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Abstract

This work adapts techniques and results first developed by Malinowski and by

Marek in the context of referential semantics of sentential logics to the context

of logics formalized as π-institutions. More precisely, the notion of a pseudo-

referential matrix system is introduced and it is shown how this construct gener-

alizes that of a referential matrix system. It is then shown that every π-institution

has a pseudo-referential matrix system semantics. This contrasts with referential

matrix system semantics which is only available for self-extensional π-institutions

by a previous result of the author obtained as an extension of a classical result of

Wójcicki. Finally, it is shown that it is possible to replace an arbitrary pseudo-

referential matrix system semantics by a discrete pseudo-referential matrix sys-

tem semantics.
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1. Introduction

Let L = ⟨Λ, ρ⟩ be a logical signature/algebraic type, i.e., a set of logical
connectives/operation symbols Λ with attached finite arities given by the
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function ρ ∶ Λ → ω. Let also V be a countably infinite set of propositional
variables and T a set of reference/base points. Wójcicki [10] defines a
referential algebra A over T (or based on T ) to be an L-algebra with
universe A ⊆ {0,1}T , or, equivalently, A ⊆ P(T ).

Let FmL(V ) = ⟨FmL(V ),L⟩ be the free L-algebra generated by the set
V of variables. A homomorphism from FmL(V ) into a referential algebra
A over T may be viewed as an interpretation of the formulas of FmL(V )
in A. We conceive of a formula α ∈ FmL(V ) as being true at point

t ∈ T under h if and only if t ∈ h(α). This notion of truth gives rise
to a consequence operation on FmL(V ). Namely, a referential algebra A

determines the consequence operator CA on FmL(V ) by setting, for all
X ∪ {α} ⊆ FmL(V ), α ∈ CA(X) iff, for all h ∶ FmL(V )→A and all t ∈ T ,

h(β)(t) = 1, for all β ∈X, implies h(α)(t) = 1,
or equivalently, iff, for all h ∶ FmL(V )→A,

⋂
β∈X

h(β) ⊆ h(α).
Wójcicki calls a propositional logic S = ⟨L, C⟩, where C = CA, for a ref-
erential algebra A, a referential (or referentially truth-functional)
propositional logic.

Wójcicki shows in [10] that, given a class K of referential algebras,
there exists a single referential algebra A, such that CK

∶= ⋂K∈KC
K = CA.

Thence follows that a propositional logic is referential if and only if it is
defined by a class of referential algebras.

Given a propositional logic S = ⟨L, C⟩, the Frege or interderivabil-

ity relation of S, denoted Λ(S), is the equivalence relation on FmL(V ),
defined, for all α,β ∈ FmL(V ), by

⟨α,β⟩ ∈ Λ(S) iff C(α) = C(β).
The Tarski congruence Ω̃(S) of S (see [5]) is the largest congruence
relation on FmL(V ) that is compatible with all theories of S. The Tarski
congruence is a special case of the Suszko congruence Ω̃S(T ) associated
with a given theory T of S, which is defined as the largest congruence
on FmL(V ) that is compatible with all theories of S that contain the
given theory T (see [3]). In fact, by definition, Ω̃(S) = Ω̃S(C(∅)), i.e., the
Tarski congruence of S is the Suszko congruence associated with the set of
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theorems of the logic S. Font and Jansana [5], extending Czelakowski’s [2]
(see also [1]) well-known characterization of the Leibniz congruence Ω(T )
associated with a theory T of a sentential logic, have shown that, for all
α,β ∈ FmL(V ),

⟨α,β⟩ ∈ Ω̃(S) iff for all ϕ(p, q⃗) ∈ FmL(V ),
C(ϕ(α, q⃗)) = C(ϕ(β, q⃗)).

Whereas Ω̃(S) ⊆ Λ(S), for every propositional logic S, the reverse inclusion
does not hold in general. A propositional logic is called selfextensional

in [10] if Λ(S) ⊆ Ω̃(S). In fact, Wójcicki shows in what has become a
fundamental theorem in the theory of referential semantics, Theorem 2
of [10], that a propositional logic is referential if and only if it is self-
extensional. This result shows that, unless a propositional logic S is self-
extensional, S cannot possess a referential algebraic semantics.

Let L be a logical signature. An L-g-matrix A = ⟨A,C⟩ consists of an
L-algebra A together with a collection C ⊆ P(A). A g-matrix A generates a
consequence operator CA on FmL(V ) as follows: For allX∪{α} ⊆ FmL(V ),

α ∈ CA(X) iff for all h ∶ FmL(V )→A and all F ∈ C,
h(X) ⊆ F implies h(α) ∈ F.

A g-matrix A is said to constitute a g-matrix semantics for a proposi-
tional logic S = ⟨L, C⟩ in case CA = C.

Consider now a referential algebra A over a set T of reference points.
Let, for all t ∈ T ,

Dt = {a ∈ A ∶ t ∈ a}.
Define the collection D = {Dt ∶ t ∈ T}. We call ⟨A,D⟩ the referential

g-matrix associated with the referential algebra A.
It can be shown that the consequence operator C⟨A,D⟩ generated by

the g-matrix system ⟨A,D⟩ is identical to CA. Thus, it follows that, unless
S is self-extensional it does not possess a referential g-matrix semantics.

To address this shortcoming of referential g-matrices in providing a
semantics for arbitrary propositional logics, Malinowski introduced in [8]
pseudo-referential g-matrices, as a generalization of referential g-matrices,
and showed that every propositional logic possesses a pseudo-referential
g-matrix semantics.

Let, once more, T be a set of reference points and consider, also, a col-
lection T ∗ ⊆ P(T ) of subsets of T . According to [8] a pseudo-referential
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g-matrix A = ⟨A,D⟩ relative to (T,T ∗) is a g-matrix, such that A is a
referential algebra based on T and

D = {{a ∈ A ∶ (∃t ∈ t∗)(t ∈ a)} ∶ t∗ ∈ T ∗}
= {{a ∈ A ∶ a ∩ t∗ ≠ ∅} ∶ t∗ ∈ T ∗}.

Note that this concept generalizes referentiality, since a referential g-matrix
associated with a referential algebra A based on T is obtained as a special
case of a pseudo-referential g-matrix relative to (T,T ∗), with T ∗ = {{t} ∶
t ∈ T}.

In the Theorem of [8] it is shown that every propositional logic S has
a strongly adequate pseudo-referential g-matrix A, which may be termed
the canonical pseudo-referential g-matrix associated with S.

Malinowski’s work was followed by Marek [9]. Marek defines a discrete
pseudo-referential g-matrix as a pseudo-referential g-matrix relative to
a pair (T,T ∗), such that T ∗ ⊆ {{t} ∶ t ∈ T}. She then shows that every
g-matrix is isomorphic to, and, hence, generates the same sentential logic
as, a discrete pseudo-referential g-matrix. Thus, since, as is well-known,
every propositional logic has a strongly adequate g-matrix semantics, it
follows that it also has a strongly adequate discrete pseudo-referential
g-matrix semantics (see Corollary of [9]).

The author, taking after the work of Wójcicki, showed in previous work
[11, 12] that a logic formalized as a π-institution (see Section 2) is referen-
tial, i.e., has a referential g-matrix system semantics, if and only if it is self-
extensional. Thus, it turns out that, similarly to the case of propositional
logics, for these logics, unless the condition of self-extensionality is fulfilled,
no referential g-matrix system semantics is available. The present work,
inspired by the previously mentioned work of Malinowski [8] and Marek
[9], addresses this constraint on the availability of a referential g-matrix
system semantics by introducing a pseudo-referential g-matrix system se-
mantics (see Section 4). It is shown in Theorem 5 that every π-institution
possesses a pseudo-referential g-matrix system semantics. Finally, improv-
ing on this result, we show in Section 7, in a parallel to the Theorem of
Marek [9], that, for every g-matrix system, there exists a discrete pseudo-
referential g-matrix system that generates the same closure system (see
Theorem 6). It then follows that every logic formalized as a π-institution
has a discrete pseudo-referential g-matrix semantics.
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2. π-Institutions and Closure Systems

We describe π-institutions [4] (see, also [6] for the closely related notion of
an institution) on which our logical systems will be based.

Let Sign
♭ be a category, called the category of signatures. Let

SEN♭ ∶ Sign♭ → Set be a set-valued functor, called the sentence functor.
Let N ♭ be a category of natural transformations on SEN♭ (see Section 2
of [12]). We call the triple A

♭
= ⟨Sign♭,SEN♭,N ♭⟩ the base algebraic

system.
A collection T ♭ = {T ♭Σ}Σ∈∣Sign♭∣, such that T ♭Σ ⊆ SEN♭(Σ), for all Σ ∈

∣Sign♭∣, is called a sentence family of A♭.
A π-institution based on A

♭ is a pair I = ⟨A♭, C⟩, where
C = {CΣ}Σ∈∣Sign♭∣

is a closure (operator) system, i.e., a ∣Sign♭∣-indexed collection of clo-
sure operators CΣ ∶ P(SEN♭(Σ)) → P(SEN♭(Σ)) that satisfy the struc-

turality condition:
For all Σ1,Σ2 ∈ ∣Sign♭∣, f ∈ Sign♭(Σ1,Σ2) and Φ ⊆ SEN♭(Σ1),

SEN♭(f)(CΣ1
(Φ)) ⊆ CΣ2

(SEN♭(f)(Φ)).
For Σ ∈ ∣Sign♭∣, a set T ♭Σ ⊆ SEN♭(Σ) is called a Σ-theory of I if it

is closed under consequence, i.e., if CΣ(T ♭Σ) = T ♭Σ. The collection of all
Σ-theories of I is denoted by ThΣ(I). A collection T ♭ = {T ♭Σ}Σ∈∣Sign♭∣, such
that T ♭Σ ∈ ThΣ(I), for all Σ ∈ ∣Sign♭∣, is called a theory family of I. The
collection of all theory families of I is denoted by ThFam(I). It is well-
known that they form a complete lattice under signature-wise inclusion ≤,
whose meet coincides with signature-wise intersection.

Note that closure systems on A
♭ are ordered as follows:

C1 ≤ C2 iff for all Σ ∈ ∣Sign♭∣,Φ ⊆ SEN♭(Σ),
C1

Σ(Φ) ⊆ C2
Σ(Φ).

Under this ordering the collection of all closure systems on A
♭ also forms

a complete lattice whose meet is given by signature-wide intersection.
Given a base algebraic systemA

♭
= ⟨Sign♭,SEN♭,N ♭⟩, anN ♭-algebraic

system A = ⟨Sign,SEN,N⟩ is an algebraic system, such that there exists a
surjective functorN ♭ → N preserving all projection natural transformations
and, as a consequence, also all the arities of the natural transformations
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involved. We denote by σ ∶ SENk → SEN the natural transformation that is
the image of σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, an, in general use similar typing
conventions to keep track of mappings of natural transformations in N ♭ to
those on N ♭-algebraic systems.

An interpreted N ♭-algebraic system is a pair A = ⟨A, ⟨F,α⟩⟩, where
● A is an N ♭-algebraic system and

● ⟨F,α⟩ ∶A♭ →A is an algebraic system morphism.

We will use the term algebraic system to refer to both an N ♭-algebraic
system and an interpreted N ♭-algebraic system relying on the context to
clear the ambiguity.

Let A
♭ be an algebraic system and I = ⟨A♭, C⟩ a π-institution based

on A
♭. We define, next, the notion of a matrix system and of a g-matrix

system for A
♭ and of a matrix system model and g-matrix system model

for I.
A matrix system for A♭ is a pair A = ⟨A, T ⟩, where A = ⟨A, ⟨F,α⟩⟩ is

an interpreted algebraic system and T is a sentence family of A.
A matrix system A defines a closure system CA (and hence a π-insti-

tution IA = ⟨A♭, CA⟩) on A
♭ as follows: For all Σ ∈ ∣Sign♭∣ and all Φ∪{ϕ} ⊆

SEN♭(Σ),
ϕ ∈ CA

Σ (Φ) iff Φ ⊧AΣ ϕ,

where the relation on the right means that, for all Σ′ ∈ ∣Sign♭∣ and all
f ∈ Sign♭(Σ,Σ′),

αΣ′(SEN♭(f)(Φ)) ⊆ TF (Σ′) implies αΣ′(SEN♭(ϕ)) ∈ TF (Σ′).
A generalized matrix system for A

♭ (or g-matrix system, for
short) is a pair A = ⟨A,T ⟩, where A = ⟨A, ⟨F,α⟩⟩ is an interpreted algebraic
system and T is a collection of sentence families of A.

A g-matrix system A defines a closure system CA (and hence a π-insti-
tution IA = ⟨A♭, CA⟩) onA

♭ by setting CA = ⋂A∈AC
A, where A = ⟨A, T ⟩ ∈ A

means that T ∈ T . Thus, equivalently, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {ϕ} ⊆
SEN♭(Σ),

ϕ ∈ CA

Σ (Φ) iff (∀A ∈ A)(Φ ⊧AΣ ϕ).
A matrix system model for I = ⟨A♭, C⟩ or an I-matrix system is

a matrix system A = ⟨A, T ⟩ for A♭, such that C ≤ CA.
Similarly, a g-matrix system model for I or an I-g-matrix system

is a g-matrix system A, such that C ≤ CA.
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3. Referential π-Institutions

In this work we focus on a special kind of (interpreted) N ♭-algebraic system
A = ⟨A, ⟨F,α⟩⟩, A = ⟨Sign,SEN,N⟩. We require that, for all Σ ∈ ∣Sign∣,
there is a set PTS(Σ), called the set of Σ-reference or Σ-base points,
and that, for all Σ ∈ ∣Sign∣, SEN(Σ) ⊆ P(PTS(Σ)), i.e., each Σ-sentence is
a set of Σ-points.

In this context, an interpretation ⟨F,α⟩ ∶ A♭ → A will be viewed as a
valuation of sentences of A♭ in the following way: For all Σ ∈ ∣Sign♭∣ and
all ϕ ∈ SEN♭(Σ), ϕ is true at p ∈ PTS(F (Σ)) under ⟨F,α⟩ iff p ∈ αΣ(ϕ).

An algebraic system of this special form is called a referential alge-

braic system and said to be based on PTS.
Note that this definition is a generalized version of the one given in

Section 3 of [12]. The generalization stems from the fact that, in the
present context, we no longer insist that the sentence functor SEN be a
simple subfunctor (having the same domain) of the inverse powerset of a
contravariant functor Sign→ Set

op.
Let A = ⟨A, ⟨F,α⟩⟩ be an interpreted referential N ♭-algebraic system.

Then A determines a closure system CA on A
♭ according to the following

definition:
For all Σ ∈ ∣Sign♭∣ and all Φ ∪ {ϕ} ⊆ SEN♭(Σ), ϕ ∈ CAΣ (Φ) iff, for all

Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),
⋂
φ∈Φ

αΣ′(SEN♭(f)(φ)) ⊆ αΣ′(SEN(f)♭(ϕ)).
Essentially the same proof as that of Proposition 1 of [12] yields the

following

Proposition 1 (Proposition 1 of [12]). Let A
♭
= ⟨Sign♭,SEN♭,N ♭⟩ be

a base algebraic system and A = ⟨A, ⟨F,α⟩⟩ an interpreted referential

N ♭-algebraic system. Then CA is a closure system on A
♭.

Since CA is a closure system on A
♭, the pair IA = ⟨A♭, CA⟩ is

a π-institution. We call an institution having this form a referential

π-institution. Such π-institutions correspond in the theory of categorical
abstract algebraic logic to the referential propositional logics of Wójcicki
[10].

Let A♭ = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and I = ⟨A♭, C⟩
a π-institution based on A

♭. We define the Frege equivalence system
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Λ(I) of I, also known as the interderivability equivalence system, by
setting, for all Σ ∈ ∣Sign♭∣ and all ϕ,ψ ∈ SEN♭(Σ),

⟨ϕ,ψ⟩ ∈ ΛΣ(I) if and only if CΣ(ϕ) = CΣ(ψ).
The Tarski congruence system Ω̃(I) of I ([5] for the universal alge-
braic notion and [13] for its categorical extension) is the largest congruence
system on A

♭ that is compatible with every theory family T ∈ ThFam(I).
Clearly, it is always the case that Ω̃(I) ≤ Λ(I). We call the

π-institution I self-extensional if Λ(I) ≤ Ω̃(I). In view of the preceding
remark, I is self-extensional if and only if Λ(I) = Ω̃(I).

A generalization to π-institutions of Wójcicki’s Theorem (see Theorem
2 of [10], but, also, Theorem 2.2 of [7] for a complete proof), provides a
characterization of referential sentential logics. This is essentially Theorem
8 of [12], with the aforementioned generalization pertaining to the signature
category not affecting the proof.

Theorem 2 (Theorem 8 of [12]). A π-institution I = ⟨A♭, C⟩ is referential
if and only if it is self-extensional.

We recall here a version of the construction of the canonical referential
algebraic system associated with a given selfextensional π-institution that
witnesses one implication of Theorem 2.

Let I = ⟨A♭, C⟩, with A
♭
= ⟨Sign♭,SEN♭,N ♭⟩, be a self-extensional

π-institution. For each Σ ∈ ∣Sign♭∣, we take as the set of Σ-points the set
ThΣ(I) of Σ-theories of I.

Define the functor SEN ∶ Sign♭ → Set as follows:
For every Σ ∈ ∣Sign♭∣,

SEN(Σ) = {ThΣ(ϕ) ∶ ϕ ∈ SEN♭(Σ)},
where ThΣ(ϕ) = {T ∈ ThΣ(I) ∶ ϕ ∈ T}, for all Σ ∈ ∣Sign♭∣ and all ϕ ∈
SEN♭(Σ).

Moreover, for all Σ,Σ′ ∈ ∣Sign♭∣, and all f ∈ Sign♭(Σ,Σ′), we define
SEN(f) ∶ SEN(Σ)→ SEN(Σ′) by setting

SEN(f)(ThΣ(ϕ)) = ThΣ′(SEN♭(f)(ϕ)),
for all Σ ∈ ∣Sign♭∣ and all ϕ ∈ SEN♭(Σ).

Define the category of natural transformations N on SEN as follows:
For every σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, let σ ∶ SENk → SEN be defined by
letting, for all Σ ∈ ∣Sign♭∣, σΣ ∶ SEN(Σ)k → SEN(Σ) be given by
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σΣ(ThΣ(ϕ0), . . . ,ThΣ(ϕk−1)) = ThΣ(σ♭Σ(ϕ0, . . . , ϕk−1)),
for all ϕ0, . . . , ϕk−1 ∈ SEN

♭(Σ). Using self-extensionality one may show
that this is well-defined. Moreover, σ is a natural transformation and
the collection of natural transformations, thus defined, forms a category
of natural transformations on SEN. So the triple A = ⟨Sign♭,SEN,N⟩
constitutes an N ♭-algebraic system.

Finally, the canonical referential algebraic system associated with
I is defined by A = ⟨A, ⟨I, α⟩⟩, where:
● I ∶ Sign♭ → Sign

♭ is the identity functor;

● α ∶ SEN♭ → SEN is the natural transformation defined by letting, for
all Σ ∈ ∣Sign♭∣, αΣ ∶ SEN

♭(Σ)→ SEN(Σ) be given by

αΣ(ϕ) = ThΣ(ϕ), for all ϕ ∈ SEN♭(Σ).
Note, now, that, for all Σ,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and ϕ ∈ SEN♭(Σ),

SEN♭(Σ) αΣ
- SEN(Σ)

SEN♭(Σ′)
SEN♭(f)

?

αΣ′

- SEN(Σ′)
SEN(f)
?

SEN(f)(αΣ(ϕ)) = SEN(f)(ThΣ(ϕ))
= ThΣ′(SEN♭(f)(ϕ))
= αΣ′(SEN♭(f)(ϕ)).

It can be shown that, if I is self-extensional, then A is well-defined and,
moreover, I = IA. Thus, I is referential.

4. Pseudo-Referential Matrix Systems

LetA♭ = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system andA = ⟨A, ⟨F,α⟩⟩ a
referential N ♭-algebraic system based on PTS. The algebraic system A will
be said to be supported if it is endowed with a collection S = {Si ∶ i ∈ I}
of base point families

Si = {SiΣ}Σ∈∣Sign∣,
where SiΣ ⊆ PTS(Σ), for all i ∈ I and all Σ ∈ ∣Sign∣. We refer to S as the
support of A in this case.
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Given a supported algebraic system A, with support S, a pseudo-

referential g-matrix system relative to (PTS,S) is a pair

A = ⟨A,T ⟩,
where T = {T i ∶ i ∈ I} is a collection of sentence families T i = {T iΣ}Σ∈∣Sign∣,
such that, for all i ∈ I and all Σ ∈ ∣Sign∣,

T iΣ = {X ∈ SEN(Σ) ∶X ∩ SiΣ ≠ ∅}.
We close this section with two properties of pseudo-referential g-matrix

systems. The first states that, in a precise model-theoretic sense, pseudo-
referential g-matrix systems encompass referential algebraic systems. The
second characterizes the closure system CA induced by a pseudo-referential
g-matrix system on the base algebraic system A

♭.
Let A = ⟨A, ⟨F,α⟩⟩ be a referential algebraic system, based on PTS.

Consider the set P of all ∣Sign∣-indexed tuples P , such that, for some
Σ ∈ ∣Sign∣,

PΣ′ { ∈ {{p} ∶ p ∈ PTS(Σ)}, if Σ′ = Σ
= ∅, if Σ′ ≠ Σ

Consider the pseudo-referential g-matrix system A(A) = ⟨A,T ⟩ relative
to (PTS,P). This is called the pseudo-referential g-matrix system

associated with A. Then we have the following:

Lemma 3. Let A
♭
= ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A =⟨A, ⟨F,α⟩⟩ a referential N ♭-algebraic system and A(A) = ⟨A,T ⟩ the pseudo-

referential g-matrix system associated with A. Then CA = CA(A).

Proof: This follows easily from the fact that, according to the definitions
involved, for all Σ ∈ ∣Sign♭∣ and all ϕ ∈ SEN♭(Σ), we have

p ∈ αΣ′(SEN♭(f)(ϕ)) iff αΣ′(SEN♭(f)(ϕ)) ∩ {p} ≠ ∅,
for all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all p ∈ PTS(Σ′).

Thus, by identifying A with A(A) we may view referential algebraic
semantics in the sense of [12] as a special case of pseudo-referential g-matrix
system semantics.

We now obtain the following characterization of CA for an arbitrary
pseudo-referential g-matrix system A.
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Proposition 4. Let A
♭
= ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system,

A = ⟨A, ⟨F,α⟩⟩ an N ♭-referential algebraic system based on PTS, and A =⟨A,T ⟩ a pseudo-referential g-matrix system relative to a pair (PTS,S),
with S = {Si ∶ i ∈ I}. Then, for all Σ ∈ ∣Sign♭∣, Φ ∪ {ϕ} ⊆ SEN♭(Σ),
ϕ ∈ CA

Σ(Φ) iff, for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and all i ∈ I,

αΣ′(SEN♭(f)(φ)) ∩ SiF (Σ′) ≠ ∅, for all φ ∈ Φ,

implies αΣ′(SEN♭(f)(ϕ)) ∩ SiF (Σ′) ≠ ∅.
Proof: Let Σ ∈ ∣Sign♭∣ and Φ ∪ {ϕ} ⊆ SEN♭(Σ). We have ϕ ∈ CA

Σ(Φ) iff,
by definition, for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and all i ∈ I,

αΣ′(SEN(f)(Φ)) ⊆ T iF (Σ′) implies αΣ′(SEN(f)(ϕ)) ∈ T iF (Σ′).
By the definition of T i, this is equivalent to having, for all Σ′ ∈ ∣Sign♭∣,
f ∈ Sign♭(Σ,Σ′) and all i ∈ I,

αΣ′(SEN♭(f)(Φ)) ⊆ {X ∈ SEN(F (Σ′)) ∶X ∩ SiF (Σ′) ≠ ∅}
implies αΣ′(SEN♭(f)(ϕ)) ∈ {X ∈ SEN(F (Σ′)) ∶X ∩ T iF (Σ′) ≠ ∅}.

Equivalently, for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and all i ∈ I,

αΣ′(SEN♭(f)(φ)) ∩ SiF (Σ′) ≠ ∅, for all φ ∈ Φ,
implies αΣ′(SEN♭(f)(ϕ)) ∩ SiF (Σ′) ≠ ∅.

5. Universality of the Semantics

In this section we show that every π-institution has a pseudo-referential
matrix semantics. This contrasts with Theorem 2, which implies that not
every π-institution has a referential algebraic semantics.

Theorem 5. Let I = ⟨A♭, C⟩ be a π-institution based on an algebraic

system A
♭
= ⟨Sign♭,SEN♭,N ♭⟩. Then, there exists a pseudo-referential

g-matrix system A = ⟨A,T ⟩ relative to a pair (PTS,S), such that I = IA,

i.e., C = CA.

Proof: Let Sign = Sign
♭. For all Σ ∈ ∣Sign♭∣, let PTS(Σ) = SEN♭(Σ).

Now we define A = ⟨Sign,SEN,N⟩ based on PTS as follows:
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● SEN(Σ) = {{ϕ} ∶ ϕ ∈ SEN♭(Σ)}, for all Σ ∈ ∣Sign♭∣. And, given,
Σ,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),

SEN(f)({ϕ}) = {SEN♭(f)(ϕ)}, for all ϕ ∈ SEN♭(Σ).
● For all σ♭ ∶ (SEN♭)k → SEN♭ inN ♭, all Σ ∈ ∣Sign♭∣ and all ϕ0, . . . , ϕk−1 ∈

SEN♭(Σ)k,
σΣ({ϕ0}, . . . ,{ϕk−1}) = {σ♭Σ(ϕ0, . . . , ϕk−1)}.

We let N consist of all natural transformations of this form.

It is not difficult to see that, with these definitions, the triple A = ⟨Sign,
SEN,N⟩ becomes a referential N ♭-algebraic system based on PTS.

Next, define ⟨I, α⟩ ∶A♭ →A by setting

● I ∶ Sign♭ → Sign the identity functor;

● For all Σ ∈ ∣Sign♭∣ and all ϕ ∈ SEN♭(Σ), αΣ(ϕ) = {ϕ}.
Now A = ⟨A, ⟨I, α⟩⟩ is an interpreted referential N ♭-algebraic system.

Let S = ThFam(I) = {Si ∶ i ∈ I}. This determines the pseudo-
referential g-matrix system A = ⟨A,T ⟩ relative to (PTS,S). We have that
T = {T i ∶ i ∈ I}, with T i = {T iΣ}Σ∈∣Sign∣ given, for all i ∈ I and all Σ ∈ ∣Sign∣,
by

T iΣ = {{ϕ} ∈ SEN(Σ) ∶ {ϕ} ∩ SiΣ ≠ ∅}
= {{ϕ} ∈ SEN(Σ) ∶ ϕ ∈ SiΣ},

We prove that C = CA, i.e., that, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {ϕ} ⊆
SEN♭(Σ),

ϕ ∈ CΣ(Φ) iff ϕ ∈ CA

Σ(Φ).
⇒: Suppose that ϕ ∈ CΣ(Φ). Let Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and i ∈ I,

such that αΣ′(SEN♭(f)(φ)) ⊆ T iΣ′ , for all φ ∈ Φ. By the definition of
α, this holds iff {SEN♭(f)(φ)} ∈ T iΣ′ , for all φ ∈ Φ. By the expression
given above for T i, this holds iff SEN♭(f)(φ) ∈ SiΣ′ , for all φ ∈ Φ,
i.e., iff SEN♭(f)(Φ) ⊆ SiΣ′ . Then, since by hypothesis ϕ ∈ CΣ(Φ),
we get SEN♭(f)(ϕ) ∈ SiΣ′ . This shows that {SEN♭(f)(ϕ)} ∈ T iΣ′ or,
equivalently, αΣ′(SEN♭(f)(ϕ)) ∈ T iΣ′ . Therefore, ϕ ∈ CA

Σ(Φ).
⇐: Suppose that ϕ ∈ CA

Σ(Φ). Let i ∈ I, such that Φ ⊆ SiΣ. This is
equivalent to {φ} ∈ T iΣ, for all φ ∈ Φ. Since, by hypothesis ϕ ∈ CA

Σ(Φ),
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we get that {ϕ} ∈ T iΣ. Equivalently, ϕ ∈ SiΣ. Since i ∈ I was arbitrary,
we get that ϕ ∈ CΣ(Φ).

We call the pseudo-referential g-matrix system A, constructed in the
proof of Theorem 5, such that IA = I, the canonical pseudo-referential
g-matrix system associated with I.

6. Selfextensional π-Institutions

In this section, we start with a selfextensional π-institution I and show
how, starting from the canonical pseudo-referential g-matrix system asso-
ciated with I, a process of dividing out by the Frege equivalence system
of I (which is a congruence system due to selfextensionality), leads to the
canonical referential g-matrix system for I constructed in [12]. We present
an outline, omitting some of the details that are easy to check.

Let I = ⟨A♭, C⟩ be a selfextensional π-institution based on the algebraic
system A

♭
= ⟨Sign♭,SEN♭,N ♭⟩. Consider the canonical pseudo-referential

g-matrix system A = ⟨A,T ⟩ associated with I, based on (PTS,S), with
A = ⟨A, ⟨F,α⟩⟩ and A = ⟨Sign♭,SEN,N⟩, as constructed in the proof of
Theorem 5.

Recall that the Frege equivalence system Λ(I) = {ΛΣ(I)}Σ∈∣Sign∣ of I
is defined, for all Σ ∈ ∣Sign♭∣ and all ϕ,ψ ∈ SEN♭(Σ), by

⟨ϕ,ψ⟩ ∈ ΛΣ(I) iff CΣ(ϕ) = CΣ(ψ).
By selfextensionality, Λ(I) is a congruence system on A

♭ and, in fact,
coincides with the Tarski congruence system Ω̃(I).

We define on the underlying algebraic system A = ⟨Sign♭,SEN,N⟩ of
the canonical pseudo-referential g-matrix system A associated with I the
relation family ≡I= {≡IΣ}Σ∈∣Sign♭∣, by setting, , for all Σ ∈ ∣Sign♭∣ and all

ϕ,ψ ∈ SEN♭(Σ),
{ϕ} ≡IΣ {ψ} iff ⟨ϕ,ψ⟩ ∈ ΛΣ(I).

Clearly, ≡I is an equivalence family on A. Moreover, it is an equivalence
system because of structurality. This establishes that the quotient functor

SEN≡
I

∶= SEN/≡I ∶ Sign♭ → Set is well-defined (see [13]).
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Note that SEN≡
I

may be considered as a point-based functor, based
on Th(I) = {ThΣ(I)}Σ∈∣Sign♭∣ under the identification

{ϕ}/ ≡IΣ ←→ ThΣ(ϕ),
for all ϕ ∈ SEN♭(Σ),Σ ∈ ∣Sign♭∣ (which is well-defined by the definition of
≡I).

Next, observe that, by the self-extensionality of I, the equivalence
system ≡I is actually a congruence system on A. In fact, for all σ♭ ∶(SEN♭)k → SEN♭ in N ♭, for all Σ ∈ ∣Sign♭∣ and all ϕ0, ψ0, . . . , ϕk−1, ψk−1 ∈

SEN♭(Σ), such that {ϕi} ≡IΣ {ψi}, for all i < k, we get that CΣ(ϕi) =
CΣ(ψi), for all i ∈ I, whence by self-extensionality, CΣ(σ♭Σ(ϕ0, . . . , ϕk−1) =
CΣ(σ♭Σ(ψ0, . . . ,ψk−1)), giving that {σ♭Σ(ϕ0, . . . ,ϕk−1)} ≡IΣ {σ♭Σ(ψ0, . . . ,ψk−1)}.
But, by the definition of σ ∶ SENk → SEN, the latter is equivalent to
σΣ({ϕ0}, . . . ,{ϕk−1}) ≡IΣ σΣ({ψ0}, . . . ,{ψk−1}).

Now we conclude that the quotient A≡
I

∶=A/≡I = ⟨Sign♭,SEN≡I ,N≡I ⟩
is a well-defined N ♭-algebraic system.

Finally, recall that T = {T i ∶ i ∈ I}, with T i = {T iΣ}Σ∈∣Sign∣ given, for all
i ∈ I and all Σ ∈ ∣Sign∣, by

T iΣ = {{ϕ} ∈ SEN(Σ) ∶ ϕ ∈ SiΣ}.
We note that ≡I is compatible with T i, for all i, and , therefore, it is a
(g-matrix) congruence system of A = ⟨A,T ⟩. In fact, for all Σ ∈ ∣Sign♭∣
and all ϕ,ψ ∈ SEN♭(Σ), such that {ϕ} ≡IΣ {ψ} and {ϕ} ∈ T iΣ, we get that
CΣ(ϕ) = CΣ(ψ) and ϕ ∈ SiΣ ∈ ThΣ(I). Hence, we obtain ψ ∈ SiΣ, which
shows that {ψ} ∈ T iΣ.

It follows that the quotient g-matrix system A
≡
I

= ⟨A≡I ,T ≡I ⟩ is well-
defined.

To establish the equivalence of the canonical referential g-matrix system

associated with I with the quotient A≡
I

of the canonical pseudo-referential
g-matrix system A associated with I it suffices to note that the mapping

ThΣ(ϕ)↦ {ϕ}/≡IΣ,
for all Σ ∈ ∣Sign♭∣, ϕ ∈ SEN♭(Σ), determines an isomorphism between these
two g-matrix systems.
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7. Discrete Pseudo-Referential Matrix Systems

Let A
♭
= ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and A = ⟨A,T ⟩ a

pseudo-referential g-matrix system relative to some (PTS,S), with S ={Si ∶ i ∈ I}, i.e., such that T = {T i ∶ i ∈ I}, with
T iΣ = {X ∈ SEN(Σ) ∶X ∩ SiΣ ≠ ∅},

for all Σ ∈ ∣Sign∣ and all i ∈ I.
The pseudo-referential g-matrix system A will be called discrete if, for

all i ∈ I, there exists Σi ∈ ∣Sign∣, such that, for all Σ ∈ ∣Sign∣,
SiΣ { ∈ {{p} ∶ p ∈ PTS(Σi)}, if Σ = Σi,

= ∅, otherwise.

In this section, taking after the work of Marek [9], we show that every
π-institution I = ⟨A♭, C⟩ has a strongly adequate discrete pseudo-referential
matrix system semantics. This is done by exhibiting, for every g-matrix
system, an equivalent discrete pseudo-referential g-matrix system.

Theorem 6. Let A
♭
= ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. For

every N ♭-g-matrix system A
# = ⟨A#,T #⟩, with A# = ⟨A#, ⟨F#, α#⟩⟩,

A
#
= ⟨Sign#,SEN#,N#⟩, there exists a discrete pseudo referential

g-matrix system A = ⟨A,T ⟩ relative to some (PTS,S), such that IA = IA
#

.

Proof: Let A
♭
= ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Consider an

N ♭-g-matrix system A
# = ⟨A#,T #⟩, with A# = ⟨A#, ⟨F#, α#⟩⟩, A

#
=⟨Sign#,SEN#,N#⟩ and T # = {T#i

∶ i ∈ I}.
For all Σ ∈ ∣Sign#∣, consider a collection {xiΣ ∶ i ∈ I}, where, for all

i ∈ I, xiΣ ∉ SEN
#(Σ) and, for all i, j ∈ I, with i ≠ j, xiΣ ≠ xjΣ.

Now define

PTS(Σ) = SEN#(Σ) ∪ {xiΣ ∶ i ∈ I}, for all Σ ∈ ∣Sign#∣.
Moreover, let S = {SΣ,i

∶ Σ ∈ ∣Sign#∣, i ∈ I}, where, for all Σ ∈ ∣Sign#∣ and
all i ∈ I, SΣ,i = {SΣ,i

Σ′ }Σ′∈∣Sign#∣ is defined by setting

S
Σ,i
Σ′ = { {x

i
Σ}, if Σ′ = Σ

∅, if Σ′ ≠ Σ
, for all Σ′ ∈ ∣Sign#∣.
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Next, define, for all Σ ∈ ∣Sign#∣ and all ϕ ∈ SEN#(Σ), Xϕ ⊆ PTS(Σ), by
p ∈Xϕ ⇔ p = ϕ or (∃i ∈ I)(p = xiΣ and ϕ ∈ T

#,i
Σ ).

Claim: For all Σ ∈ ∣Sign#∣ and all ϕ,ψ ∈ SEN#(Σ), Xϕ = Xψ if and only
if ϕ = ψ.

Proof of the Claim: The “if” direction is obvious. For the “only if”,
reasoning by contraposition, we note that if ϕ ≠ ψ, then ϕ ∈ Xϕ, whereas
ϕ ∉Xψ. Therefore Xϕ ≠Xψ. ◻

Now define, for all Σ ∈ ∣Sign#∣,
SEN(Σ) = {Xϕ ∶ ϕ ∈ SEN

#(Σ)}
and, moreover, for all Σ,Σ′ ∈ ∣Sign#∣ and all f ∈ Sign#(Σ,Σ′), let SEN(f) ∶
SEN(Σ)→ SEN(Σ′) be given, for all ϕ ∈ SEN#(Σ), by

SEN(f)(Xϕ) =XSEN#(f)(ϕ).

The fact that SEN ∶ Sign#
→ Set, thus defined, is a functor follows from

the fact that SEN# is a functor.
Next, for all σ ∶ (SEN♭)k → SEN♭ in N ♭, we define σ ∶ SENk → SEN by

letting, for all Σ ∈ ∣Sign#∣, σΣ ∶ SEN(Σ)k → SEN(Σ) be given by

σΣ(Xϕ0
, . . . ,Xϕk−1

) =X
σ
#

Σ
(ϕ0,...,ϕk−1)

,

for all ϕ0, . . . , ϕk−1 ∈ SEN
#(Σ).

This is well-defined by the preceding claim and, moreover, it is a bona
fide natural transformation, since, for all Σ,Σ′ ∈ ∣Sign#∣, f ∈ Sign#(Σ,Σ′)
and all ϕ0, . . . , ϕk−1 ∈ SEN

#(Σ), we have according to the preceding defi-
nitions,

SENk(Σ) σΣ
- SEN(Σ)

SENk(Σ′)
SENk(f)

?

σΣ′
- SEN(Σ′)

SEN(f)
?
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SEN(f)(σΣ(Xϕ0
, . . . ,Xϕk−1

))
= SEN(f)(X

σ
#

Σ
(ϕ0,...,ϕk−1)

)
=XSEN#(f)(σ#

Σ
(ϕ0,...,ϕk−1))

=X
σ
#

Σ′
(SEN#(f)(ϕ0),...,SEN#(f)(ϕk−1))

= σΣ′(XSEN#(f)(ϕ0)
, . . . ,XSEN#(f)(ϕk−1)

)
= σΣ′(SEN(f)(Xϕ0

, . . . ,Xϕk−1
)).

Let N be the category consisting of all natural transformations σ, for σ#

in N#. Then the triple A = ⟨Sign#,SEN,N⟩ is a referential N ♭-algebraic
system.

Define ⟨F,α⟩ ∶A♭ →A as follows:

● F ∶ Sign♭ → Sign
# is equal to F#

∶ Sign
♭
→ Sign

#;

● α ∶ SEN♭ → SEN ○ F is defined by letting, for all Σ ∈ ∣Sign♭∣, αΣ ∶

SEN♭(Σ)→ SEN(F (Σ)) be given by

αΣ(ϕ) =Xα
#

Σ
(ϕ), for all ϕ ∈ SEN#(Σ).

Again this definition makes α ∶ SEN♭ → SEN ○ F a bona fide natural
transformation, since, for all Σ,Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all
ϕ ∈ SEN♭(Σ), we have

SEN♭(Σ) αΣ
- SEN(F (Σ))

SEN♭(Σ′)
SEN♭(f)

?

αΣ′

- SEN(F (Σ′))
SEN(F (f))
?

SEN(F (f))(αΣ(ϕ)) = SEN(F (f))(X
α

#

Σ
(ϕ))

= XSEN#(F#(f))(α#

Σ
(ϕ))

= X
α

#

Σ′
(SEN♭(f)(ϕ))

= αΣ′(SEN♭(f)(ϕ)).
Moreover, ⟨F,α⟩ ∶A♭ →A is an algebraic system morphism. Indeed, for all
σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, all Σ ∈ ∣Sign♭∣ and all ϕ0, . . . , ϕk−1 ∈ SEN

♭(Σ),
we have
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SEN♭(Σ)k σ♭Σ - SEN♭(Σ)

SEN(F (Σ))k
αkΣ

?

σF (Σ)
- SEN(F (Σ))

αΣ

?

αΣ(σ♭Σ(ϕ0, . . . , ϕk−1)) = X
α

#

Σ
(σ♭

Σ
(ϕ0,...,ϕk−1))

= X
σ
#

F#(Σ)
(α#

Σ
(ϕ0),...,α

#

Σ
(ϕk−1))

= σF (Σ)(Xα
#

Σ
(ϕ0)

, . . . ,X
α

#

Σ
(ϕk−1)

)
= σF (Σ)(αΣ(ϕ0), . . . , αΣ(ϕk−1)).

Thus, the pair A = ⟨A, ⟨F,α⟩⟩ is an interpreted referential N ♭-algebraic
system.

Let A = ⟨A,T ⟩ be the discrete pseudo-referential N ♭-g-matrix system
relative to (PTS,S), where S = {SΣ,i

∶ Σ ∈ ∣Sign#∣, i ∈ I}, as before, with
T # = {T#i

∶ i ∈ I} being the collection of filter families of the g-matrix
system A

#.
Then, for all i ∈ I and for all Σ ∈ ∣Sign#∣, we have TΣ,i = {TΣ,i

Σ′ }Σ′∈∣Sign#∣,

where, for all Σ′ ∈ ∣Sign#∣,
T

Σ,i
Σ′ = {X ∈ SEN(Σ′) ∶X ∩ SΣ,i

Σ′ ≠ ∅}
= { ∅, if Σ′ ≠ Σ,

{Xϕ ∶ x
i
Σ ∈Xϕ, ϕ ∈ SEN

#(Σ)}, if Σ′ = Σ

= { ∅, if Σ′ ≠ Σ

{Xϕ ∶ ϕ ∈ T
#i
Σ }, if Σ′ = Σ

Now notice that, for all Σ ∈ ∣Sign♭∣ and all ϕ ∈ SEN♭(Σ), we have that, for
all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all i ∈ I,

αΣ′(SEN♭(f)(ϕ)) ∈ TF (Σ′),iF (Σ′)
iff α

#
Σ′(SEN♭(f)(ϕ)) ∈ T#i

F (Σ′)
. (7.1)

Equation (7.1) is true because, from the expression obtained from TΣ,i

above, we obtain

αΣ′(SEN♭(f)(ϕ)) ∈ TF (Σ′),iF (Σ′)
iff X

α
#

Σ′
(SEN♭(f)(ϕ)) ∈ {Xϕ ∶ ϕ ∈ T

#i
F (Σ′)

}
iff α

#
Σ′(SEN♭(f)(ϕ)) ∈ T#i

F (Σ′)
.
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Finally, we get the desired conclusion expressed in the following

Claim: IA = IA
#

.
Let Σ ∈ ∣Sign♭∣ and Φ ∪ {ϕ} ⊆ SEN♭(Σ). Then we have ϕ ∈ CA

Σ(Φ) iff,
for all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all i ∈ I,

αΣ′(SEN♭(f)(Φ)) ⊆ TF (Σ′),iF (Σ′)
implies αΣ′(SEN♭(f)(ϕ)) ∈ TF (Σ′),iF (Σ′)

,

iff, by Equivalence (7.1), for all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all
i ∈ I,

α
#
Σ′(SEN♭(f)(Φ)) ⊆ T#i

F (Σ′)
implies α

#
Σ′(SEN♭(f)(ϕ)) ∈ T#i

F (Σ′)
,

iff ϕ ∈ CA
#

Σ (Φ). Since CA = CA
#

, we conclude that IA = IA
#

, as required.
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