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1. Introduction and basic notations

The Spearman’s rho ρS is a well‑known measure for the strength of the association 
between two random variables X and Y. Let us consider n objects ranked from 1 
to n. Let Rx and Ry be the ranks of the variables X and Y. In this case, Rx and Ry are 
the permutations of the same set containing the numbers 1, 2, …, n. The Spear‑
man rank correlation coefficient for the sample of size n has the form (Wywiał, 
2004: 197):
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Let us consider the hypothesis 

 0 : 0SH r =

with the alternative

 1H : 0Sr ≠  or 1H : 0Sr >  or 1H : 0.Sr <

The hypothesis H0 could be tested using the test statistic 
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where RS is the Spearman correlation coefficient based on the sample and n > 10 
(see Sheskin, 2004). Under the null hypothesis, the test statistic (2) has t distri‑
bution with n – 2 degree of freedom (Zar, 1972: 578–579). Wywiał (2004: 197) 
pointed that for the sample of size n → ∞ under the null hypothesis the distribu‑
tion of the test statistic 

 1sz R n= ‑  (3)

could be approximated by the standard normal distribution.
The above presented Spearman’s rho measures the strength of the association 

only for two variables. There are some extensions of this measure to the d‑dimen‑
sional (d > 2) cases. The multivariate Spearman’s rho extensions were considered 
by Joe (1990) and Schmid and Schmidt (2006). Bedő and Ong (2015) used this 
measure for aggregating ranks. Multivariate extensions of Spearman’s rho are 
based on copula functions.
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2. On the measuring of multivariate dependences

One of the statistical methods used to measure multivariate dependences are cop‑
ulas. Copulas are very useful tools for describing and understanding the depend‑
ence between two or more random variables. A copula is a function which joins 
a multivariate function to its marginal distribution functions. It is a multivariate 
distribution function defined on the unit cube [0, 1]d, with a uniformly distribut‑
ed marginal. Formally, the definition of copulas could be written as follows (Nel‑
sen, 1999: 8–9):

A d‑dimensional copula is a function C with domain [0, 1]d such that 
1. C(u) is zero for all u in [0, 1]d for which at least one coordinate is equal to 0
2. C(u) = uk if all coordinates of u are 1 except the k‑th one
3. C is d‑increasing in the sense that for every a ≤ b (ai ≤ bi for i = 1, 2, …, d) 

in [0, 1]d the volume assigned by C to the d‑box [a, b] = [a1, b1] × [a2, b2] × … 
× [ad, bd] is nonnegative.
Let (X1, X2, …, Xd) and (Y1, Y2, …, Yd) be two independent d‑vectors with 

joint distributions CX(F(x)) and CY(F(y)) where F(x) = (F1(x1), …, Fd(xd)) and 
F(y) = (F1(y1), …, Fd(yd)) are the marginal distributions and CX, CY are the respec‑
tive d copulas. Then the concordance function (see Bedő, Ong, 2015: 2) is given 
by
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where u = F(x) and ν = F(y).
There are methods of multivariate extensions for the Spearman’s rho coeffi‑

cient. Some of them are derived from multivariate dependence concepts (Nelsen, 
1996: 223). The three following multivariate (d ≥ 2) versions of Spearman’s rho 
were analysed by Schmid and Schmidt (2006: 760) 
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where 
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, M(u) is the upper Frėchet‑Hoeffding 

bound given by M(u) = max{u1 + u2 + … + ud – (d – 1), 0} and Π(u) is the inde‑

pendence copula given by 
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The measures ρ1, ρ2 and ρ3 are multivariate extensions of two‑dimension‑
al Spearman’s rho, because for d = 2 there is (Schmid, Schmidt, 2006: 761) 
ρ1 = ρ2 = ρ3 = ρs. For d > 2, the values of ρ1, ρ2 and ρ3 are different in general.

Empirical copula
Let us consider a random sample Xj = (X1j, X2j, …, Xdj) ( j = 1, 2, …, n) from a d‑di‑
mensional random vector X with the joint distribution function F and the copula C 
which are unknown. The distribution function F could be estimated as follows:
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The copula function C could be estimated by (Schmid, Schmidt, 2006):
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Empirical copulas will be used to estimate the multivariate (d > 2) Spearman’s 

rho correlation coefficient.
Let R1, R2, …, Rd be the rankings of d experts. Then the ranking Ri (i = 1, 2, 

…, d) is an n‑dimensional vector. This vector is the permutation of the numbers 
1, 2, …, n. The normalised ranks (Bedő, Ong, 2015) are calculated as follows: 
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  (i = 1, 2, …, d). Using the empirical copula (Schmid, Schmidt, 2007) 

expression in the Spearman’s formula, we obtain an empirical expression of mul‑
tivariate Spearman’s correlation coefficient (Bedő, Ong, 2015: 2; Schmid, Schmidt, 
2007: 410)
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The formulas for ρ1, ρ2 and ρ3 are different in general. In this paper, formula 
(4) is considered as well as the estimator given by (7). This formula will be used 
for testing the significance of the multivariate Spearman’s rho.

3. The properties of two‑ and multivariate 
Spearman’s rho

The Spearman’s rho is a nonparametric measure of rank correlation. It assesses 
how well the relationship between two variables can be described using a mono‑
tonic function. This coefficient takes values from –1 to 1. The Spearman’s coeffi‑
cient is equal to 1 if the rankings are identical, for example:

Ranking 1: 1, 2, …, n.
Ranking 2: 1, 2, …, n.
This coefficient is equal to –1 if they are in reverse order, for example:
Ranking 1: 1, 2, …, n.
Ranking 2: n, n – 1, …, 1.
Typical histograms for Rs for samples of the size n = 5, n = 10 and n = 20 for 

independent rankings (ρs = 0) are presented in Figure 1.

Figure 1. Empirical distributions of RS for independent rankings (n = 5, 10 and 20)
Source: own elaboration
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The exact distributions of Spearman’s RS for independent rankings for the 
sample of size 5, 8 and 10 are presented in Figure 2.

Figure 2. Theoretical distributions of Rs (n = 5, 8 and 10) for independent rankings
Source: own elaboration

For n = 5, there are 5! = 120 permutations of the second variable (the first variable 
is fixed). The Spearman’s ρS for the sample of the size n = 5 can take 21 following 
variants of the values: 

 –1.0; –0.9; …; –0.1; 0.0; 0.1; …; 0.9 and 1.0. 

The values of the potential variants of Spearman’s ρS are presented in Table 1.

Table 1. The number of variants of Spearman’s ρS values for the sample size n = 5, 6, …, 10

Sample size n 5 6 7 8 9 10
No. of variants 21 36 57 85 121 166

Source: own elaboration

Domański and Pruska (2000: 115) described difficulties in constructing ta‑
bles with critical values for the Spearman’s rho due to the number of possible per‑
mutations of variables. For n = 10, there are 10! = 3,628,800 permutations of the 
ranking. For the multivariate extension of the Spearman’s coefficient (d > 2), cal‑
culations are much more complicated. The number of possible permutations grows 
radically for the dimension d > 2. The number of permutations of the 2, 3, …, d 

variable (the first ranking is fixed) is 
2

!
d

p
i

N n
=

=∏ . There are 216 variants of dif‑

ferent values of ρ1 in the 3‑dimensional case and 1,194 variants of different values 
in 4‑dimensional case for the sample size of n = 5. The number of permutations 
of d – 1 variables for the sample sizes n = 5, 6, …, 10 are presented in Table 2. 
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Table 2. The number of possible permutations (the first variable is fixed)

Sample size n d = 2 d = 3 d = 4
5 120 14 400 1 728 000
6 720 518 400 373 248 000
7 5 040 25 401 600 128 024 064 000
8 40 320 1 625 702 400 65 548 320 768 000
9 362 880 131 681 894 400 c.a. 47.78*1015

10 3 628 800 13 168 189 440 000 c.a. 47.78*1018

Source: own elaboration

The empirical distributions of the multivariate Spearman’s coefficient ρ1 for 
d = 3 are presented in Figure 3 and for d = 4 in Figure 4.

Figure 3. The empirical distributions of the multivariate (d = 3) Spearman’s coefficient 1r̂ for 
independent rankings (n = 5, 10 and 20)

Source: own elaboration

Figure 4. The empirical distributions of the multivariate (d = 4) Spearman’s coefficient 1r̂  for 
independent rankings (n = 5, 10 and 20)

Source: own elaboration
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The distribution of the multivariate Spearman’s coefficient for independent 
rankings for d > 2 in general is not symmetric. The exact distributions of the mul‑
tivariate Spearman’s 1r̂  for the sample of the size n = 5 for d = 3 and d = 4 are 
presented in Figure 5.

Figure 5. The exact distributions of the multivariate (d = 3 and d = 4) Spearman’s coefficient for 
independent rankings (n = 5)

Source: own elaboration

The value of Spearman’s rank correlation coefficient varies between –1 and 1. 
The maximum, minimum and estimated values of quantiles of the multivariate 
Spearman’s ρ1 are presented in Table 3 (n = 5) and Table 4 (n = 10). These values 
were obtained in series of computer simulations. In each case, there were generat‑
ed 1000 times d (d = 2, 3, …, 10) independent rankings and the value of the mul‑
tivariate Spearman’s coefficient ρ1 was calculated using formula (7). 

Table 3. The estimated quantiles of the multivariate Spearman’s 1r̂  for the sample of the size n = 5

Dim
d

Quantile
Min 0.01 0.025 0.05 0.95 0.975 0.99 Max*

2* –1.000 –0.900 –0.900 –0.800 0.800 0.900 0.900 1.000
3 –0.341 –0.319 –0.304 –0.281 0.363 0.437 0.496 0.667
4 –0.195 –0.182 –0.172 –0.162 0.257 0.314 0.388 0.644
5 –0.117 –0.109 –0.104 –0.098 0.180 0.228 0.304 0.610
6 –0.070 –0.066 –0.063 –0.060 0.117 0.162 0.222 0.568
7 –0.042 –0.040 –0.038 –0.036 0.077 0.106 0.151 0.524
8 –0.025 –0.023 –0.023 –0.022 0.049 0.072 0.105 0.478
9 –0.014 –0.014 –0.013 –0.013 0.030 0.044 0.068 0.433

10 –0.008 –0.008 –0.008 –0.007 0.018 0.028 0.044 0.389
* Exact values.

Source: computer simulation 
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Table 4. The estimated quantiles of the multivariate Spearman’s 1r̂  for the sample of the 
size n = 10

Dim
d

Quantile
Min 0.01 0.025 0.05 0.95 0.975 0.99 Max*

2* –1.000 –0.733 –0.636 –0.552 0.552 0.636 0.733 1.000
3 –0.424 –0.319 –0.284 –0.250 0.286 0.343 0.409 0.828
4 –0.236 –0.189 –0.172 –0.154 0.201 0.247 0.302 0.804
5 –0.139 –0.115 –0.106 –0.096 0.145 0.182 0.230 0.782
6 –0.082 –0.069 –0.064 –0.059 0.099 0.129 0.169 0.755
7 –0.048 –0.042 –0.039 –0.036 0.068 0.091 0.124 0.725
8 –0.028 –0.025 –0.023 –0.022 0.044 0.062 0.086 0.693
9 –0.016 –0.014 –0.014 –0.013 0.027 0.040 0.060 0.661

10 –0.009 –0.008 –0.008 –0.008 0.017 0.025 0.038 0.628
* Exact values.

Source: computer simulation

The examples of the complete agreement in the rankings for 4‑dimension and 
the highest discrepancy for the sample of the size n = 5 are presented in Figure 6 
and Figure 7. If the first ranking is fixed, then there exists the one and only com‑
bination of three other rankings which gives the maximum 1r̂  = 0.644 (see Fig‑
ure 6). In this case, there are 288 rankings with the minimum 1r̂  = –0.195. One 
of these combinations is presented in Figure 7.

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5

Figure 6. The complete agreement in 4 rankings
Source: own elaboration

1 1 2 1
2 3 3 2
3 4 4 4
4 5 1 5
5 2 5 3

Figure 7. One of the highest discrepancy in 4 rankings
Source: own elaboration
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Figure 8. Intervals of variations for the d‑dimensional correlation coefficient for the samples of the 
size n = 5 and n = 10

Source: own elaboration

The area of variations of the d‑dimensional (d = 2, 3, …, 10) Spearman’s r1 
for the sample sizes of n = 5 and n = 10 is presented in Figure 8. The distribution 
of the multivariate Spearman’s r1 for the dimension greater than 2 is not symmet‑
ric. Due to the asymmetry of the distribution, the critical region for the H0 should 
be asymmetric. To test the significance of the multivariate Spearman coefficient, 
the permutation test will be proposed.

4. Testing multivariate dependences

Zar (2010: 773) presented tables of critical values of the Spearman’s ranked cor‑
relation coefficient. These tables could be used only for the two‑dimensional ver‑
sion of Spearman’s rank coefficient. For the case where d > 2, the permutation test 
could be used.

Permutation tests were introduced by R.A. Fisher and E.J.G. Pitman in 1930s 
(Berry, Johnston, Mielke, 2014: 20). Lehmann (2009: 439) shows that permuta‑
tion tests are generally asymptotically as good as the best parametric ones. The 
concept of permutation tests is simpler than that of tests based on normal distribu‑
tion. Efron and Tibshirani (1993: 202) point out that the main application of these 
tests is a two‑sample problem. In permutation tests, the observed value of the test 
statistic (T0) is compared with the empirical distribution of this statistic under the 
null hypothesis. The following steps are taken in dealing with permutation tests 
(Good, 2005: 8; Kończak; 2016: 29):
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1. Assume the significance level a.
2. Identify the null hypothesis and the alternative hypothesis.
3. Choose a form of the test statistic T.
4. Calculate the value T0 of the test statistic for the sample data.
5. Determine by a series of permutations the frequency distribution of the test 

statistic under the null hypothesis (T1, T2, …, TN, where N ≥ 1000).
6. Make a decision using this empirical distribution as a guide.

The ASL (Achieved Significance Level) has the following form:

 ( )0 .ASL P T T= ≥  (1)

The ASL is unknown and could be estimated by the following formula:

 0{ : ) .icard i T TASL
N

≥
≈  (2)

This notation applies where the H0 rejection area is right‑sided. In the case 
of the left‑sided rejection area in the above notation, inequality should be changed. 
If the value of ASL is lower than the assumed level of significance a, then H0 should 
be rejected.

The significance of the described multivariate Spearman’s rank coefficient 
will be tested. The sample multivariate Spearman’s rank coefficient given by (7) 
as a test statistic will be used in Monte Carlo study. The empirical distribution 
of this coefficient will be obtained in the procedure of permutation testing. The 
null hypothesis will be rejected for ASL < a. 

5. The test procedure – Monte Carlo study

Let us consider the null hypothesis that all rankings are independent. This hypoth‑
esis could be written as follows:

 0H : 0Sr =

with the alternative

 
1H : 0.Sr >

There were considered hypotheses for three‑, four‑ and five‑ dimensional rank‑
ings. Two following variants were considered:
1) H0 is true – there is no correlation between vectors R1, R2, …, Rd.
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2) H0 is false – two rankings are identical, and the others were no correlated.
The probabilities of rejection of H0 were estimated by a sequence of 1000 com‑

puter simulations of permutation tests. In each permutation test, there were 1000 
permutations considered. In all the simulations, the significance level a = 0.05 was 
assumed. The estimated probabilities of rejection of H0 are presented in Table 5 
(H0 true – the size of the test) and in Table 6 (H0 false).

Table 5. Estimated probabilities of H0 rejection (H0 true)

Dimension
d

Sample size
n

5 6 7 8 9 10
3 0.047 0.042 0.049 0.044 0.043 0.046
4 0.048 0.050 0.039 0.052 0.053 0.051
5 0.056 0.045 0.052 0.036 0.040 0.042

Source: own elaboration

Table 6. Estimated probabilities of H0 rejection (H0 false)

Dimension
d

Sample size
n

5 6 7 8 9 10
3 0.294 0.341 0.358 0.414 0.418 0.481
4 0.183 0.219 0.223 0.255 0.262 0.298
5 0.156 0.153 0.158 0.162 0.177 0.189

Source: own elaboration

The size of the test is close to the assumed significance level a = 0.05 (see 
Table 5). For the greater size of the sample in the case of false H0, there is a great‑
er probability of H0 rejection. For the smaller dimension d in the case of false H0, 
there is a greater probability of H0 rejection (see Table 6).

6. Conclusions

This article presents a proposal of the testing for multivariate extensions of Spear‑
man’s rho. There are some variants of such extensions. In the paper, one of them 
given by formula (4) was considered. The properties of these multivariate meas‑
ures were described. These multivariate Spearman’s correlations could be used for 
measuring the rankings agreement. The test for the significance of the multivari‑
ate Spearman’s rho was proposed. The proposed testing procedure is based on the 
permutation method. 
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O testowaniu istotności wielowymiarowego współczynnika korelacji rang

Streszczenie: Współczynnik korelacji rang Spearmana pozwala na badanie siły zależności między 
dwiema zmiennymi, dla których dokonano pomiaru na skali porządkowej. W literaturze są prezento‑
wane rozszerzenia tego współczynnika na przypadek wielowymiarowy. W tych konstrukcjach wyko‑
rzystywane są zwykle funkcje łączące (kopule). W artykule przedstawiono propozycję testowania istot‑
ności zależności wielowymiarowej dla danych mierzonych na skali rangowej. Przedstawiony test dla 
istotności wielowymiarowego współczynnika korelacji rang wykorzystuje metodę permutacyjną. Wła‑
sności proponowanego testu scharakteryzowano z wykorzystaniem symulacji komputerowych.

Słowa kluczowe: wielowymiarowy współczynnik rang Spearmana, kopuła, test permutacyjny, sy‑
mulacja Monte Carlo
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