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9.1 Introduction

The points of quasicontinuity were characterized by J. S. Lipiński and T. Šalát
for the first time in 1970. There exist two very good topical surveys on qua-
sicontinuous functions [53], [47]. Unfortunately, the results concerning quasi-
continuity (and similar) points are scattered throughout the literature.

Let P( f ) be the set of all x such that f has the property P in x. To characterize
P( f ), it means:

Let X and Y be topological spaces (satisfying, if it necessary, some condi-
tions), let A be a set in X. Find a family K of sets in X such that A = P( f ) for
some f : X → Y if and only if A belongs to K.

We can also characterize the pairs (P1( f ),P2( f )) in the sense of find-
ing conditions on sets A1 and A2 such that A1 = P1( f ) and A2 = P2( f ) for
some f : X → Y . Of course, it is also possible to characterize an n-tuple
(P1( f ), . . . ,Pn( f )). Clearly, in these cases the necessary conditions are usually
easy, however, the sufficient condition is difficult.

In this paper, we will deal with the property P “near” to quasicontinuity.
For the pair (P1( f ),P2( f )), a very frequent case is P1( f ) = C( f ) (C( f ) is the
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set of all continuity points of f ) and P2( f ) ⊃ C( f ), or P2( f ) = X . A special
case (if P1( f ) = C( f ) and P2( f ) is the whole X) is to characterize points of
discontinuity of functions with the property P2 at each point.

Of course, there are many generalizations of countinuity. E.g., in [45], J.
S. Lipiński characterized the pair (C( f ),Db( f )), where Db( f ) is the set of all
points at which f is Darboux. There exist many papers investigating Darboux-
like points, eg. [14], [38], [39], [40], [57], [59]. However, it is a subject for
another paper.

We use standard topological denotations. If (X ,d) is a metric space, then
S(x,η) is the open ball centered at x with radius η , and diam(A) is the diameter
of A.

9.2 Continuity

It is well-known that the set of points of continuity of a real-valued function on
a topological space X is the countable intersection of open sets. It is obvious
that such a set must contain all isolated points of X . It is natural to ask this
question: does every Gδ set in X (which contains all isolated points of X)
coincide with the set af all continuity points of some real-valued function on
X? An affirmative answer to this question was given in the case of real line by
W. H. Young in 1907, [61]. In 1932, H. Hahn in [34] showed that in fact any
metric space X has this property. Therefore, we have

Theorem 9.1 ([34]). Let (X ,d) be a metric space and let A be a subset of X.
Then A = C( f ) for some real-valued function f : X → R if and only if A is a
Gδ -set containing all isolated points of X.

Of course, a natural question arises for which larger class of spaces this
assertion still holds.

On the one hand, for the sufficient condition, it is sufficient to assume that
X is an almost resolvable space.

Theorem 9.2 ([2]). Let X be an almost resolvable topological space and let A
be a subset of X. Then A =C( f ) for some function f : X → R if and only if A
is a Gδ set in X.

In fact, it is sufficient to assume that the range is a first countable Hausdorff
topological space which contains a non isolated point. A space X is resolv-
able if it is the union of two disjoint dense sets. A family of resolvable spaces
is very large. Every first countable topological space without isolated points,
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every locally compact Hausdorff space without isolated points is resolvable
([36]); every linear topological space is resolvable ([2]). A topological space
is almost resolvable ([2]) if it is the countable union of sets with empty inte-
riors. Every resolvable space is almost resolvable, however, there are almost
resolvable spaces which are not resolvable. Every separable topological space
without isolated points is almost resolvable. There is a space without isolated
points which is not almost resolvable ([2]). For some spaces Y (e.g. if Y is
countable) the condition on X to be almost resolvable is also necessary for the
existence of required function.

On the other hand, the range Y also cannot be arbitrary. If e.g. Y =

{a0,a1, . . .} with the topology generated by the base consisting of the sets
{ai}, i 6= 0, then each subset of R is the set of all continuity points of some
function f : R→ Y . It is well-known that the set C( f ) is a Gδ -set for a metric
space (Y,d). In [27] it is shown that it is sufficient to assume that Y is a devel-
opable space and in [37] that Y can be assumed weakly developable. A space
Y is weakly developable ([15]) if there is a sequence (Gn)n of open covers of
Y such that if y ∈ Gn ∈ Gn for each n and V is an open set containing y then⋂

1≤i≤n Gi ⊂V for some n. So, we have

Theorem 9.3 ([37]). Let X be an almost resovable space and let Y be a non-
discrete weakly developable space. Let A be a set in X. Then A = C( f ) for
some f : X → Y if and only if A is a Gδ -set.

9.3 Semicontinuity

Let S( f ) be the set of all upper semicontinuity points of f , i.e.
S( f ) = {x : f (x)≥ limsup

t→x
f (t)}. Further, let Sl( f ) = {x : f (x)≤ liminf

t→x
f (t)},

T ( f ) = {x : f (x)> limsup
t→x

f (t)} and T l( f ) = {x : f (x)< liminf
t→x

f (t)}.

The quintuplet (S( f ),Sl( f ),C( f ),T ( f ),T l( f )) was characterized by T. Natka-
niec in 1983.

Theorem 9.4 ([49]). Let S,Sl,C,T,T l be subsets of R. Then S = S( f ),
Sl = Sl( f ), C =C( f ), T = T ( f ) and T l = T l( f ) for some function f : R→ R
if and only if S∩ Sl = C, C is dense in the set int(S)∪ int(Sl), C is a Gδ -set,
T ⊂ S\C, T l ⊂ Sl \C and the set T ∪T l is countable.

For a real function f : R→ R let us define the qualitative upper limit at the
point x as
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q-limsup
t→x

f (t) = inf{y ∈ R : {t ∈ R : f (t)< y} is residual at x}.
Similarly let us define the qualitative lower limit of f at x. Denote
Cq( f ) = {x ∈ R : q-limsup

t→x
f (t) = f (x) = q-liminf

t→x
f (t)},

Sq( f ) = {x ∈ R : q-limsup
t→x

f (t)≤ f (x)},

Tq( f ) = {x ∈ R : q-limsup
t→x

f (t)< f (x)},

Sl
q( f ) = {x ∈ R : q-liminf

t→x
f (t)≥ f (x)} and

T l
q ( f ) = {x ∈ R : q-liminf

t→x
f (t)> f (x)}.

The triplet (Cq( f ),Sq( f ),Tq( f )) was characterized by Z. Grande in 1985 in
[32] and the quintuplet (Cq( f ),Sq( f ),Sl

q( f ),Tq( f ),T l
q ( f )) by T. Natkaniec. In

the proof it is assumed that every subset of R of cardinality less than contin-
uum is of first category. So, if we assume Continuum Hypothesis or Martin’s
Axiom, then we have

Theorem 9.5 ([50]). . Assume CH or MA. For every sets S,Sl,C,T,T l in R the
following condintions are equivalent:

(i) S∩Sl =C, T ∪T1 ∈ B, T ⊂ S \C, T l ⊂ Sl \C, the sets S \C and Sl \C do
not contain sets of second category having Baire property and there exists
a Gδ -set D such that C = D\ (T ∩T l),

(ii) there is a function f : R→ R such that S = Sq( f ), Sl = Sl
q( f ), C =Cq( f ),

T = Tq( f ) and T l = T l
q ( f ).

9.4 Quasicontinuity and cliquishness

Recall that a function f : X → Y (X and Y are topological spaces) is said to be
quasicontinuous at a point x if for each neighbourhood U of x and each neigh-
bourhood V of f (x) there is an open nonempty set G⊂U such that f (G)⊂V
([41]).

A function f : X → Y (X is a topological space and (Y,d) is a metric space)
is said to be cliquish at a point x ∈ X if for each neighbourhood U of x and
each ε > 0 there is an open nonempty set G ⊂U such that d( f (y), f (z)) < ε

for each y,z ∈ G ([53]).
Denote by Q( f ) the set of all quasicontinuity points of f and by A( f ) the

set of all cliquishness points of f .
The sets Q( f ) and A( f ) were characterized for the first time by J. S. Lipiński

and T. Šalát in 1970. They showed that A( f ) is always closed and gave the
following characterizations:
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Theorem 9.6 ([46]). Let (X ,d) be a metric space without isolated points and
let (Y, p) be a metric space containing some one-to-one Cauchy sequence. Let
A be a subset of X. Then A= A( f ) for some f : X→Y if and only if A is closed.

Theorem 9.7 ([46]). Let (X ,d) be a complete metric space dense in itself and
let (Y, p) be a metric space possesing at least one accumulation point. Let A
be a subset of X. Then A = Q( f ) for some f : X → Y if and only if the set
int(cl(A))\A is of first category (in the sense of Baire).

If Y is a metric space, then evidently C( f )⊂Q( f )⊂ A( f ). A. Neubrunnová
in 1974 showed (see [54]) that the set A( f )\C( f ) is of first category. J. Ewert
and J. S. Lipiński investigated the triplet (C( f ), Q( f ), A( f )). For the sets C,
Q and A denote

(*) C ⊂ Q⊂ A, C is a Gδ -set, A is closed and A\C is of first category.

Therefore (*) is a necessary condition for the triplet (C( f ),Q( f ),A( f )). In
[23] they showed that if X is a Baire real normed space and Y is a normed
space then (C,Q,A) = (C( f ), Q( f ), A( f )) for some function f : X → Y if
and only if we have (*). In [22] they showed that if (*) implies the equality
(C,Q,A) = (C( f ), Q( f ), A( f )) for some function f : X → Y then for each
closed set A in X there is a decreasing sequence (Un)n of open sets such that
A =

⋂
n cl(Un) and for each closed nowhere dense subset F ⊂ X there is a

continuous function g : X \F→R such that the oscillation ωg(x)> 0 for each
point x ∈ F . Further, in [24], they showed that the necessary condition on X is
not only A =

⋂
n cl(Un) but even the sets Un are the same as for C( f ), therefore

(**) there is a decreasing sequence (Wn)n of open subsets of X such that⋂
nWn =C ⊂ Q⊂ A =

⋂
n cl(Wn).

By [24], (**) implies (*). By [9], (*) does not imply (**), however, if X is
perfectly normal, then (*) and (**) are equivalent.

Further generalizations of conditions on a space X are investigated in [9].

Theorem 9.8 ([9]). Let X be a Baire resolvable perfectly normal locally con-
nected space (or let X be a Baire pseudometrizable space without isolated
points). Let (Y, p) be a metric space containing a subspace isometric with R.
Let C, Q and A be subsets of X. Then the following conditions are equivalent:

(i) there is a function f : X→Y such that C =C( f ), Q = Q( f ) and A = A( f ),
(ii) C ⊂ Q⊂ A, C is a Gδ -set, A is closed and A\C is of first category,

(iii) there is a decreasing sequence (Wn)n of open subsets of X such that⋂
nWn =C ⊂ Q⊂ A =

⋂
n cl(Wn).
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If Q = X then the assumption “X is resolvable” can be omitted. So, we have

Theorem 9.9 ([9]). Let X be a Baire perfectly normal locally connected space
or X be a Baire pseudometrizable space. Then the set M is the set of all dis-
continuity points of some quasicontinuous function f : X → R if and only if M
is an Fσ -set of first category.

In [58], the question to characterize the sets of discontinuity points of qua-
sicontinuous functions f : X → R (X is a topological space) is posed. It was
solved in [28] for X = R2. Theorem 9.9 is not true if X is normal is replaced
with X is T1 completely regular, as the Niemytzki plane shows ([9]). Other
characterization (for spaces not Baire only) we can find in [48].

Theorem 9.10 ([48]). Let for a Fréchet-Urysohn space X at least one of the
following conditions holds:

(i) X is a hereditarily separable perfectly normal;
(ii) X is hereditarily quasi-separable perfectly normal;

(iii) X is a regular space with a countable net;
(iv) X is a paracompact with a σ -locally finite net;
(v) X is metrizable.

Then a set M is the set of all discontinuity points of some quasicontinuous
function f : X → R if and only if M is an Fσ -set of first category.

It is interesting that the pairs (C( f ),A( f )) and (Q( f ),A( f )) can be charac-
terized under very general conditions, while for the pair (C( f ),Q( f )) I known
the same conditions on X and Y as for the triplet (C( f ),Q( f ),A( f )) only.

Theorem 9.11 ([9]). Let X be a resolvable topological space and let (Y, p) be
a metric space with at least one accumulation point. Let Q and A be subsets of
X. Then there is a function f : X →Y such that Q = Q( f ) and A = A( f ) if and
only if there is a decreasing sequence (Wn)n of open sets such that

⋂
nWn ⊂

Q⊂
⋂

n cl(Wn) = A.

Theorem 9.12 ([9]). Let X be a resolvable topological space and let (Y, p) be
a metric space with at least one accumulation point. Let C and A be subsets of
X. Then there is a function f : X →Y such that C =C( f ) and A = A( f ) if and
only if there is a decreasing sequence (Wn)n of open sets such that C =

⋂
nWn

and A =
⋂

n cl(Wn).

If A = X then the assumption of resolvability of X can be omitted and we
obtain a characterization of the set of discontinuity points of cliquish functions.
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Theorem 9.13 ([9]). Let X be a topological space and let Y be a metric space
with at least one accumulation point. Then a set M is the set of all discontinuity
points of some cliquish function f : X → Y if and only if M is an Fσ set of first
category.

9.5 Bilateral quasicontinuity and cliquishness

A function f : R→ R is said to be left (right) hand sided quasicontinuous at a
point x ∈R if for every δ > 0 and for every open neighbourhood of f (x) there
exists an open nonempty set G⊂ (x−δ ,x) (G⊂ (x,x+δ )) such that f (G)⊂V
[33]. A function f is bilaterally quasicontinuous at x if it is simultaneously left
and right hand quasicontinuous at x. Denote by Q−( f ), Q+( f ) and BQ( f ) the
set of all left hand side quasicontinuity points, right hand side quasicontinuity
points and bilateral quasicontinuity points of f . In this case we can find a
characterization of the sixtuple (C( f ),BQ( f ),Q−( f ),Q+( f ),Q( f ),A( f )).

Theorem 9.14 ([6]). Let C, D, D1, D2, Q and A be subsets of R. Then C =

C( f ), D = BQ( f ), D1 = Q−( f ), D2 = Q+( f ), Q = Q( f ) and A = A( f ) for
some f : R→ R if and only if C ⊂ D = D1 ∩D2 ⊂ D1 ∪D2 = Q ⊂ A, C is a
Gδ -set, A is closed, A\C is of first category and Q\D is countable.

Let Y be a topological space. If (X ,d) is a metric space, we can gen-
eralize the bilateral quasicontinuity as follows: a function f : X → Y is S-
quasicontinuous at x if for every neighbourhood V of f (x) and every y ∈ X ,
y 6= x, there exists an open nonempty set G⊂ S(y,d(x,y)) such that f (G)⊂V .
Denote the set of all S-quasicontinuity points of f by QS( f ).

If X is a topological space, another definition of bilateral quasicontinuity
is possible, too. We will say that a function f : X → Y is B-quasicontinuous
at x if for every neighbourhood V of f (x) and for every open connected set
A such that x ∈ cl(A) there exists an open nonempty set G ⊂ A such that
f (G) ⊂ V . Denote the set of all B-quasicontinuity points of f by QB( f ). Ev-
idently, if X = R, the notions of bilateral quasicontinuity, B-quasicontinuity
and S-quasicontinuity coincide. The characterizations of QB( f ) and QS( f )
are similar.

Theorem 9.15 ([3]). Let X be a locally connected perfectly normal almost re-
solvable topological space. Let B be a set in X. Then B = QB( f ) for some
function f : X → R if and only if the set cl(B)\B is of first category.
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Theorem 9.16 ([3]). Let (X ,d) be a metric space without isolated points such
that cl(S(x,δ )) = {y ∈ X : d(x,y) ≤ δ} for each x ∈ X and each δ > 0. Let
S be a subset of X. Then S = QS( f ) for some f : X → R if and only if the set
cl(S)\S is of first category.

Similarly, we can define an one sided and bilateral cliquishness. A function
f : R→ Y ((Y,d) is a metric space) is said to be left-side (right-side) cliquish
at x ∈ R if for each δ > 0 and ε > 0 there is nonempty open set G⊂ (x−δ ,x)
(G ⊂ (x,x+ δ )) such that d( f (y), f (z)) < ε for each y,z ∈ G. A function f is
bilaterally cliquish at x if it is both right-side and left-side cliquish at x [26].
Denote by A+( f ), A−( f ) and BA( f ) the sets of all points at which f is right-
side cliquish, left-side cliquish and bilaterally cliquish, respectively. For a set
M ⊂ R denote by L+(M) (L−(M)) the set of all right-sided (left-sided) cluster
points of M.

Theorem 9.17 ([7]). Let A,B,C,D be subsets ofR. Then A=A( f ), B=A+( f ),
C = A−( f ) and D = BA( f ) for some function f :R→R if and only if L+(A)⊂
B, L−(A)⊂C, A = B∪C, D = B∩C and the set A\D is countable.

If X is a topological space (and (Y,d) a metric one) we say that a function
f : X → Y is B-cliquish at x if for each ε > 0 and for each open set V with
x∈ cl(V ) there is a nonempty open set G⊂V such that diam f (G)< ε . Denote
by AB( f ) the set of all B-cliquishness points of f . We have AB( f )⊂ A( f ) and
the set A( f )\AB( f ) is nowhere dense.

Theorem 9.18 ([7]). Let X be a resolvable space and let M be a subset of X.
Then M = AB( f ) for some f : X → Y if and only if M =

⋂
n Mn where Mn are

open and such that int(cl(Mn+1))⊂Mn.

9.6 Upper and lower quasicontinuity

A function f : X→R is said to be upper (lower) quasicontinuous at x if for each
ε > 0 and for each neighbourhood U of x there is a nonempty open set G⊂U
such that f (y) < f (x)+ ε ( f (y) > f (x)− ε) for each y ∈ G ([25]). Denote by
E( f ) the set of all points of both upper and lower quasicontinuity of f . In [31]
it is shown that if a function f : X → R is upper and lower quasicontinuous
at each point then it is cliquish. However, the inclusion E( f )⊂ A( f ) does not
hold. Nevertheless, the set E( f )\A( f ) is nowhere dense ([10]). According to
[21], the set E( f ) is the countable intersection of semi-open sets. A set M is
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semi-open ([44]) (or quasi-open, see [53]) if M ⊂ cl(int(M)). For X = R we
have a characterization of the quadruplet (C( f ),Q( f ),E( f ),A( f )).

Theorem 9.19 ([10]). Let C,Q,E and A be subsets of R. Then C =C( f ), Q =

Q( f ), E =E( f ) and A=A( f ) for some f :R→R if and only if C⊂Q⊂A∩E,
C is a Gδ -set, A is closed, A\C is of first category and E \A is nowhere dense.

This characterization is not true for functions f :R2→R. In fact, for X =R2

this characterization is not true for the triplet (C( f ),Q( f ),E( f )). The remain-
ing triplets can be characterized for Baire metric spaces without isolated points.
The triplet (C( f ),Q( f ),A( f )) is characterized in Theorem 9.8. Remaining two
cases:

Theorem 9.20 ([8]). Let X be a Baire metric space without isolated points. Let
C, E and A be subsets of X. Then C =C( f ), E = E( f ) and A = A( f ) for some
function f : X →R if and only if C ⊂ A∩E, C is a Gδ -set, A is closed, A\C is
of first category and E \A is nowhere dense.

Theorem 9.21 ([8]). Let X be a Baire metric space without isolated points.
Let Q, E and A be subsets of X. Then Q = Q( f ), E = E( f ) and A = A( f ) for
some function f : X → R if and only if Q⊂ A∩E, A is closed, A\Q is of first
category and E \A is nowhere dense.

9.7 Strong quasicontinuity

The set Q( f ) of points of quasicontinuity of a real function f : R→ R, in
general, need not be Lebesque measurable. If a function f :R→R is Lebesgue
measurable then the set Q( f ) is measurable [42]. Similarly, although the set
Q( f ) \C( f ) is of first category, it need not be measurable or of measure zero
[12]. Even, there is a Darboux function such that the measure of Q( f ) \C( f )
is positive [43].

Remind that λ (λ ∗) denote the Lebesgue measure (outer Lebesgue measure)
in R. Denote by du(A,x) = limsupr→0+

λ ∗(A∩(x−r,x+r))
2r the upper outer density

of A⊂R at a point x ∈R; similarly dl(A,x) = liminfr→0+
λ ∗(A∩(x−r,x+r))

2r is the
lower outer density at x. Denote Td = {A ⊂ R : A is measurable and for every
x ∈ A we have dl(A,x) = 1}. Td is a topology called the density topology.

Z. Grande in [29] has defined some ”stronger“ quasicontinuities.
A function f : R→ R has the property A(x) at a point x if there is an open
set U such that du(U,x) > 0 and the restriction f � (U ∪{x}) is continuous at
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x. A function f has property B(x) at x if for every η > 0 we have du(int({t :
| f (t)− f (x)|< η}),x)> 0. A function f is strongly quasicontinuous at x if for
every η > 0 and every U ∈Td containing x there is a nonempty open set G such
that U ∩G 6= /0 and | f (t)− f (x)|< η for all t ∈U ∩G. Denote by QA( f ) the set
of all points with property A(x), by QB( f ) the set of all points with property
B(x) and by Qs( f ) the set of all strong quasicontinuity points of f . Obviously
C( f )⊂ QA( f )⊂ QB( f )⊂ Qs( f )⊂ Q( f ). The set Qs( f )\C( f ) need not be of
measure zero ([29]), however, the set QB( f ) \C( f ) is of measure zero ([30]).
Moreover, the sets QA( f ) and QB( f ) have Baire propery, however, they need
not be borelian. Futher, he gave a characterization of the set QA( f ).

Theorem 9.22 ([30]). Let A⊂ R. Then A = QA( f ) for some f : R→ R if and
only if A =

⋃
m
⋂

n Am,n, where Am,n be such that there are open sets Gn such
that for each m,n∈N we have du (int(Am,n),x)≥ 1/m for each x∈ A, Am,n+1⊂
Am,n, Am,n ⊂ Am+1,n, Gn+1 ⊂ Gn, Gn ⊂ Am,n and du(Gn,x) ≥ 1/m for all x ∈
Am,n.

Also, there exist characterizations of the pairs (C( f ),QA( f )) and
(C( f ),QB( f )).

Theorem 9.23 ([5]). Let A and C be subsets of R. Then C = C( f ) and A =

QA( f ) for some function f :R→R if and only if there exist open sets Gn such
that C =

⋂
n Gn ⊂ A, Gn+1 ⊂Gn and inf{du(Gn,x) : n ∈N}> 0 for each x ∈ A.

Theorem 9.24 ([5]). Let B and C be subsets of R. Then C = C( f ) and B =

QB( f ) for some function f :R→R if and only if there exist open sets Gn such
that C =

⋂
n Gn ⊂ B, Gn+1 ⊂ Gn and du(Gn,x)> 0 for each x ∈ B.

9.8 Simple continuity

Let X and Y be topological spaces. A set A is simply open if it is the union of
open set and a nowhere dense set. A function f : X → Y is said to be sim-
ply continuous if the inverse image f−1(V ) is a simply open set in X for
each open set V in Y ([1]). Evidently, each quasicontinuous function is sim-
ply continuous. A suitable pointwise definition of simple continuity is given in
[13]. We say that f : X → Y is simply continuous at a point x ∈ X if for each
open neighbourhood V of f (x) and for each neighbourhood U of x, the set
f−1(V )\ int

(
f−1(V )

)
is not dense in U . Denote by N( f ) the set of all simple

continuity points of f . Then f if simply continuous if and only if N( f ) = X
and moreover Q( f )⊂ N( f ) ([13]).
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Theorem 9.25 ([13]). Let X be a perfectly normal resolvable space. Let Y be
a metric space with at least one accumulation point. Further, let moreover, X
be a Baire space and Y be separable (or let Y be totally bounded). Let N ⊂ X.
Then N = N( f ) for some function f : X →Y if and only if cl(int(N))⊂ N and
the set cl(N)\N is of first category.

9.9 Closed graph

A function f : X → Y has a closed graph if the set Gr( f ) = {(x, f (x)) : x ∈ X}
is a closed subset of X×Y . For a function f denote C( f ,x) =

⋂
{cl( f (U)) : U

is a neighbourhood of x}. We say that a function f : X →Y has a closed graph
at x if C( f ,x) = { f (x)}. Denote by H( f ) the set of all closedness graph points
of f . Then f has closed graph if and only if H( f ) = X ([35], [55]).

Then characterizations of the set H( f ) and the pair (C( f ),H( f )) are fol-
lowing.

Theorem 9.26 ([4]). Let X be an almost resolvable topological space. Let H
be a subset of X. Then H = H( f ) for some function f : X →R if and only if H
is a Gδ -set.

Theorem 9.27 ([4]). Let X be a Baire almost resolvable perfectly normal topo-
logical space. Let C and H be subsets of X. Then C =C( f ) and H = H( f ) for
some function f : X → R if and only if C ⊂ H, C and H are Gδ -sets, C is open
in H and int(H \C) = /0.

There are examples that any condition on X cannot be omitted. By [19],
the set of discontinuity points of a function with the closed graph is of first
category and closed: and if moreover X is a Baire space, then it is even nowhere
dense. Nevertheless, the set H( f )\C( f ) can be residual and not closed (even
for a function f : R→ R).

9.10 Generalized topology

Generalized continuities in the above section usually are not continuous (in a
some suitable topology). Nevertheless, many of them are “continuous” in some
weaker “topology”. Let us recall some notions. Let X be a nonempty set and
P(X) the power set of X . We call a class g ⊂ P(X) a generalized topology
(briefly GT, see [16]), if /0 ∈ g and the arbitrary union of elements of g belongs
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to g. A GT g is strong if X ∈ g. A set X with a GT g is called a generalized
topological space (briefly, GTS) and is denoted by (X ,g). For x ∈ X we denote
g(x) = {A ∈ g : x ∈ A}.

By [17], if (X ,g) and (Y,h) are GTS’s, then a mapping f : X → Y is called
(g,h)-continuous, if f−1(V )∈ g for each V ∈ h. A function f : X→Y is (g,h)-
continuous at x ∈ X if for each V ∈ h( f (x)) there is U ∈ g(x) such that f (U)⊂
V . By [17], a function f is (g,h)-continuous if it is such at each point. Denote
by C(g,h)( f ) the family of all (g,h)-continuity points of f .

In generally, the set C(g,h)( f ) can be arbitrary. However, if (Y,d) is a metric
space then this set is the countable intersection of sets from g. From now, we
will assume that (Y,d) is a metric space. We will use the notion g-continuity for
(g,d)-continuity and Cg( f ) for continuity points C(g,d)( f ). By [18],H⊂P(X)

is a hereditary class, if B⊂ A ∈H implies B ∈H.

Theorem 9.28 ([11]). Let g be a GT on X and let Y be a metric space. If there
is a function f : X →Y such that Cg( f ) = /0 and the set f (X) is countable then
there is a hereditary classA⊂P(X) such thatA∩g= { /0} and X =

⋃
n∈NXn,

where Xn ∈ A for n ∈ N.

Theorem 9.29 ([11]). Let g be a GT on X and let (Y,d) be a metric space with
at least one accumulation point. LetA⊂P(X) be a hereditary class such that
A∩g= { /0} and X =

⋃
i∈NXi, where Xi ∈ A. Let M ⊂ X. Then M =Cg( f ) for

some f : X→Y if and only if M =
⋂

n∈NMn, where Mn ∈ g and Mn+1 ⊂Mn for
n ∈ N.

If A is the family of sets with empty interiors, we obtain

Theorem 9.30 ([11]). Let X be an almost resolvable topological space and let
(Y,d) be a metric space with at least one accumulation point. Let g be a GT on
X such that the interior of A is nonempty for each nonempty A ∈ g. Let M ⊂ X.
Then M =Cg( f ) for some f : X→Y if and only if M =

⋂
n∈NMn, where Mn ∈ g

and Mn+1 ⊂Mn.

Let (X ,T ) be a topological space. A set A is said to be semi-open if A ⊂
cl(int(A)), pre-open if A ⊂ int(cl(A)), β -open if A ⊂ cl(int(cl(A))) and α-
open if A⊂ int(cl(int(A))). Denote the family of semi-open sets by SO(X), the
family of pre-open sets by PO(X), the family of β -open sets by β (X) and the
family of α-open sets by α(X). All SO(X), PO(X), β (X) and α(X) are GT’s
(in fact, α(X) is a topology). A function f : X → Y (X and Y are topological
spaces) is semi-continuous (pre-continuous, β -continuous, α-continuous) at x
if for every open neighbourhood V of f (x) there is a set A from SO(X) (PO(X),
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β (X), α(X)) containing x such that f (A)⊂V , respectively. Denote by SO( f ),
PO( f ), β ( f ), α( f ) the set of all semi-continuity, pre-continuity, β -continuity
and α-continuity points of f , respectively. In fact SO( f ) = Q( f ) ([54]).

Now, in Thereom 9.30, if g is the family of all open sets in X , we obtain the
characterization of continuity points, if g is the family of all semi-open sets,
we obtain the characterization of quasicontinuity points, if g is the family of
all α-sets, we obtain the characterization of α-continuity points.

IfM is the family of nowhere dense sets, we obtain the characterization of
pre-continuity and β -continuity points on spaces of first category ([11]).

A function f : X ×Y → Z (X ,Y and Z are topological spaces) is said to
be quasicontinuous at (x,y) with respect to first (second) coordinate if for
all neighbourhoods U , V and W of x, y and f (x,y), respectively, there are
nonempty open sets G and H such that x ∈G⊂U , H ⊂V (G⊂U , y ∈H ⊂V )
and f (G× H) ⊂ W . A function f is symmetrically quasicontinuous if it
is quasicontinuous both with respect to the first and the second coordinate
([56]). Denote by Qsx( f ), Qsy( f ) and Qss( f ) the set of all points at which
f is quasicontinuous with respect to first coordinate, quasicontinuous with re-
spect to second coordinate, symmetrically quasicontinuous, respectively. Then
C( f )⊂ Qss( f ) = Qsx( f )∩Qsy( f )⊂ Qsx( f )∪Qsy( f )⊂ Q( f ) ([20]).

For A⊂ X×Y and x ∈ X (y ∈ Y ) let

Ax = {v ∈ Y : (x,v) ∈ A}, Ay = {u ∈ X : (u,y) ∈ A}.

Denote

SO1(X ,Y ) = {A⊂ X×Y : if (x,y) ∈ A then y ∈ cl((int(A))x)}

and

SO2(X ,Y ) = {A⊂ X×Y : if (x,y) ∈ A then x ∈ cl
(
(int(A))y

)
}}.

Then (x,y) ∈ Qsx( f ) ((x,y) ∈ Qsy( f ), (x,y) ∈ Qss( f )) if and only if for each
neighbourhood W of f (x,y) there is a set A ∈ SO1(X ,Y ) (A ∈ SO2(X ,Y ), A ∈
SO1(X ,Y )∩SO2(X ,Y )) containing (x,y) such that f (A)⊂W ([60]). It is easy
to see that SO1(X ,Y ), SO2(X ,Y ) and SO1(X ,Y )∩ SO2(X ,Y ) are GT’s. So,
according to Theorem 9.30 we obtain this characterization.

Theorem 9.31. Let X and Y be topological spaces such that X×Y is an almost
resolvable topological space. Let (Z,d) be a metric space with at least one ac-
cumulation point. Let M⊂X×Y . Then M =Qsx( f ) (M =Qsy( f ), M =Qss( f ))
for some f : X ×Y → Z if and only if M is the countable intersection of a de-
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creasing sequence of sets from SO1(X ,Y ) (SO2(X ,Y ), SO1(X ,Y )∩SO2(X ,Y )),
respectively.
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[46] J. S. Lipiński, T. Šalát, On the points of quasi-continuity and cliquishness of func-
tions, Czechoslovak Math. J. 21 (1971), 484–489.

[47] A. Maliszewski, Darboux property and quasi-continuity. A uniform approach, WSP,
Słupsk, 1996.

[48] O. V. Maslyuchenko, The discontinuity points sets of quasi-continuous functions,
Bull. Austral. Math. Soc. 75 (2005), 373–379.

[49] T. Natkaniec, On semicontinuity points, Real Anal. Exchange 9 (1983/84), 215–232.
[50] T. Natkaniec, On points of qualitative semicontinuity, Časopis Pěst. Mat. 110 (1985),
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(1974), 109–114.
[55] R. J. Pawlak, On local characterization of closed functions and functions with closed

graphs, Demonstratio Math. 19 (1986), 181–188.
[56] Z. Piotrowski, R. W. Vallin, Conditions which imply continuity, Real Anal. Exchange

29 (2003/04), 211–217.
[57] H. Rosen, Connectivity points and Darboux points of real functions, Fund. Math. 89

(1975), 265–269.
[58] T. Šalát, On discontinuity points of functions of some classes, Acta Math. Univ.

Comenian. 42–43 (1983), 121–124.
[59] L’. Snoha, On connectivity points, Math. Slovaca 33 (1983), 59–67.
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