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19.1 Introduction

The main motivation for the study of the subject of the stability is due to Ulam
(cf. [13]). In 1940, Ulam presented some unsolved problems and among them
posed the following question. Let G1 be a group and G2 be a group with a
metric d. Given a real number δ > 0, does there exist ε > 0 such that if a map
ϕ : G1→ G2 satisfies

d(ϕ(xy),ϕ(x)ϕ(y))≤ ε

for all x,y ∈ G1, then there exists a homomorphism Φ : G1→ G2 such that

d(ϕ(x),Φ(x))≤ δ

for all x ∈ G1? If the answer to this question is "yes" then we say that the
equation

d(ϕ(xy),ϕ(x)ϕ(y)) = 0, x,y ∈ G1

is stable. Since then several, not necessarily equivalent, definitions of the sta-
bility have appeared. An extensive survey concerning this topic may be found
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in an excellent paper [10] by Z. Moszner. In this article our consideration are
devoted to the following functional equation

g(x+ y− xy)+h(xy) = 2 f
(

x+ y
2

)
, x,y ∈ E (19.1)

in the class of functions f ,g,h : E → X , where E is the set of all reals or the
closed unit real interval and X is a real Banach space. We choose the following
definition of the stability: given ε ≥ 0 and let F,G,H : E → X be functions
satisfying the inequality∥∥∥∥2F

(
x+ y

2

)
−G(x+ y− xy)−H(xy)

∥∥∥∥≤ ε, x,y ∈ E;

we say that functional equation 19.1 is stable if and only if there exist func-
tions f ,g,h : E → X fulfilling equation 19.1 and δ1, δ2, δ3 : [0,∞)→ [0,∞),
vanishing at zero and continuous, such that

‖F(x)− f (x)‖ ≤ δ1(ε);

‖G(x)−g(x)‖ ≤ δ2(ε);

‖H(x)−h(x)‖ ≤ δ3(ε)

for every x ∈ E.

19.2 Stability of Cauchy, Jensen and Hosszú functional equations

We start with a result of D. Hyers [2] which contains a positive answer to the
Ulam’s problem.

Theorem 19.1. Given ε ≥ 0. Let X ,Y be real Banach spaces and let f : X→Y
satisfy the inequality

‖ f (x+ y)− f (x)− f (y)‖ ≤ ε (19.2)

for all x,y ∈ X. Then there exists a unique additive function L : X → Y (i.e. L
satisfies Cauchy functional equation)

L(x+ y) = L(x)+L(y), x,y ∈ X ,

and the following estimation
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‖ f (x)−L(x)‖ ≤ ε, x ∈ X .

Proof. (Sketch) Setting in (19.2) y = x we obtain

‖ f (2x)−2 f (x)‖ ≤ ε, x ∈ X .

By induction we show that for every positive integer n we have∥∥∥∥ f (2nx)
2n − f (x)

∥∥∥∥≤ (1− 1
2n

)
ε.

Defining

Ln(x) :=
f (2nx)

2n , x ∈ X ,

one can check that (Ln(x))n∈N is a Cauchy sequence for each x ∈ X and its
limit L(x) satisfies required conditions. ut

Assume, as previously, that X ,Y are Banach spaces, ε ≥ 0 is a given constant
and h : X → Y satisfies the following inequality∥∥∥∥h

(
x+ y

2

)
− h(x)+h(y)

2

∥∥∥∥≤ ε, (19.3)

for all x,y∈ X . Then function H given by the formula H(x) := h(x)−h(0), x∈
X , also satisfies this inequality, i.e.,∥∥∥∥H

(
x+ y

2

)
− H(x)+H(y)

2

∥∥∥∥≤ ε, x,y ∈ X .

Moreover, observe that H(0) = 0 and

‖H(x+ y)−H(x)−H(y)‖ ≤ 4ε, x,y ∈ X .

On account of Theorem 19.1 there exists an additive function L : X → Y such
that

‖H(x)−L(x)‖ ≤ 4ε, x ∈ X .

Note that function J : X → Y defined as J(x) := L(x)+ h(0), x ∈ X , satisfies
the following Jensen functional equation of the form

J(x)+ J(y) = 2 J
(

x+ y
2

)
, (19.4)

x,y ∈ X , and estimation
‖h(x)− J(x)‖ ≤ 4ε, (19.5)
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for every x ∈ X . Thus we have proved the following corollaries.

Corollary 19.2. Given ε ≥ 0, let X ,Y be Banach spaces and let h : X → Y
satisfy (19.3) for all x,y ∈ X. Then there exists a function J : X → Y fulfilling
Jensen equation (19.4) for all x,y ∈ X and estimation (19.5) for every x ∈ X.
In other words, Jensen functional equation is stable in the class of functions
transforming X into Y .

Corollary 19.3. Let X ,Y be Banach spaces. Then J : X → Y is a Jensen func-
tion if and only if J(x) = L(x) + c, x ∈ X, where c ∈ Y is a constant, and
L : X → Y is additive.

Observe that Jensen functional equation may be considered in the class of
functions defined on a convex subset of X . But if the domain of J is a bounded
subset of X then the method used above cannot be applied. The first step to
solve the problem of the stability of Cauchy functional equation in the class
of functions defined on a real interval was set out by F. Skof in [11]. She has
proven that if f : [0,a)→ Y,a > 0, (Y - a Banach space) satisfies inequality
(19.2) for all x,y ∈ [0,a) such that x+ y ∈ [0,a), then there exists an additive
function L : R→ Y such that

‖ f (x)−L(x)‖ ≤ 3ε

for every x ∈ [0,a). In [3], using this theorem we showed that if E ⊂ Rn is a
bounded set and x0 is a point of its interior, 1

2(E−x0)⊂ (E−x0), and h : E→Y
satisfies inequality (19.3) for all x,y ∈ E then there exist a Jensen function
J : E→ Y and a constant K (depending on the set E ) such that

‖h(x)− J(x)‖ ≤ Kε.

for every x ∈ E. Applying this theorem M. Laczkovich has proved that in the
case where X = R the assumption of the boundedness of E is superfluous.

Theorem 19.4. [7] Given ε ≥ 0. If E ⊂ Rn is convex and h : E → R satisfies
inequality (19.3), i.e., ∣∣∣∣h(x+ y

2

)
− h(x)+h(y)

2

∣∣∣∣≤ ε,

for all x,y ∈ E, then there exists a Jensen function J : E→ R such that

|h(x)− J(x)| ≤Cε,

for every x ∈ E, where C is a constant only depending on E.
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We omit sketch of the proof of this theorem because it is based also on some
other results concerning local stability of convexity.

In the class of real functions defined on R (or on the interval [0,1]) the
Jensen equation (19.4) is equivalent to the equation of the form

ψ(x+ y− xy)+ψ(xy) = ψ(x)+ψ(y),

for all x,y ∈ R (or x,y ∈ [0,1]) which is referred to as the Hosszú functional
equation. This equation was mentioned for the first time by M. Hosszú [1]
at the International Symposium on Functional Equations held in Zakopane
(Poland). The proof of the equivalence of Jensen and Hosszú functional equa-
tions may be found in [6] in the case of functions transforming the set of all
reals into itself. In the case of real functions defined on a unit interval it was
proven by K. Lajkó [8]. In 1996 L. Losonczi [9] proved the stability of the
Hosszú equation in the class of real functions defined on the set of all reals and
posed the problem of the stability of this equation in the class of real functions
defined on the unit interval [0,1]. Surprisingly, in this case the Hosszú equa-
tion is not stable. J. Tabor (Jr.) [12] proved that for every ε > 0 one can find a
function fε : [0,1]→ R such that

| fε(x+ y− xy)+ fε(xy)− fε(x)− fε(y)| ≤ ε, for all x,y ∈ [0,1], (19.6)

and, simultaneously, for every Jensen function J : [0,1]→ R (or function sat-
isfying the Hosszú functional equation)

sup{| fε(x)− J(x)|;x ∈ [0,1]}= ∞. (19.7)

In fact, J. Tabor (Jr.) gave a very general method of constructions of such
type examples. Using his ideas we give here an example of a function fε :
[0.1]→ R with ε = ln 4 fulfilling conditions (19.6) and (19.7).

We define function f : [0.1]→ R in the following way:

f (x) :=

{
0, if x ∈ {0,1};
ln n, if x ∈

( 1
2n+1 ,

1
2n

]
∪
[
1− 1

2n ,1− 1
2n+1

)
,

for arbitrary positive integer n. For x = 0 or y = 0 condition (19.6) is trivially
fulfilled. Let x ∈

( 1
2n+1 ,

1
2n

]
, y ∈

( 1
2n+k+1 ,

1
2n+k

]
where n is an arbitrary positive

and k is a non-negative integer. Then f (x) = ln n, f (y) = ln (n+ k), f (xy) ≤
ln (2n+ k+1) and f (x+ y− xy)≤ ln n. It is not hard to check that condition
(19.6) is fulfilled for all x,y ∈

[
0, 1

2

]
with ε = ln 3. Assume that x,y ∈ [1

2 ,1).
Then 1− x, 1− y ∈

(
0, 1

2

]
and hence
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| f (1−x+1−y−(1−x)(1−y))+ f ((1−x)(1−y))− f (1−x)− f (1−y)| ≤ ln 3.

Consequently,

| f (1− xy)+ f (1− (x+ y− xy))− f (1− x)− f (1− y)| ≤ ln 3,

from which (19.6) easy follows. Assume now that x ∈
( 1

2n+1 ,
1
2n

]
and y ∈[

1− 1
2m ,1− 1

2m+1

)
for arbitrary positive integers n,m. Then f (x) = ln n, f (y) =

ln m, f (xy)≤ ln (n+1) and f (x+y−xy)≤ ln (m+1). Thus in this case condi-
tion (19.6) is fulfilled with ε = ln 4. Assume that there exists a Jensen function
J : [0,1]→ R such that sup{| f (x)− J(x)|;x ∈ [0,1]} < ∞. Then J has to be a
continuous function because it is locally bounded at 1

2 (for example [6]). Thus
J is of the form J(x) = kx+ c, x ∈ [0,1], where k and c are real constants and
hence it satisfies condition (19.7), because f is unbounded.

19.3 Stability of the Jensen-Hosszú functional equation

In the previous part of the paper we gave an example of two equivalent func-
tional equations (the Jensen and the Hosszú equations) one of which was sta-
ble, but one non-stable. The problem of the stability of the following Jensen-
Hosszú equation

f (x+ y− xy)+ f (xy) = 2 f
(

x+ y
2

)
now appears in a natural way. In this equation left-hand side coincides with the
left-hand side of the Hosszú equation and the right-hand side coincides with
the right-hand side of the Jensen equation. We will show that in the class of
real functions defined on the whole set R, as well as on the unit interval, the
Jensen-Hosszú equation is stable. In fact, we shall prove much more. Namely,
in the case when the domain of functions f ,g,h coincides with the set of all
reals then equation (19.1) is stable which is not the case when the domain of
f ,g and h is the unit interval [0,1]. In the former case, we obtain stability of
our equation only if two among three functions f ,g,h are equal. We start with
the case when the domain of f ,g,h is the set of all real numbers. The following
theorem was proven in [4].

Theorem 19.5. [4] Let ε ≥ 0 be a fixed real number and let f ,g,h :R→R be
functions satisfying the following condition
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(

x+ y
2

)
−g(x+ y− xy)−h(xy)

∣∣∣∣≤ ε, x,y ∈ R. (19.8)

Then there exist functions f1,g1,h1 : R→ R fulfilling equation (19.1) and the
following estimations

| f (x)− f1(x)| ≤ 7ε, |g(x)−g1(x)| ≤ 11ε, and |h(x)−h1(x)| ≤ 24ε, x∈R.

Proof. Putting in (19.8) x = y = 0 we get

|2 f (0)−g(0)−h(0)| ≤ ε.

If F(x) = f (x)− f (0), G(x) = g(x)− g(0), H(x) = h(x)− h(0), x ∈ R, then
the triple {F,G,H} satisfies the analogue condition, i.e.,∣∣∣∣2F

(
x+ y

2

)
−G(x+ y− xy)−H(xy)

∣∣∣∣≤ 2ε, x,y ∈ R, (19.9)

and, moreover,
F(0) = G(0) = H(0) = 0.

Setting y = 0 in (19.9) we obtain∣∣∣2F
( x

2

)
−G(x)

∣∣∣≤ 2ε, x ∈ R. (19.10)

For arbitrary u ∈ R and v≤ 0 the equation

z2− (u+ v)z+ v = 0

has two solutions x and y fulfilling the following equalities

u+ v = x+ y and v = xy.

Consequently,∣∣∣∣2F
(

u+ v
2

)
−G(u)−H(v)

∣∣∣∣≤ 2ε, u ∈ R, v≤ 0. (19.11)

Setting u = 0 in (19.11) we obtain∣∣∣2F
( v

2

)
−H(v)

∣∣∣≤ 2ε, v≤ 0. (19.12)

By virtue of (19.10), (19.11) and (19.12), for all u∈R and each v≤ 0, we have
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(

u+ v
2

)
−2F

(u
2

)
−2F

( v
2

)∣∣∣∣≤ ∣∣∣∣2F
(

u+ v
2

)
−G(u)−H(v)

∣∣∣∣+
+
∣∣∣2F

(u
2

)
−G(u)

∣∣∣+ ∣∣∣2F
( v

2

)
−H(v)

∣∣∣≤ 6ε,

which can be rewritten in the following equivalent form

|F(u+ v)−F(u)−F(v)| ≤ 3ε, u ∈ R, v≤ 0.

According to a well-known theorem ([11], see also remarks below Corollary
19.3 there exists a uniquely determined additive function A : R→ R such that

|F(v)−A(v)| ≤ 3ε, v≤ 0.

Using also (19.10) we obtain for v≤ 0

|G(v)−A(v)| ≤
∣∣∣G(v)−2F

( v
2

)∣∣∣+ ∣∣∣2F
( v

2

)
−2A

( v
2

)∣∣∣≤ 8ε, , (19.13)

and, similarly, using (19.12) instead of (19.10)

|H(v)−A(v)| ≤ 8ε, v≤ 0.

It follows from (19.11) (by putting u =−v) that

|G(−v)+H(v)| ≤ 2ε, v≤ 0.

For arbitrary v > 0 we have

|G(v)−A(v)| ≤ |G(v)+H(−v)|+ |A(−v)−H(−v)| ≤ 2ε +8ε = 10ε,

which together with (19.13) imply that

|G(u)−A(u)| ≤ 10ε, u ∈ R. (19.14)

According to (19.14) and (19.10)

|F(u)−A(u)| ≤ 1
2
|2F(u)−G(2u)|+ 1

2
|G(2u)−A(2u)| ≤ 6ε, u ∈ R.

Putting x = v > 0 and y = 1 in (19.9) we get∣∣∣∣2F
(

v+1
2

)
−G(1)−H(v)

∣∣∣∣≤ 2ε,

and, consequently,
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|H(v)−A(v)| ≤
∣∣∣∣H(v)+G(1)−2F

(
v+1

2

)∣∣∣∣+2
∣∣∣∣F(v+1

2

)
−A

(
v+1

2

)∣∣∣∣+
+ |G(1)−A(1)| ≤ 24ε.

Therefore,

|F(x)−A(x)| ≤ 6ε, |G(x)−A(x)| ≤ 10ε and |H(x)−A(x)| ≤ 24ε, x∈R.

Let us put d := 2 f (0)−g(0)−h(0), f1(x) := A(x)+ f (0)−d, g1(x) := A(x)+
g(0)−d, h(x) := A(x)+h(0), x ∈ R. We observe that |d| ≤ ε and

2 f1

(
x+ y

2

)
−g1(x+ y− xy)−h1(xy) = 0, x,y ∈ R.

Moreover,

| f (x)− f1(x)| ≤ 7ε, |g(x)−g1(x)| ≤ 11ε, and |h(x)−h1(x)| ≤ 24ε, x∈R.

This completes the proof. ut

In the next step we will show that the general solution of the equation (19.1)
are Jensen functions in (0,1). Assume (like in (19.8)) that∣∣∣∣2 f

(
x+ y

2

)
−g(x+ y− xy)−h(xy)

∣∣∣∣≤ ε, x,y ∈ [0,1].

Setting F(x) = f (x)− f (0),G(x) = g(x)−g(0),H(x) = h(x)−h(0), x∈ [0,1],
we obtain∣∣∣∣2F

(
x+ y

2

)
−G(x+ y− xy)−H(xy)

∣∣∣∣≤ 2ε, x,y ∈ [0,1], (19.15)

and, moreover,
F(0) = G(0) = H(0) = 0.

As an easy consequence (y = 0) we get∣∣∣2F
( x

2

)
−G(x)

∣∣∣≤ 2ε, x ∈ [0,1]. (19.16)

We define a subset D of [0,1]2 in the following way

D = {(u,v) ∈ [0,1]2;(u+ v)2−4v≥ 0}.

For every (u,v) ∈ D the equation x2− (u+ v)x + v = 0 has solutions x1,x2

fulfilling conditions
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x1 + x2 = u+ v, x1x2 = v.

It is not hard to check that x1,x2 ∈ [0,1]. Hence and by virtue of (19.15) we
infer that ∣∣∣∣2F

(
u+ v

2

)
−G(u)−H(v)

∣∣∣∣≤ 2ε, (u,v) ∈ D. (19.17)

Observe that if (u,v) ∈ D and u+ v≤ 1 then (u+ v,v) ∈ D whence∣∣∣∣2F
(

u+2v
2

)
−G(u+ v)−H(v)

∣∣∣∣≤ 2ε, (u,v)∈D0 := {(u,v)∈D;u+v≤ 1}.

This together with (19.17) yields∣∣∣∣2F
(

u+2v
2

)
−G(u+ v)−2F

(
u+ v

2

)
+G(u)

∣∣∣∣≤ 4ε, (u,v) ∈ D0

and using (24) we get∣∣∣∣F(u+2v
2

)
−2F

(
u+ v

2

)
+F

(u
2

)∣∣∣∣≤ 4ε, (u,v) ∈ D0.

Putting

s =
u+2v

2
, t =

u
2
, (u,v) ∈ D0,

after simple calculation we have∣∣∣∣2F
(

s+ t
2

)
−F(s)−F(t)

∣∣∣∣≤ 4ε, (s, t) ∈ ∆ , (19.18)

where ∆ is the region bounded by the curves

s+ t = 1, s ∈
[

3
8
,
5
8

]
, (s+ t)2−4(s− t) = 0, s ∈

[
0,

5
8

]
and

(s+ t)2−4(t− s) = 0, s ∈
[

0,
3
8

]
.

More precisely, (s, t) ∈ ∆ if and only if s+ t ≤ 1, (s+ t)2 ≥ 4(s− t).
Evidently, [2

√
2− 5

2 ,
1
2 ]

2 ⊂ ∆ . On account of a theorem of Laczkovich [7]
(see Theorem 19.4) there exists an additive function A : R→ R and a real
constant c such that
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|F(u)−A(u)− c| ≤ µ1ε, u ∈
[

2
√

2− 5
2
,
1
2

]
,

where µ1 does not depend on F . Let us put s0 =
1
2 , s1 = 2

√
2− 5

2 and sn+1 =

sn(1− 1
2 sn) for arbitrary positive integer n. Note that (sn)n∈N is a decreasing

sequence converging to zero and, moreover, sn− sn+1 ≤ sn−1− sn, n ∈N0. We
will show that

|F(u)−A(u)− c| ≤ µnε, u ∈
[

sn,
1
2

]
(19.19)

where µn does not depend on F . It is true for n= 1. Observe that [sn,sn−1]
2⊂∆

and if u∈ [sn+1,sn] and v= 2sn−u, then u+v
2 ,v∈ [sn,sn−1],n∈N. For induction

method assume (19.19) for a positive integer n. Take an arbitrary u∈ [sn+1,sn].
According to (19.18) and (19.19) we obtain

|F(u)−A(u)− c| ≤
∣∣F(u)+F(v)−2F

(u+v
2

)∣∣+2
∣∣F (u+v

2

)
−A

(u+v
2

)
− c
∣∣

+|A(v)+ c−F(v)| ≤ 4ε +2µnε +µnε =: µn+1ε,

which ends the proof of (19.19). The sequence (sn) tends to zero if n tends to
infinity thus there exists a positive integer N such that

|F(u)−A(u)− c| ≤ µNε, u ∈
[

sN ,
1
2

]
⊃
[

1
4
,
1
2

]
. (19.20)

It follows from (19.20) and (19.16) that

|G(u)−A(u)−2c| ≤
∣∣∣G(u)−2F

(u
2

)∣∣∣+2
∣∣∣F (u

2

)
−A

(u
2

)
− c
∣∣∣

≤ 2ε +2µNε = 2(µN +1)ε, u ∈ [2sN ,1]⊃
[

1
2
,1
]
.

(19.21)

Setting y = 1
2 in (19.15) we have∣∣∣∣2F
(

1
4
+

1
2

x
)
−G

(
1
2
+

1
2

x
)
−H

(
1
2

x
)∣∣∣∣≤ 2ε, x ∈ [0,1].

Therefore, according to (19.21) and (19.20), for every x ∈
[
0, 1

2

]
, we get
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2

x
)
−A

(
1
2

x
)∣∣∣∣≤ ∣∣∣∣H(1

2
x
)
+G

(
1
2
+

1
2

x
)
−2F

(
1
4
+

1
2

x
)∣∣∣∣+∣∣∣∣−G

(
1
2
+

1
2

x
)
+A

(
1
2
+

1
2

x
)
+2c

∣∣∣∣+ ∣∣∣∣2F
(

1
4
+

1
2

x
)
−2A

(
1
4
+

1
2

x
)
−2c

∣∣∣∣≤
≤ 2ε +2(µN +1)ε +2µNε = 4(µN +1)ε,

whence

|H(x)−A(x)| ≤ µε, x ∈
[

0,
1
4

]
,

where µ = 4(µN +1). Consequently,
|F(u)−A(u)− c| ≤ µnε, u ∈

[
sn,

1
2

]
;

|G(u)−A(u)−2c| ≤ µ ′nε, u ∈ [2sn,1];

|H(u)−A(u)| ≤ µε, u ∈
[
0, 1

4

]
.

(19.22)

Thus we are in a position to prove the following theorem.

Theorem 19.6. [5] Let f ,g,h : [0,1]→ R be functions satisfying functional
equation (19.1). Then there exists an additive function A : R→ R and a con-
stant c ∈ R such that

f (x) = f (0)+A(x)+ c, x ∈ (0,1);

g(x) = g(0)+A(x)+2c, x ∈ (0,1];

h(x) = h(0)+A(x), x ∈ [0,1).

(19.23)

Conversely, if functions f ,g,h are defined by (19.23) and 2 f (w) = g(w)+h(w)
for w ∈ {0,1}, then functional equation (19.1) is fulfilled.

Proof. Putting F(x)= f (x)− f (0), G(x)= g(x)−g(0), H(x)= h(x)−h(0), x∈
[0,1], we observe that the triple (F,G,H) satisfies the following functional
equation

2F
(

x+ y
2

)
= G(x+ y− xy)+H(xy), x,y ∈ [0,1].

It follows from (19.22) (with ε = 0) that
F(x) = A(x)+ c, x ∈

[
sn,

1
2

]
;

G(x) = A(x)+2c, x ∈ [2sn,1];

H(x) = A(x), x ∈
[
0, 1

4

]
.

Taking n→ ∞ we obtain
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F(x) = A(x)+ c, x ∈

(
0, 1

2

]
;

G(x) = A(x)+2c, x ∈ (0,1];

H(x) = A(x), x ∈
[
0, 1

4

]
.

(19.24)

Let us put ρ0 =
1
2 , ρn+1 =

1
2(1+ρ2

n ), n ∈ N0. Evidently, sequence (ρn)n∈N is
increasing and converging to 1. Using induction method we will prove that{

F(u) = A(u)+ c, u ∈ (0,ρn];

H(u) = A(u) u ∈ [0,ρ2
n ].

(19.25)

By virtue of (19.24) it is true for n = 0. Assume (19.25) for an n ∈ N0. For
each u ∈ [ρn,ρn+1] there exists an x ∈ [0,1] such that u = x+ρ2

n
2 . Setting y = ρ2

n
in (32) and applying the induction assumption we have

2F
(

x+ρ2
n

2

)
= G(x+ρ

2
n −ρ

2
n x)+H(ρ2

n x)

= A(x+ρ
2
n −ρ

2
n x)+2c+A(ρ2

n x) = 2
[

A(
x+ρ2

n

2
)+ c

]
,

which proves the first equality of (19.25) for n+1. If u ∈ [ρ2
n ,ρ

2
n+1] then there

exists an x ∈ (0,2ρn+1] such that x(2ρn+1− x) = u. Therefore

H(u) = H(x(2ρn+1− x)) = 2F(ρn+1)−G(x+2ρn+1− x−u))

= 2[A(ρn+1)+ c]−A(x+2ρn+1− x−u)−2c = A(u),

which proves the second equality of (19.25) for n+ 1 and ends the proof of
(19.25). Since the part "conversely" is obvious, our assertion follows now from
(19.24) and (19.25), because (34) hold for every non-negative integer. ut

19.3.1 The case h = f

We have the following theorem.

Theorem 19.7. [5] Let ε be a nonnegative number and let f ,g : [0,1]→ R be
functions satisfying the following condition∣∣∣∣2 f

(
x+ y

2

)
−g(x+ y− xy)− f (xy)

∣∣∣∣≤ ε, x,y ∈ [0,1].
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Then there exists an additive function A : R→ R and constants c,ρ1,ρ2 ∈ R
(ρ1,ρ2 - not depending on f ,g) such that

| f (x)− f (0)−A(x)− c| ≤ ρ1ε, x ∈ [0,1];

|g(x)−g(0)−A(x)−2c| ≤ ρ2ε, x ∈ [0,1].
(19.26)

Proof. Let F(x) = f (x)− f (0), G(x) = g(x)−g(0), x ∈ [0,1]. Then also∣∣∣∣2F
(

x+ y
2

)
−G(x+ y− xy)−F(xy)

∣∣∣∣≤ 2ε, x,y ∈ [0,1]. (19.27)

Setting here y = 1
2 we have∣∣∣∣2F

(
1
4
+

1
2

x
)
−G

(
1
2
+

1
2

x
)
−F

(
1
2

x
)∣∣∣∣≤ 2ε, x ∈ [0,1].

We may use conditions (19.16) and (19.22). Taking N such that
[
sN ,

1
2

]
⊃[1

4 ,
1
2

]
we infer that

|c| ≤ (µ +µN)ε.

Now, it follows from (19.22) and (19.16) that

|F(u)−A(u)| ≤ 2(µ +µN)ε = k ε, u ∈
[

0,
1
2

]
;

|G(u)−A(u)| ≤
∣∣∣G(u)−2F

(u
2

)∣∣∣+ ∣∣∣2F
(u

2

)
−2A

(u
2

)∣∣∣
≤ 2(1+ k) ε = ρ2 ε, u ∈ [0,1].

Hence∣∣∣∣2F
(

1
4
+

1
2

x
)
−2A

(
1
4
+

1
2

x
)∣∣∣∣≤ ∣∣∣∣2F

(
1
4
+

1
2

x
)
−G

(
1
2
+

1
2

x
)
−F

(
1
2

x
)∣∣∣∣

+

∣∣∣∣G(1
2
+

1
2

x
)
−A

(
1
2
+

1
2

x
)∣∣∣∣+ ∣∣∣∣F(1

2
x
)
−A

(
1
2

x
)∣∣∣∣≤ (2+ρ2 + k) ε,

whence

|F(u)−A(u)| ≤
(

1+
k+ρ2

2

)
ε, u ∈

[
0,

3
4

]
.

Similarly, setting y = 3
4 in (19.27), we get

|F(u)−A(u)| ≤
(

1+
k+ρ2

2
+

k+ρ2

4

)
ε, u ∈

[
0,

7
8

]
.
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Using induction method one can prove that

|F(u)−A(u)| ≤
(

1+
k+ρ2

2
+ · · ·+ k+ρ2

2p

)
ε, u∈

[
0,1− 1

2p+1

]
, p∈N,

and therefore

|F(u)−A(u)| ≤ (1+ k+ρ2) ε = ρ1 ε, u ∈ [0,1).

Since |2F(1)−G(1)−F(1)| ≤ 2ε then

|F(1)−A(1)| ≤ |F(1)−G(1)|+ |G(1)−A(1)| ≤ (2+ρ2) ε,

which ends the proof of estimations (19.26). ut

19.3.2 The cases f = g and g = h

The following two theorems easily follow from (19.22).

Theorem 19.8. [5] Let ε ≥ 0 be fixed and let f ,h : [0,1]→ R be functions
satisfying the following condition∣∣∣∣2 f

(
x+ y

2

)
− f (x+ y− xy)−h(xy)

∣∣∣∣≤ ε, x,y ∈ [0,1].

Then there exist an additive function A : R→ R and constants ρ1,ρ2 ∈ R (not
depending on f ,g) such that

| f (x)−A(x)− f (0)| ≤ ρ1ε, x ∈ [0,1];

|h(x)−A(x)−h(0)| ≤ ρ2ε, x ∈ [0,1].
(19.28)

Proof. As in the proof of Theorem 19.6, we define functions F and H. It fol-
lows from (19.22) that |c| ≤ (µN +µ ′N) ε , where N ∈N is so chosen that sN ≤ 1

4 ,
and

|F(u)−A(u)| ≤ 2(µN +µ
′
N) ε, u ∈ [sN ,1].

By (19.4) we have also |2F( x
2)−F(x)| ≤ 2 ε, x ∈ [0,1]. The last two inequal-

ities imply that for every x ∈
(
0, 1

4

]
we have

|F(x)−A(x)| ≤ 1
2
[|2F(x)−F(2x)|+ |F(2x)−A(2x)| ]≤ 1

2
(2+2(µN +µ

′
N)) ε.

This ends the proof of the first estimation of (19.28). If x ∈ [0,1] then
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|H(x)−A(x)| ≤
∣∣∣∣H(x)+F(1)−2F

(
1+ x

2

)∣∣∣∣+ |F(1)−A(1)|

+

∣∣∣∣2F
(

1+ x
2

)
−2A

(
1+ x

2

)∣∣∣∣≤ (2+3 ρ1) ε.

ut

In the same way one can prove the following theorem.

Theorem 19.9. [5] Let ε ≥ 0 be fixed and let f ,g : [0,1]→ R be functions
satisfying the following condition∣∣∣∣2 f

(
x+ y

2

)
−g(x+ y− xy)−g(xy)

∣∣∣∣≤ ε, x,y ∈ [0,1].

Then there exist an additive function A : R→ R and constants ρ1,ρ2 ∈ R (not
depending on f ,g) such that

| f (x)−A(x)− f (0)| ≤ ρ1ε, x ∈ [0,1];

|g(x)−A(x)−g(0)| ≤ ρ2ε, x ∈ [0,1].

Proof. Putting F(x) = f (x)− f (0) and G(x) = g(x)−g(0), x ∈ I, we observe
that ∣∣∣∣2F

(
x+ y

2

)
−G(x+ y− xy)−G(xy)

∣∣∣∣≤ 2 ε, x,y ∈ [0,1].

According to (19.22) we get |c| ≤ 1
2(µ

′
N + µ), where N ∈ N is so chosen that

sN ≤ 1
8 . Therefore

|G(u)−A(u)| ≤ 3
2
(µ ′N +µ) ε = ρ2 ε, u ∈ [0,1].

Now, for all x,y ∈ [0,1] we obtain∣∣∣∣F(x+ y
2

)
−A

(
x+ y

2

)∣∣∣∣≤ ∣∣∣∣F(x+ y
2

)
− 1

2
G(x+ y− xy)− 1

2
G(xy)

∣∣∣∣+
+

1
2
|G(x+ y− xy)−A(x+ y− xy)|+ 1

2
|G(xy)−A(xy)| ≤ (1+ρ2) ε.

ut
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19.3.3 Counterexample

The following example shows that in the general case of the inequality (19.8)
an analogous assertion does not hold.

Example 19.10. For arbitrary n ∈ N, we put r0 = 0, r1 =
1
2 , rn+1 =

1+r2
n

2 , and

f (u) = n, iff
x+ y

2
= u ∈ [rn−1,rn), f (1) = 0;

g(u) = 0, u ∈ [0,1];

h(u) = 2n+1, iff xy = u ∈ [r2
n−1,r

2
n), h(1) = 0.

Functions f ,g,h are well defined on the unit interval I. Note that if x+y
2 ∈

[r0,r1) then xy∈ [r2
0,r

2
1) and, moreover, if x+y

2 ∈ [rn,rn+1) then xy∈ [r2
n−1,r

2
n+1)

for each positive integer n. Therefore for all x,y ∈ [0,1] we have∣∣∣∣2 f
(

x+ y
2

)
−g(x+ y− xy)−h(xy)

∣∣∣∣≤ 1,

which means that estimation (19.8) is fulfilled. On the other hand, every addi-
tive function A :R→R for which set {g(x)−A(x); x ∈ I} is bounded is of the
form A(x) = kx, with a real constant k. But then sets { f (x)−A(x); x ∈ [0,1]}
as well as {h(x)−A(x); x ∈ [0,1]} are unbounded. �
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