{[\Lambda_1,\rho_1]} \cap s\mathcal{C}_{[\Lambda_1,\rho_1]}$ . On the other hand,

$$\underline{d}(\{x: |f(x)| < 1\}, 0) = s - \underline{d}(\{x: |f(x)| < 1\}, 0) \le \le (\bigcup_{n=1}^{\infty} ([c_n, d_n] \cup [-d_n, -c_n]), 0) = \frac{\Lambda_1 + \Lambda_2}{2} < \Lambda_2.$$

Thus  $f \notin C_{[\Lambda_2,\Lambda_2]} \cup sC_{[\Lambda_2,\Lambda_2]}$ .

From Proposition 26.39 and Examples 26.42 and 26.40 we have.

#### Theorem 26.43.

- *1.* Let  $0 < \Lambda_1 \le \rho_1 \le 1$  and  $0 < \Lambda_2 \le \rho_2 \le 1$ . Then  $\mathcal{C}_{[\Lambda_2,\rho_2]} \subset \mathcal{C}_{[\Lambda_1,\rho_1]}$  if and only if  $\Lambda_1 \le \Lambda_2$  and  $\rho_1 \le \rho_2$ . Moreover, if  $\Lambda_1 < \Lambda_2$  or  $\rho_1 < \rho_2$  then  $\mathcal{C}_{[\Lambda_2,\rho_2]} \underset{\neq}{\subseteq} \mathcal{C}_{[\Lambda_1,\rho_1]}$ .
- 2. Let  $0 < \Lambda_1 \le \rho_1 \le 1$  and  $0 < \Lambda_2 \le \rho_2 \le 1$ ]. Then  $s\mathcal{C}_{[\Lambda_2,\rho_2]} \subset s\mathcal{C}_{[\Lambda_1,\rho_1]}$  if and only if  $\Lambda_1 \le \Lambda_2$  and  $\rho_1 \le \rho_2$ . Moreover, if  $\Lambda_1 < \Lambda_2$  or  $\rho_1 < \rho_2$  then  $s\mathcal{C}_{[\Lambda_2,\rho_2]} \subsetneq s\mathcal{C}_{[\Lambda_1,\rho_1]}$ .

*Example 26.44.* Let  $0 < \Lambda_1 \le \rho_1 \le 1$  and  $0 < \rho_2 \le 1$ . Then there exists  $f \in (\mathcal{UC}_{\rho_2} \cap s\mathcal{UC}_{\rho_2}) \setminus (\mathcal{C}_{[\Lambda_1,\rho_1]} \cup s\mathcal{C}_{[\Lambda_1,\rho_1]})$ 

Let  $\{[a_n, b_n]\}_{n \in \mathbb{N}}$  and  $\{[c_n, d_n]\}_{n \in \mathbb{N}}$  be two sequences of closed intervals such that  $0 < \ldots d_{n+1} < c_n < a_n < b_n < d_n < \ldots < d_1, \underline{d}^+ \left(\bigcup_{n=1}^{\infty} [a_n, b_n], 0\right) = 0,$  $\overline{d}^+ \left(\bigcup_{n=1}^{\infty} [a_n, b_n], 0\right) = 1$  and  $\overline{d}^+ \left(\bigcup_{n=1}^{\infty} ([c_n, a_n] \cup [b_n, d_n]), 0\right) = 0.$  Define  $f : \mathbb{R} \to \mathbb{R}$  letting

$$f(x) = \begin{cases} 0 \text{ for } x \in \bigcup_{n=1}^{\infty} ([a_n, b_n] \cup [-b_n, -a_n]) \cup \{0\}, \\ 1 \text{ for } x \in \mathbb{R} \setminus (\{0\} \cup \bigcup_{n=1}^{\infty} ([c_n, d_n] \cup [-d_n, -c_n])), \\ \text{ linear in intervals } [c_n, a_n], [b_n, d_n], [-a_n, -c_n], [-d_n, -b_n], n = 1, \dots. \end{cases}$$

Clearly, f is continuous at each point except at 0. Let  $E = \{0\} \cup \bigcup_{n=1}^{\infty} ([a_n, b_n] \cup [-b_n, -a_n])$ . Then  $f_{|E}$  is constant  $\underline{d}(E, 0) = s \cdot \underline{d}(E, 0) = 0$  and  $\overline{d}(E, 0) = s \cdot \overline{d}(E, 0) = 1$ . Hence  $f \in \mathcal{UC}_{\rho_2} \cap s\mathcal{UC}_{\rho_2}$ . On the other hand,

$$\underline{d}(\{x: |f(x)| < 1\}, 0) = s \cdot \underline{d}(\{x: |f(x)| < 1\}, 0) \le$$
$$\leq \underline{d}(\bigcup_{n=1}^{\infty} ([c_n, d_n] \cup [-d_n, -c_n]), 0) = 0.$$

Thus  $f \notin C_{[\Lambda_1,\rho_1]} \cup sC_{[\Lambda_1,\rho_1]}$ .

*Example 26.45.* Let  $0 < \rho_2 < \rho_1 \le 1$ . Then for each  $0 < \Lambda \le \rho_2$  there exists  $f \in (\mathcal{C}_{[\Lambda,\rho_2]} \cap s\mathcal{C}_{[\Lambda,\rho_2]}) \setminus (\mathcal{UC}_{\rho_1} \cup s\mathcal{UC}_{\rho_1})$ Let  $\{[a_n, b_n]\}_{n \in \mathbb{N}}$  and  $\{[c_n, d_n]\}_{n \in \mathbb{N}}$  be two sequences of closed intervals

Let  $\{[a_n, b_n]\}_{n \in \mathbb{N}}$  and  $\{[c_n, d_n]\}_{n \in \mathbb{N}}$  be two sequences of closed intervals such that  $0 < \dots d_{n+1} < c_n < a_n < b_n < d_n < \dots < d_1, d^+ \left( \bigcup_{n=1}^{\infty} [a_n, b_n], 0 \right) =$  $\frac{\rho_1 + \rho_2}{2}$  and  $\overline{d}^+ \left( \bigcup_{n=1}^{\infty} ([c_n, a_n] \cup [b_n, d_n]), 0 \right) = 1$ . Define  $f \colon \mathbb{R} \to \mathbb{R}$  letting  $f(x) = \begin{cases} 0 \text{ for } x \in \bigcup_{n=1}^{\infty} ([a_n, b_n] \cup [-b_n, -a_n]) \cup \{0\}, \\ 1 \text{ for } x \in \mathbb{R} \setminus \left(\{0\} \cup \bigcup_{n=1}^{\infty} ([c_n, d_n] \cup [-d_n, -c_n])), \\ \text{ linear in intervals } [c_n, a_n], [b_n, d_n], [-a_n, -c_n], [-d_n, -b_n], n = 1, \dots \end{cases}$ 

The function f is continuous at each point except at 0. Let  $E = \{0\} \cup \bigcup_{n=1}^{\infty} ([a_n, b_n] \cup [-b_n, -a_n])$ . Then  $f_{|E}$  is constant  $d(E, 0) = s \cdot d(E, 0) = \frac{\rho_1 + \rho_2}{2} > \rho_2$ . Hence  $f \in \mathcal{C}_{[\Lambda, \rho_2]} \cap s\mathcal{C}_{[\Lambda, \rho_2]}$ . On the other hand,

$$d(\{x: |f(x)| < 1\}, 0) = s \cdot d(\{x: |f(x)| < 1\}, 0) =$$
$$= \underline{d}(\bigcup_{n=1}^{\infty} ([c_n, d_n] \cup [-d_n, -c_n]), 0) = \frac{\rho_1 + \rho_2}{2} < \rho_1.$$

Thus  $f \notin \mathcal{UC}_{\rho_1} \cup s\mathcal{UC}_{\rho_1}$ .

From Proposition 26.39 and Examples 26.44 and 26.45 we have.

#### Theorem 26.46.

- *1.* Let  $0 < \Lambda_1 \leq \rho_1 \leq 1$  and  $0 < \rho_2 \leq 1$ . Then  $\mathcal{UC}_{\rho_2} \subset \mathcal{C}_{[\Lambda_1,\rho_1]}$  if and only if  $\rho_1 \leq \rho_2$ . Moreover,  $\mathcal{C}_{[\Lambda_1,\rho_1]} \subsetneq \mathcal{UC}_{\rho_2}$ .
- 2. Let  $0 < \Lambda_1 \le \rho_1 \le 1$  and  $0 < \rho_2 \le 1$ . Then  $s\mathcal{UC}_{\rho_2} \subset s\mathcal{C}_{[\Lambda_1,\rho_1]}$  if and only if  $\rho_1 \le \rho_2$ . Moreover,  $s\mathcal{C}_{[\Lambda_1,\rho_1]} \subsetneq s\mathcal{UC}_{\rho_2}$ .

## References

- [1] A. Alikhani, *Borel measurability of extreme path derivatieves*, Real Anal. Exchange 12 (1986-87), 216-246.
- [2] K. Banaszewski, *Funkcje ciągłe względem systemu ścieżek*, Doctoral Thesis, Łódź, 1995.
- [3] A. M. Bruckner, *Differentiation of Real Functions*, Lecture Notes in Mathematics, Vol. 659, Springer-Verlag Berlin Heidelberg New York, 1978.
- [4] A. M. Bruckner, R. J. O'Malley, B. S. Thomson, Path Derivatives: A Unified View of Certain Generalized Derivatives, Trans. Amer. Math. Soc. 283 (1984), 97–125.
- [5] J. Jędrzejewski, On limit numbers of real functions, Fund. Math. 83(3) (1973/74), 269–281.
- [6] A. Karasińska, E. Wagner-Bojakowska, Some remarks on ρ-upper density, Tatra Mt. Math. Publ. 46 (2010), 85–89.
- [7] S. Kowalczyk, K. Nowakowska, A note on ρ-upper continuous functions, Tatra Mt. Math. Publ. 44 (2009), 153–158.
- [8] S. Kowalczyk, K. Nowakowska, Maximal classes for the family of [λ, ρ]-continuous functions, Real Anal. Exchange 36 (2010-11), 307–324.
- [9] S. Kowalczyk, K. Nowakowska, *Maximal classes for ρ-upper continuous functions*, Journal of Applied Analysis 19 (2013), 69–89.
- [10] M. Marciniak, R. Pawlak, On the restrictions of functions. Finitely continuous functions and path continuity, Tatra Mt. Math. Publ. 24 (2002), 65–77.
- [11] M. Marciniak, *On path continuity*, Real Anal. Exchange 29(1) (2003-2004), 247–255.
- [12] J. Masterson, A nonstandard result about path continuity, Acta Math. Hungar. 59, Issue 1-2, 1992, 147–149.
- [13] K. Nowakowska, On the family of  $[\Lambda, \rho]$ -continuous functions, Tatra Mt. Math. Publ. 44 (2009), 129–138.
- [14] F. D. Tall, *The density topology*, Pacific Journal of Mathematics 62(1) (1976), 275–284.
- [15] B. S. Thomson, *Real Functions*, Lecture Notes in Mathematics, Vol. 1170, Springer-Verlag Berlin Heidelberg New York, 1985.
- [16] W. Wilczyński, *Density topologies*, Handbook of Measure Theory, chapter 15, Elsevier 2012, 307–324.

STANISŁW KOWALCZYK

Institute of Mathematics, Pomeranian Academy

ul. Arciszewskiego 22d, 76-200 Słupsk, Poland

E-mail: stkowalcz@onet.eu

KATARZYNA NOWAKOWSKA

Institute of Mathematics, Pomeranian Academy ul. Arciszewskiego 22d, 76-200 Słupsk, Poland *E-mail:* nowakowska\_k@go2.pl