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The notion of I-approximate differentiation [9] is based upon the notion of
an I-density point which was introduced in [10].
For any a ∈ R and A⊂ R, we denote

aA = {ax : x ∈ A} and A−a = {x−a : x ∈ A}.

Definition 13.1 ([10]). Let A ⊂ R be a set having the Baire property and
x ∈R. We say that x is an I-density point of a set A (I-d(A,x) = 1) if for each
increasing sequence {nm}m∈N of positive integers, there exists a subsequence
{nmp}p∈N such that{

t ∈ [−1,1] : χnmp ·(A−x)∩[−1,1](t)9 1
}

is a set of the first category. A point x is called an I-dispersion point of a set A
(I-d(A,x) = 0) if x is an I-density point of the set R\A.

If in the above definition, the interval [−1,1] is replaced either by [0,1] or
by [−1,0], we obtain the definitions of right-hand I-density and I-dispersion
points (I-d+(A,x) = 1 and I-d+(A,x) = 0) or left-hand I-density and
I-dispersion points (I-d−(A,x) = 1 and I-d−(A,x) = 0), respectively.
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We shall need the following characterization of the I-dispersion point of an
open set.

Lemma 13.2 ([5]). Let G⊂ R be an open set. Then 0 is an I-dispersion point
of G if and only if for each n ∈ N, there exist k ∈ N and a real number δ > 0
such that, for each h∈ (0,δ ) and for each i∈{1, ...,n}, there exist two numbers
j ∈ {1, ...,k} and j′ ∈ {1, ...k} such that

G∩
((

i−1
n

+
j−1
nk

)
h,
(

i−1
n

+
j

nk

)
h
)
= /0

and

G∩
(
−
(

i−1
n

+
j′

nk

)
h,−

(
i−1

n
+

j′−1
nk

)
h
)
= /0.

For each A⊂ R having the Baire property, let

ΦI(A) = {x ∈ R : x is an I-density point of A} .

Recall that, for any sets A⊂ R and B⊂ R having the Baire property, we have
the following:

1. ΦI(A)4A is a set of the first category,
2. if A4B is a set of the first category, then ΦI(A) = ΦI(B),
3. ΦI( /0) = /0 and ΦI(R) = R,
4. ΦI(A∩B) = ΦI(A)∩ΦI(B),

where A4B denotes the symmetric difference of the set A and B (see [10]).
Further, the family

TI = {A⊂ R : A has the Baire property and A⊂ΦI(A)}

is a topology on the real line, called I-density topology (see [10]). The topol-
ogy TI is stronger then the natural topology. It is Hausdorff topology but not
regular. The family of all functions continuous with respect to I-density topol-
ogy we call I-approximately continuous.

We recall that a set B⊂ R is said to be the Baire cover of a set A⊂ R if the
set B has the Baire property, A⊂ B and, for each set C⊂ B\A having the Baire
property, the set C is of the first category.

Definition 13.3. A point x ∈ R is called an exterior I-density point of a set
A ⊂ R (I-de(A,x) = 1) if there exists the Baire cover B of the set A such that
I-d(B,x) = 1.
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A point x ∈ R is called an exterior I-dispersion point of a set A ⊂ R
(I-de(A,x) = 0) if there exists the Baire cover B of the set A such that
I-d(B,x) = 0.

A point x ∈ R is called an exterior right-hand I-density point of a set
A ⊂ R (I-d+

e (A,x) = 1) if there exists the Baire cover B of the set A such
that I-d+(B,x) = 1.

A point x ∈ R is called an exterior right-hand I-dispersion point of a set
A⊂ R (I-d+

e (A,x) = 0) if there exists the Baire cover B of the set A such that
I-d+(B,x) = 0.

In a similar way we define and we denote exterior left-hand I-density points
and exterior left-hand I-dispersion points of a set A⊂ R.

Definition 13.4. Let f : R→ R and x ∈ R.
The upper right-hand I-approximate Dini derivative of a function f at a

point x (I-D+ f (x)) is defined as the greatest lower bound of the set{
α ∈ R : I-d+

e

({
t > x :

f (t)− f (x)
t− x

> α

}
,x
)
= 0
}
.

The lower right-hand I-approximate Dini derivative of a function f at a
point x (I-D+ f (x)) is defined as the least upper bound of the set{

α ∈ R : I-d+
e

({
t > x :

f (t)− f (x)
t− x

< α

}
,x
)
= 0
}
.

The left-hand I-approximate Dini derivatives are defined similarly and de-
noted by I-D− f (x) and I-D− f (x).

The ordinary Dini derivatives of a function f : R→ R at a point x ∈ R, we
denote by D+ f (x), D+ f (x), D− f (x) and D− f (x), respectively.

To study the properties of the I-approximate Dini derivatives we shall con-
sider only the upper right-hand I-approximate Dini derivative, because we
can obtain analogous properties for other I-approximate Dini derivatives by
the following

1. if for each x ∈ R, g(x) =− f (x) then for each x ∈ R,

I-D+ f (x) =−
(
I-D+g(x)

)
,

2. if for each x ∈ R, g(x) = f (−x) then for each x ∈ R,

I-D− f (x) =−
(
I-D+g(−x)

)
,
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3. if for each x ∈ R, g(x) =− f (−x) then for each x ∈ R,

I-D− f (x) = I-D+g(−x).

It is easy to see that

Theorem 13.5. Let f : R→ R. Then for each point x ∈ R,

I-D+ f (x)≤ D+ f (x).

Moreover we have the following theorem

Theorem 13.6 ([4]). If f : R→ R is continuous, then the set{
x ∈ R : I-D+ f (x) 6= D+ f (x)

}
is of the first category.

The above theorem is not true for an arbitrary function having the Baire prop-
erty. If we consider the characteristic function of the set rational numbers then
for each irrational numbers x, we have D+ f (x) = +∞ and I-D+ f (x) = 0.

Theorem 13.7 ([9]). If f : R→ R is a monotone function, then

I-D+ f (x) = D+ f (x),

for each point x ∈ R.

Theorem 13.8 ([4]). If f : R→ R and m ∈ R. If a set

A⊂
{

x ∈ R : I-D+ f (x)< m
}

is of the second category and the function f|A is continuous, then there exists
an interval [a,b] ⊂ R such that the set [a,b]∩A is of the second category and
the function h(x) = f (x)−mx is nonincreasing on [a,b]∩A.

By taking into consideration the characteristic function of the Bernstein set
it is easy to see that the I-approximate Dini derivatives of the function which
does not have the Baire property may not have this property, either. But the
following theorem is true.

Theorem 13.9 ([3]). If a function f : R→ R has the Baire property, then its
I-approximate Dini derivatives have the Baire property, too. Moreover, if f is
continuous, then they are of the Baire class 3.
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Additionally, by the following theorem

Theorem 13.10 ([3]). Let f : R→ R and

A⊂
{

x ∈ R : I-D+ f (x)<+∞
}
.

If A is a set of the second category then there exists a set W ⊂ A such that the
set A\W is of the first category and the function f|W is continuous.

we obtain

Theorem 13.11 ([3]). Let f : R→ R. If

R\
{

x ∈ R : I-D+ f (x)<+∞
}

is a set of the first category, then the function f has the Baire property.

The relations between the ordinary Dini derivatives of an arbitrary real func-
tion of real variable were described in the Denjoy-Young-Saks Theorem:

Theorem 13.12 ([11]). Let f : R→ R and

E1 = {x ∈ R : f is differentiable at x} ,

E2 =
{

x ∈ R : D+ f (x) = D− f (x) = +∞, D+ f (x) = D− f (x) =−∞
}
,

E3 =
{

x ∈ R : D+ f (x) = D− f (x) are finite, D+ f (x) =−∞,D− f (x) = +∞
}
,

E4 =
{

x ∈ R : D+ f (x) = D− f (x) are finite, D+ f (x) = +∞,D− f (x) =−∞
}
.

Then the set R\ (E1∪E2∪E3∪E4) has Lebesgue measure zero.

Theorem 13.13 ([12]). Let f :R→R be a Lebesgue measurable function and

E1 = {x ∈ R : f is differentiable at x} ,

E2 =
{

x ∈ R : D+ f (x) = D− f (x) = +∞, D+ f (x) = D− f (x) =−∞
}
.

Then the set R\ (E1∪E2) has Lebesgue measure zero.

It is worth mentioning that the theorems remain true if we replace there the
ordinary Dini derivatives by the approximate Dini derivatives (see [1]).

The following example shows that the relations given in Danjoy-Young-
Saks Theorem are not satisfied for I-approximate Dini derivatives even if we
assume the measurability in the sense of Baire and Lebesgue.
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Example 13.14 ([4]). Let A be a set of the first category such that R \A has
Lebesgue measure zero and f be the characteristic function of the set A. Then
for each x ∈ A,

I-D+ f (x) = I-D+ f (x) =−∞

and
I-D− f (x) = I-D− f (x) = +∞.

By Theorem 13.6, it immediately follows that if the upper and lower Dini
derivatives of a continuous function f :R→R are equal to +∞ and−∞, resp.,
then the upper and lower I-approximate Dini derivatives are equal to +∞ and
−∞, respectively, on a residual set. Moreover, we have

Theorem 13.15 ([4]). If a continuous function f : R→ R has no finite deriva-
tive at any point, then there exists a residual set E ⊂ R such that, for each
x ∈ E

I-D+ f (x) = I-D− f (x) =−∞ and I-D− f (x) = I-D− f (x) = ∞.

Theorem 13.16 ([4]). If f : R→ R has the Baire property, then the sets{
x ∈ R : I-D+ f (x) 6= I-D− f (x)

}
, {x ∈ R : I-D+ f (x) 6= I-D− f (x)}

are of the first category.

The above theorem is not true for an arbitrary real function of a real variable,
for example if we consider the characteristic function of the Bernstein set, then
for each x ∈ R\B,

I-D− f (x) = I-D+ f (x) = 0, I-D+ f (x) = +∞ and I-D− f (x) =−∞.

Theorem 13.16 is a category version of the Denjoy-Young-Saks Theorem,
for functions having the Baire property, establishing a relation between the I-
approximate Dini derivatives. In the next theorem, it is shown that this result
cannot be improved even if we assume continuity of the function f .

Theorem 13.17 ([4]). For any a and b such that −∞ ≤ a < b ≤ +∞, there
exists a continuous function f : [0,1]→ R and a residual set E on an interval
[0,1] such that for each point x ∈ E,

I-D+ f (x) = I-D− f (x) = a and I-D+ f (x) = I-D− f (x) = b.

Definition 13.18. Let f : R→ R and x ∈ R.
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We say that a function f has a right-hand I-approximate derivative at a point
x
(
I- f ′+(x)

)
, if I-D+ f (x) = I-D+ f (x). Then I- f ′+(x) is the common value of

I-D+ f (x) and I-D+ f (x).
We say that a function f has a left-hand I-approximate derivative at a point

x
(
I- f ′−(x)

)
, if I-D− f (x) = I-D− f (x). Then I- f ′−(x) is the common value of

I-D− f (x) and I-D− f (x).
We say that a function f has an I-approximate derivative at a point x

(I- f ′(x)), if I- f ′+(x) = I- f ′−(x). Then I- f ′(x) is the common value of I- f ′+(x)
and I- f ′−(x).

We say that a function f is I-approximately differentiable at a point x if
|I- f ′(x)|<+∞.

We say that a function f is I-approximately differentiable if f is I-
approximately differentiable everywhere.

The ordinary derivative of a function f :R→R at a point x ∈R, we denote by
f ′(x).

Lemma 13.19. Let f : R→ R and

A⊂
{

x ∈ R : I-D+(x)<+∞
}
.

If the set A is dense subset of R and the function f|A is differentiable, then
I-D+ f (x)≤ f ′|A(x), for each x ∈ A.

Proof. Let x ∈ A and f ′|A = s. We suppose that there exists β > 0 such that

I-D+ f (x)> s+β .

Then x is not an exterior right-hand I-dispersion point of the set

W =

{
t > x :

f (t)− f (x)
t− x

> s+β

}
.

Therefore, for each δ > 0, W ∩ (x,x+δ ) is a set of the second category.
Let 0 < α < β . By our assumption the function f|A is differentiable at x and

therefore there exists a real number δ > 0 such that

A∩ (x,x+δ )⊂
{

t > x :
f (t)− f (x)

t− x
< s+α

}
.

Let V be the Baire cover of the set W . Then there exists an open interval
(a,b)⊂ (x,x+δ ) such that (a,b)\V is a set of the first category.

Let y ∈ A∩ (a,b). Then I-d+
e (W,y) = 1 and for each t ∈ (y,b)∩W ,
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f (t)− f (x)> (s+β )(t− x)

and
f (x)− f (y)> (−s−α)(y− x).

Therefore
f (t)− f (y)

t− y
> s+

t− x
t− y

(
β −α

y− x
t− x

)
,

for each t ∈ (y,b)∩W . Hence

lim
t→y+, t∈W

f (t)− f (y)
t− y

=+∞

and I-D+ f (y) = +∞, a contradiction. Thus I-D+ f (x)≤ f ′|A(x). ut

Lemma 13.20. Let f : R→ R and

A⊂
{

x ∈ R : I-D+(x)<+∞
}
.

If there exists the Baire cover B of the set A such that R\B is a set of the first
category and the function f|A is differentiable, then

I-D+ f (x)≥ f ′|A(x),

for each x ∈ A.

Proof. Let x ∈ A and f ′|A = s. We suppose that there exists η > 0 such that

I-D+ f (x)< s−η .

Then x is an exterior right-hand I-dispersion point of the set

S =

{
t > x :

f (t)− f (x)
t− x

> s−η

}
.

Therefore there exists the Baire cover P of a set S such that x is a right-hand
I-density point of the set W = R\P and

W ⊂
{

t > x :
f (t)− f (x)

t− x
≤ s−η

}
.

Let n ∈ N. The set W is a subset of the second category of the interval(
x,x+ 1

n

)
, hence there exists an open interval (an,bn) ⊂

(
x,x+ 1

n

)
such that

(an,bn) \W is a set of the first category. Since A∩ (an,bn) is a subset of the
second category of the interval (an,bn), we have
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W ∩A∩
(

x,x+
1
n

)
6= /0.

We choose a point tn ∈W ∩A∩
(
x,x+ 1

n

)
. In this way we define a sequence of

real numbers {tn}n∈N such that limn→∞ tn = x, for each n ∈N, tn ∈ A∩ (x,+∞)

and
f (tn)− f (x)

tn− x
≤ s−η .

By the assumption the function f|A is differentiable at x, therefore

f ′|A(x)≤ f ′|A(x)−η ,

a contradiction. Hence I-D+ f (x)≥ f ′|A(x). ut

By Lemmas 13.19 and 13.20 we have the following

Theorem 13.21. Let f : R→ R and A ⊂ R. If there exists the Baire cover B
of the set A such that R \B is a set of the first category, the function f|A is
differentiable and, for each x ∈ A,

−∞ < min{I-D+(x),I-D−(x)} ≤max
{
I-D+(x),I-D−(x)

}
<+∞,

then the function f is I-approximately differentiable at each point x ∈ A.

We observe that in the definition of I-approximate derivative of a func-
tion f at a point x in [9], [2], [5], [6] and [8] it was assumed that f has the
Baire property in some neighborhood of x. We have defined I-approximate
derivative without this assumption. But by Theorem 13.11 we know that every
I-approximately differentiable function has the Baire property. Therefore if a
function f is I-approximately differentiable then it is I-approximately contin-
uous function. Moreover we have the following theorem.

Theorem 13.22 ([8]). For every I-approximately continuous function f :R→
R and ε > 0 there exists an I-approximately differentiable function h :R→R
such that | f (x)−h(x)|< ε , for each x ∈ R.

Corollary 13.23 ([8]). The uniform closure of the family of all I-approximately
differentiable functions coincides with the family of all I-approximately con-
tinuous functions.

Now we give the several properties of a function f : R→ R which is I-
approximately differentiable.
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Theorem 13.24 ([9]). Let f : R→ R. If a function f is an I-approximately
differentiable then it is Baire ∗1, which means that there exists a sequence of
closed sets {An}n∈N such that for each n∈N, f|An is a continuous function and
R=

⋃
n∈NAn.

By the above we know that if a function f has a finite I-approximate derivative
at each point x ∈ R then the function f is of the first class of Baire. This result
is not true if a function possesses infinite I-approximate derivatives. Then we
have the following theorems:

Theorem 13.25 ([2]). Let f : R→ R be a function having the Baire property.
If a function f has an I-approximate derivative at each point x ∈ R then it is
of the second class of Baire.

Theorem 13.26 ([2]). There exists a function f :R→R having the Baire prop-
erty such that f has an I-approximate derivative at each point x ∈ R and f is
not of the first class of Baire.

Theorem 13.27 ([9]). Let f : R→ R. If a function f is an I-approximately
differentiable then it has the Darboux property.

Theorem 13.28 ([9]). Let f : R→ R. If a function f is an I-approximately
differentiable and I- f ′(x)≥ 0 at each x ∈ R, then f is nondecreasing.

Theorem 13.29 ([9]). Let f : R→ R be Baire 1 and Darboux. Suppose that

1. I- f ′(x) exists except on a denumerable set,
2. I- f ′(x)≥ 0 almost everywhere (with respect to the Lebesgue measure).

Then f is a nondecreasing and continuous function.

Now we give the several properties of a function I- f ′.

Theorem 13.30 ([9]). Let f : R→ R. If a function f is an I-approximately
differentiable then the function I- f ′ has the Darboux property.

Theorem 13.31 ([5]). Let f : R→ R. If a function f is an I-approximately
differentiable then the function I- f ′ is of Baire class one.

Theorem 13.32 ([7]). Let f :R→R. If a function f is an I-approximately dif-
ferentiable then there exists a sequence of perfect sets {Hn}n∈N and a sequence
of differentiable functions {hn}n∈N defined on R such that

1. hn = f over Hn,
2. h′n = I- f ′ over Hn,
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3.
⋃

n∈NHn = R.

By Theorem 13.28 and Theorem 13.7 we have the following

Theorem 13.33. Let f : R→ R. If a function f is an I-approximately differ-
entiable and I- f ′ is bounded above or below then for each x ∈ R, I- f ′(x) =
f ′(x).

We assume that a function f is I-approximately differentiable. Since the
I-approximate derivative of f possesses the Darboux property, the above the-
orem forces I- f ′ to attain every value indeed infinitely often on any interval
where I- f ′ is not f ′. Thus I- f ′ must oscillate between positive and negative
values whose absolute value may be as large as desired.

On the other hand, since I-approximate derivative of f is a function of Baire
class one, we know that there exists an open dense set G on which f ′ = I- f ′.
So the question arises whether the oscillation mentioned in the above occurs
on the component intervals of the set G. In what follows, an affirmative answer
is furnished to this question.

Theorem 13.34 ([6]). Let f : R→ R. Suppose f has a finite I-approximate
derivative I- f ′(x) at each point x ∈ (a,b) and let M ≥ 0. If I- f ′(x) attains
both M and −M on (a,b), then there exists a subinterval (c,d) ⊂ (a,b) on
which I- f ′ = f ′ and f ′ attains both M and −M on (c,d).

Now we give applications of the above theorem.

Theorem 13.35 ([6]). Let f : R→ R. Suppose f has a finite I-approximate
derivative I- f ′(x) at each point x ∈ (a,b) and let α be a real number. If{

x ∈ (a,b) : I- f ′(x) = α
}
6= /0

then there exists x0 ∈ int({x ∈ (a,b) : f is differentiable function at x}) such
that f ′(x0) = α .

Corollary 13.36 ([6]). Let f : R→ R. Suppose f has a finite I-approximate
derivative I- f ′(x) at each point x ∈ (a,b). If a set {x ∈ (a,b) : f (x) = 0} is
dense in (a,b), then f is identically zero on (a,b).

Corollary 13.37 ([6]). Let f : R→ R and g : R→ R. Suppose f and g have a
finite I-approximate derivative I- f ′(x) and I-g′(x) at each point x ∈ (a,b). If
a set {x ∈ (a,b) : f (x) = g(x)} is dense in (a,b), then f = g on (a,b).
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Corollary 13.38 ([6]). Let f :R→R and g :R→R. We assume that a function
f has a finite I-approximate derivative I- f ′(x) and a function g has a finite
derivative g′, at each point x ∈ (a,b). If f ′ = g′ on

int({x ∈ (a,b) : f is differentiable function at x}) ,

then f ′ = g′ on (a,b).

Theorem 13.39 ([6]). LetW be a property of functions saying that any func-
tion which is differentiable and possessesW on an interval (c,d) is monotone
on (c,d).

Let f :R→R. If a function f has a finite I-approximate derivative I- f ′(x)
at each x ∈ (a,b) and if f has the propertyW on (c,d), then the function f is
monotone on (a,b).

Now we shall prove the relationships between I-approximate derivative and
ordinary derivative.

Lemma 13.40 ([3]). Let h : R→ R. If D ⊂ R is a residual set such that the
function h|D is continuous, then, for each open interval J ⊂ [0,+∞), the set

A = {x ∈ D : (x+ J)∩{t > x : h(t)> h(x)} is a set of the second category }

is open relative to D.

Lemma 13.41. Let f : R→ R be a function having the Baire property, (c,d)
be an open interval and b ∈ R. Let

E =
{

x ∈ (c,d) : f is I-approximately differentiable at x and I- f ′(x)< b
}
.

If (c,d)\E is a set of the first category, then there exist an open interval (a,b)⊂
(c,d) and a set D⊂ (a,b) such that (a,b)\D is a set of the first category and
for any x ∈ D and y ∈ D, if x 6= y then

f (x)− f (y)
x− y

< b.

Proof. Put g(x) = f (x)−bx for each x ∈ R. For each x ∈ R, let

P(x) = {t > x : g(t)< g(x)} and L(x) = {t < x : g(t)> g(x)}.

For n ∈N, p ∈N and h > 0 we define a set Anph in the following way: x ∈ Anph

if and only if there exists j ∈ {1, ...,n} such that
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j−1

n
·h+ x,

j
n
·h+ x

)
\P(x)

is a set of the first category and, for each j ∈ {1...,n},(
− j
n
·h+ x,

− j+1
n
·h+ x

)
∩L(x)

is a set of the second category. By Lemma 13.40 we know that for each n ∈N,
p ∈ N and h > 0, a set Anph has the Baire property.

Let x ∈ E. Then x is a right-hand I-density point of the set P(x) and x is a
left-hand I-density point of the set L(x). Therefore by Lemma 13.2, we have
that

E ⊂
⋃

n∈N

⋃
p∈N

⋂
0<h< 1

p

Anph.

Since (c,d) \E is a set of the first category, there exist n ∈ N, p ∈ N and an
open interval (a,b)⊂ (c,d) such that the set

D = (a,b)∩
⋂

0<h< 1
p

Anph

is a residual subset of (a,b) and b− a < 1
p . Let x ∈ D, y ∈ D such that x < y.

Put h = y− x. Then there exists j ∈ {1, ...,n} such that(
j−1

n
·h+ x,

j
n
·h+ x

)
\P(x)

is a set of the first category and(
j−1

n
·h+ x,

j
n
·h+ x

)
∩L(y)

is a set of the second category. Thus P(x)∩L(y)∩ (x,y) 6= /0 and there exists
t ∈ (x,y) such that g(x)> g(t) and g(t)> g(y). Hence, for any x∈D and y∈D,
if x < y then g(x) > g(y). Therefore, for any x ∈ D and y ∈ D, if x 6= y then
f (y)− f (x)

y−x < b. ut

Lemma 13.42. Let f : R→ R be a continuous function. If

R\{x ∈ R : f is I-approximately differentiable at x}

is a set of the first category, then the set of all points of continuity of upper and
lower derivatives of f is everywhere dense on R.
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Proof. Let (a,b) be an arbitrary open interval. Put

E = {x ∈ (a,b) : f is I-approximately differentiable at x}

and for each n ∈ N, En = {x ∈ E : |I- f ′(x)|< n}.
By Theorem 13.9 we know that, for each n ∈ N, the set En has the Baire

property and by our assumption E =
⋃

n∈NEn. Therefore there exist a positive
integer n and an open interval (a1,b1) ⊂ (a,b) such that (a1,b1) \En is a set
of the first category. Thus, by Lemma 13.41 and by continuity of the function
f , there exists a closed interval [c1,d1]⊂ (a1,b1) such that for any x ∈ [c1,d1]

and y ∈ [c1,d1], if x 6= y then | f (x)− f (y)
x−y | ≤ n. Hence

−n≤ inf
{

f ′(x) : x ∈ [c1,d1]
}
≤ sup

{
f ′(x) : x ∈ [c1,d1]

}
≤ n,

where f ′ and f ′ denote the lower and the upper derivative of the function f ,
respectively.

Let

A =

{
x ∈ (c1,d1)∩E :−1

2
n < I- f ′(x)< n

}
and

B =

{
x ∈ (c1,d1)∩E :−n < I- f ′(x)<

1
2

n
}
.

Since for each x ∈ E, I- f ′(x) = I-D+ f (x), then by Theorem 13.9, the sets A
and B have the Baire property and one of these is a set of the second category.

We assume it is the former. Then there exists an open interval (a2,b2)⊂ [c1,d1]

such that

(a2,b2)\
{

x ∈ (c1,d1)∩E :−1
2

n < I- f ′(x)< n
}

is a set of the first category. In the similar way as the above, by Lemma 13.41,
we can show that there exists a closed interval [c2,d2]⊂ (a2,b2) such that

−1
2

n≤ inf
{

f ′(x) : x ∈ [c2,d2]
}
≤ sup

{
f ′(x) : x ∈ [c2,d2]

}
≤ n.

If the second set is a set of the second category, then we have a closed interval
[c2,d2]⊂ (a2,b2) such that

−n≤ inf
{

f ′(x) : x ∈ [c2,d2]
}
≤ sup

{
f ′(x) : x ∈ [c2,d2]

}
≤ 1

2
n.
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Thus

sup
{

f ′(x) : x ∈ [c2,d2]
}
− inf

{
f ′(x) : x ∈ [c2,d2]

}
≤ 3

4
·2n.

By induction, we may define a sequence of closed intervals {[ck,dk]}k∈N such
that for each k ∈ N, [ck+1,dk+1]⊂ [ck,dk]⊂ (a,b) and

sup
{

f ′(x) : x ∈ [c2,d2]
}
− inf

{
f ′(x) : x ∈ [c2,d2]

}
≤ 2n

(
3
4

)k−1

.

Let x ∈
⋂

k∈N[ck,dk]. Then x ∈ (a,b) and functions f ′ and f ′ are continuous
at x. ut

Theorem 13.43. Let f : R→ R be a continuous function. If

R\{x ∈ R : f is I-approximately differentiable at x}

is a set of the first category, then

R\{x ∈ R : f is differentiable at x}

is a set of the first category, too.

Proof. By Lemma 13.42, a set A of points of continuity of the function f
′

is
dense and, of course, a Gδ set. Therefore A is a residual subset of R. We know
that the function f is differentiable at each point of continuity of f

′
. Thus f is

differentiable at each point belonging to A. ut

Theorem 13.44. Let f : R→ R be a function having the Baire property and

E = {x ∈ R : f is I-approximately differentiable at x} .

If R\E is a set of the first category, then there exists a set M such that R\M
is a set of the first category, the function f|M is differentiable and at each point
x ∈M, f ′|M(x) = I- f ′(x).

Proof. We consider a sequence of sequences of open intervals

{{(an
k ,b

n
k}k∈N : n ∈ N}

such that

1. for each n ∈ N, R=
⋃

k∈N(a
n
k ,b

n
k),

2. for any n ∈ N and k ∈ N, bn
k−an

k <
1
n .
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Let n ∈ N. We define Kn to be the family of all open intervals Jn ⊂ R such
that there exist k(Jn) ∈ N and a set E(Jn)⊂ Jn for which

a. Jn \E(Jn) is a set of the first category,
b. for any x ∈ E(Jn) and y ∈ E(Jn), if x 6= y then

an
k(Jn) ≤

f (y)− f (x)
y− x

≤ bn
k(Jn).

By Lemma 13.41, there exists a sequence {Jn
p}p∈N ⊂ Kn such that

R \
⋃

p∈N Jn
p is a set of the first category and for any p ∈ N and p′ ∈ N, if

p 6= p′ then Jn
p∩Jn

p′ = /0. We put Mn = E ∩
⋃

p∈NE(Jn
p). Then R\Mn is a set of

the first category.
Let x ∈ Mn. There exists p ∈ N such that x ∈ E(Jn

p). Therefore for each
y ∈ E(Jn

p), if x 6= y then

an
k(Jn

p)
≤ f (y)− f (x)

y− x
≤ bn

k(Jn
p)
.

We suppose that I- f ′(x)< an
k(Jn

p)
. Then there exists λ > 0 such that (x−λ ,x+

λ )⊂ Jn
p and

(x−λ ,x+λ )∩
{

y ∈ R : x 6= y and
f (y)− f (x)

y− x
< an

k(Jn
p)

}
is a set of the second category. It is impossible since R \Mn is a set of the
first category. Therefore I- f ′(x) ≥ an

k(Jn
p)
. In a similar way we can show that

I- f ′(x)≤ bn
k(Jn

p)
.

Hence for each y ∈ E(Jn
p), if y 6= x then∣∣∣∣ f (y)− f (x)

y− x
−I- f ′(x)

∣∣∣∣< bn
k(Jn

p)
−an

k(Jn
p)
<

1
n
.

Let M =
⋂

n∈NMn. Then R \M is a set of the first category. Let x ∈ M and
n ∈ N. There exists p ∈ N such that x ∈ E(Jn

p). Then for each y ∈ Jn
p ∩M ⊂

Jn
p ∩Mn = E(Jn

p) such that x 6= y, we have∣∣∣∣ f (y)− f (x)
y− x

−I- f ′(x)
∣∣∣∣< bn

k(Jn
p)
−an

k(Jn
p)
<

1
n
.

Therefore f ′|M(x) = I- f ′(x). ut
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Now we shall consider functions I- f ′+ and I- f ′−. By Theorem 13.9 we know
that if a function f : R→ R has the Baire property then I- f ′+ and I- f ′− have
the Baire property, too.

Theorem 13.45. Let f :R→R be a continuous function. If the function f has
a right-hand (left-hand) I-approximate derivative (finite or infinite) at each
x ∈ R, then the function I- f ′+ (I- f ′−) is of the first class of Baire.

Proof. Consider to fix the ideas, the derivative I- f ′+. Now we suppose that f
is not of the first class of Baire. Then there exist a perfect set P and a real
numbers b and d such that d < b and

D =
{

x ∈ P : I- f ′+(x)< d
}

is a set of the second category in P and

B =
{

x ∈ P : I- f ′+(x)> b
}

is dense in P.
We denote, for any x ∈ R, n ∈ N and r ∈ N,

D(x) = {t ∈ [x,+∞) : f (t)− f (x)≤ d(t− x)} ,

B(x) = {t ∈ [x,+∞) : f (t)− f (x)≥ b(t− x)} ,

and

Dnr =
⋂

0<h< 1
r

⋃
i∈{1,...,n}

{
x ∈ P :

(
x+

i−1
n

h,x+
i
n

h
)
⊂ D(x)

}
.

Since D(x) is a closed set, by Lemma 13.40, we have that, for any n ∈ N and
r ∈ N, the set Dnr is closed too.

Let x ∈ D. Then x is a right hand density point of the set D(x). Therefore,
by Lemma 13.2, there exist n ∈ N and r ∈ N such that x ∈ Dnr. Hence D ⊂⋃

n∈N
⋃

r∈NDnr, and there exist n ∈ N and r ∈ N and an open interval (a,b)
such that P∩ (a,b)⊂ Dnr and P∩ (a,b) 6= /0.

Let x ∈ B∩ P∩ (a,b). Then x is a right hand I-density point of the set
B(x). Hence, by lemma 13.2, there exists k ∈ N and p ∈ N such that, for any
0 < h < 1

p and i ∈ {1, ...,n}, there exists j ∈ {1, ...,k} such that(
x+

(i−1)k+ j−1
nk

h,x+
(i−1)k+ j

nk
h
)
⊂ B(x).



212 Ewa Łazarow

Let 0 < h < min
{

1
r ,

1
p

}
. Then, by x ∈ Dnr, there exists i ∈ {1, ...,n} such

that (
x+

i−1
n

h,x+
i
n

h
)
⊂ D(x)

and there exists j ∈ {1, ...,k} such that(
x+

(i−1)k+ j−1
nk

h,x+
(i−1)k+ j

nk
h
)
⊂ B(x)∩

(
x+

i−1
n

h,x+
i
n

h
)
.

Hence D(x)∩B(x) 6= {x}, a contradiction. Therefore I- f ′+ is the first class of
Baire. ut
Corollary 13.46. Let f :R→R be a continuous function. If the function f has
an I-approximate derivative (finite or infinite) at each x ∈ R, then function
I- f ′ is of the first class of Baire.

References

[1] R. J. Jeffery The theory of functions of a real variable, University of Toronto Press,
1968, 198–199
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[4] A. Kubiś-Lipowska, E. Łazarow, Generalization of the Denjoy-Young-Saks Theorem
for I-approximate Dini derivatives, Acta Math. Hungar. 101(1-2) (2003), 33–50.

[5] E. Łazarow, On the Baire’a class of I-approximate derivatives, Proc. Amer. Math.
Soc. 100 (1987-1988), 669–674.

[6] E. Łazarow, The oscillatory behaviour of I-derivatives, Acta Univ. Lodz. Folia Math.
5 (1992), 129–141.

[7] E. Łazarow, A. Maliszewski, Decomposition of I-approximate derivatives, Real Anal.
Exchange 20(2) (1994/95), 651–656.
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