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4.1 Introduction

The notion of approximately continuous functions was introduced at the be-
ginning of the XXth century. In 1915 in [5], A. Denjoy stated that a real valued
function f is approximately continuous at a point x0 if and only if there exists
a measurable set A⊂ R such that

lim
h→0+

m(A∩ [x0−h,x0 +h])
2h

= 1 and f (x0) = lim
x→x0
x∈A

f (x), (4.1)

where m denotes the Lebesgue measure. The point x0 which fulfills the first
from the above equalities is called a density point of a set A. Denjoy discovered
that approximately continuous functions are of Baire class 1 and have Darboux
property. He also proved that a real function defined on R is measurable if and
only if it is approximately continuous almost everywhere on R. The first def-
inition did not involve the concept of density topology, which appeared later
in the paper [14]. In 1961 ([13]) C. Goffman and D. Waterman examined ap-
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proximately continuous transformations from euclidean space into an arbitrary
metric space. They defined the density topology (denoted by Td) finer then the
natural topology To and proved that the approximately continuous transfor-
mations are Darboux Baire 1 and are continuous as f : (R,Td)→ (R,To). In
the same year it was shown ([12]) that Td is the coarsest topology relative to
which approximately continuous functions are continuous, because the density
topology on R is completely regular (but not normal).

By putting density topology on the domain and on the range of a function we
can obtain another class of continuous functions: density continuous functions,
which were deeply examined by K. Ciesielski, L. Larson and K. Ostaszewski
(for instance [3], [4], [20]), J. Niewiarowski ([19]) and A. Bruckner ([1]).

In 1910 ([16]) H. Lebesgue proved that for any Lebesgue measurable set
A⊂ R the equality

lim
h→0+

m(A∩ [x−h,x+h])
2h

= 1 (4.2)

holds for all points x ∈ A except for the set of Lebesgue measure zero. We
denote by L the family of all Lebesgue measurable sets on R. Equivalently
we can say that m(A∆Φd (A)) = 0 for any A ∈ L (∆ stands for symmetric
difference), where

Φd (A) =
{

x ∈ R : lim
h→0+

m(A∩ [x−h,x+h])
2h

= 1
}
.

The family
Td = {A ∈L : A⊂Φd (A)}

forms a topology called the density topology. (R,Td) is a Baire space and Td

is invariant under translations and multiplications by nonzero numbers. The
families of meager sets and nowhere dense sets in (R,Td) coincide and both
are equal to the family of Lebesgue null sets. Any set of positive inner measure
has nonempty interior in Td .

In 1959 ([21]) S. J. Taylor solved the problem presented by S. Ulam in The
Scottish Book. Taylor’s results were the contribution to the development of ψ-
density topology and another classes of continuous functions, with density and
ψ-density on the domain and the range. Let us present his two main theorems.

Theorem 4.1 ([21, Theorem 3]). For any Lebesgue measurable set A⊂R there
exists a function ψ : (0,∞)→ (0,∞) which is continuous, nondecreasing and
lim

x→0+
ψ(x) = 0 such that
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lim
m(I)→0

m(A′∩ I)
m(I)ψ(m(I))

= 0

for almost all x ∈ A, where I is any interval containing x (A′ stands for the
complement of A).

Theorem 4.2 ([21, Theorem 4], compare with [22, Theorem 0.2]). For any
function ψ : (0,∞)→ (0,∞) which is continuous, nondecreasing, lim

x→0+
ψ(x) =

0, and for any real number α ∈ (0,1), there exists a perfect set E ⊂ [0,1] such
that m(E) = α and

limsup
m(I)→0

m(E ′∩ I)
m(I)ψ(m(I))

= ∞

for all x ∈ E.

Following Taylor we introduce a notion of ψ-density (compare with [22]). Let
C be the family of all nondecreasing continuous functions ψ : (0,∞)→ (0,∞)

such that lim
t→0+

ψ(t) = 0.

We say that x ∈R is a ψ-density point of A ∈L (we will write x ∈Φψ(A))
if and only if

lim
h→0+

m(A′∩ [x−h,x+h])
2hψ(2h)

= 0.

From Theorem 4.2 we obtain that the operator Φψ is not a lower density oper-
ator. However, this operator is an almost lower density operator (see [23] and
[15]) and the family

Tψ = {A ∈L : A⊂Φψ(A)}

forms a topology called ψ-density topology. Clearly, To  Tψ  Td . Let us
notice that, despite of topologies generated by lower density operators, for any
ψ-density topology there is a set of positive measure and empty Tψ -interior.
On the other hand, Tψ has a lot of properties similar to properties generated
by lower density operators. For any ψ ∈ C null sets are Tψ -closed and conse-
quently the space (R,Tψ) is neither first countable, nor second countable, nor
Lindelöf, nor separable. A set is compact in Tψ if and only if it is finite; a set
is connected if and only if it is connected in To; a set is Tψ -Borel if and only
if it is measurable (for details see [11]).

For any topologies Ta, Tb ⊂ 2R we will denote by Cab be the family of all
continuous functions f : (R,Ta)→ (R,Tb). It is easy to observe that

(P1) for any topologies Ta, Tb and Tc, if Tb ⊂Tc then Cab ⊃ Cac and Cba ⊂
Cca;
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(P2) for any pair of topologies Ta, Tb, if Ta ⊂Tb then Cab ⊂ Caa∩Cbb and
Cba ⊃ Caa∪Cbb.

If we start with topologies considered above: natural topology To, density
topology Td and ψ-density topology Tψ , we may obtain nine classes of con-
tinuous functions: Coo, Cod , Coψ , Cdo, Cdd , Cdψ , Cψo, Cψd and Cψψ .

Fig. 1. Relations between the classes of continuous functions connected with To, Td , Tψ

Denote by F the set of all these nine families. Some of them have been
examined:

1. Coo is the class of all ordinary continuous functions.
2. Cdo is the class of approximately continuous functions (see [4], [12] and

[23]). Let us remind that such functions are Darboux Baire 1 (a function f
is Baire 1 if for any perfect set P the restriction f |P has a point of continu-
ity). Moreover, each approximately continuous and bounded function is a
derivative.

3. Cdd is the class of density continuous functions (for the results see [2],
[4] and [20]). This class is not additive. All density continuous functions
are approximately continuous and they belong to Darboux Baire∗1 class.
Remind that f is Baire∗1 if for each perfect set P there is a portion Q⊂ P
such that f |Q is continuous.
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We will consider properties of functions from classes connected with ψ-
density topology. We present selected results of published articles and some
open problems. For the convenience of the reader we quote examples and
sketches of the proofs.

Observe that all the families from F have some common properties. As-
sume that Cab ∈F . It is evident that

1. C onst ⊂ Cab,
2. if f ∈ Cab, then − f ∈ Cab,
3. if f ∈ Cab and k ∈ R, then f + k ∈ Cab.

Moreover, Cab forms a lattice.

Remark 4.1. If f ,g ∈ Cab then max{ f ,g} ∈ Cab and min{ f ,g} ∈ Cab.

Proof. Let h = max{ f ,g} and x0 ∈ R. We will show that the function
h : (R,Ta)→ (R,Tb) is continuous at x0. If f (x0) > g(x0) (or g(x0) > f (x0))
then h is equal to f (g) on some neighbourhood of x0 and the thesis is obvious.
Assume then that h(x0) = f (x0) = g(x0) and G∈Tb is an open neighbourhood
of the point h(x0). The sets f−1(G) and g−1(G) are open and

x0 ∈ H = f−1(G)∩g−1(G) ∈Ta.

As min{ f ,g}= max{− f ,−g} we obtain that min{ f ,g} ∈ Cab. ut

If f ,g ∈ Cab then f +g and k f for a real k may not be in Cab. Also the limit
of uniformly convergent sequence of functions from Cab may not belong to
Cab.

4.2 Continuity related to natural topology

It appears that classes Coψ and Cod are surprisingly small. Following [4, The-
orem 3.1] and [8, Theorem 3] we can check that:

Theorem 4.3. Coψ = C onst for any function ψ ∈ C .

Indeed, suppose that f ∈ Coψ and a < b. Then f ([a,b]) is compact and
connected in Tψ . Therefore, f ([a,b]) is a singleton and f has to be constant.
Another proof can be found in [8].
By (P1) we obtain that Cod ⊂ Coψ , hence Cod = C onst.

Let us examine classes Cψo. First we introduce the notion of the inner ψ-
density point of a set A ⊂ R: x is said the inner ψ-density point of A ⊂ R if
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and only if there exists a set B ∈L such that B⊂ A and x is a ψ-density point
of B. Clearly, for a measurable set the notions of ψ-density point and inner ψ-
density point are equivalent. Now we can define ψ-approximately continuous
function.

Definition 4.1 ([22]). We say that a function f : R→ R is ψ-approximately
continuous at x0 if and only if x0 is the inner ψ-density point of f−1(( f (x0)−
ε, f (x0)+ ε)) for each ε > 0.

It is evident, that f is ψ-approximately continuous at x0 if and only if x0

is the inner ψ-density point of f−1((a,b)) for each interval (a,b) such that
f (x0) ∈ (a,b). We say that a function f : R→ R is ψ-approximately contin-
uous if and only if f is ψ-approximately continuous at each point. Note that
a set A is open in the topology Tψ if and only if each point of A is the inner
ψ-density point of A ([22, Theorem 3.3]). Therefore, a function f : R→ R
is ψ-approximately continuous if and only if for each interval (a,b) the set
f−1((a,b)) belongs to Tψ ([22, Theorem 3.6]), so f ∈ Cψo.

As To ⊂Tψ ⊂Td we obtain

Coo ⊂ Cψo ⊂ Cdo.

From [7, Property 5] it is known that for any function ψ ∈C there are functions
ψ1, ψ2 ∈ C such that

Cψ1o  Cψo  Cψ2o.

Hence for any function ψ ∈ C

Coo  Cψo  Cdo  DB1.

Moreover, in [24, Theorem 9] it is proved that the family Cψo is not contained
in the class of Baire∗1 functions.

It is easy to check that

Theorem 4.4. Let ψ ∈ C .

1. If f , g are ψ-approximately continuous functions, then f + g, f − g,
f · g, max{ f ,g} and min{ f ,g} are ψ-approximately continuous. If f is
a ψ-approximately continuous function and f (x) 6= 0 for x ∈ X, then 1

f is
ψ-approximately continuous.

2. If fn ∈ Cψo for any n ∈ N and a sequence { fn}n∈N uniformly converges to
f , then f ∈ Cψo.

3. If f ∈ Cψo and g ∈ Coo, then g◦ f ∈ Cψo.
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Remind that a function f : R→R is called measurable if f−1(U) ∈L for any
U ∈ To. Obviously, any approximately continuous and any ψ-approximately
continuous function are measurable. The famous theorem of Denjoy ([5])
states that f is measurable if and only if it is approximately continuous almost
everywhere. The similar theorem holds for ψ-approximate continuity.

Theorem 4.5 ([22, Theorem 3.7]). A function f : R→ R is measurable if and
only if there exists a function ψ ∈C such that f is ψ-approximately continuous
almost everywhere.

Proof. In the face of the theorem of Denjoy it is sufficient to prove that if f is
measurable, then there exists ψ ∈ C such that f is ψ-approximately continu-
ous almost everywhere. Suppose that f is measurable. Let (an,bn), n ∈N, be a
basis of Euclidean topology on the real line. From [22, Theorem 2.12] there ex-
ists a function ψ ∈C such that for any n∈N almost all points of f−1((an,bn))

are its ψ-density points. Denote by N( f ) the set of all points in which f is not
ψ-approximately continuous. Then

N( f )⊂
⋃

n∈N
[ f−1((an,bn))\Φψ( f−1((an,bn)))]

and consequently m(N( f )) = 0. ut

It is known that if Tψ1 \Tψ2 6= /0, then Cψ1o \Cψ2o 6= /0 ([7, Theorem 2]).
From [7, Proposition 4] it follows that there exist continuum different topolo-
gies Tψb  Tψa , where 0 < a < b < 1, and continuum different classes of
continuous functions such that

Coo  Cψbo  Cψao  Cdo

for any 0< a< b< 1. Moreover, if Cψbo Cψao, then there exists a c-generated
algebra F of functions which is contained in the difference Cψao Cψbo (com-
pare [17]).

4.2.1 Classes Cψψ

Let us fix a function ψ from the family C . We will consider continuous func-
tions f : (R,Tψ) → (R,Tψ). Such functions are called ψ-continuous. Evi-
dently,

C onst  Cψψ ⊂ Cψo  Cdo.
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Since Cdo  DB1 ([4, Theorem 1.3.1]) any function from Cψψ is measurable
and DB1.

Remind some additional information about ψ-density topologies. All of
them are invariant under translation, but they may not be invariant under mul-
tiplication. More precisely, if |α| ≥ 1 and 0 is a ψ-density point of measurable
set A, then 0 is a ψ-density point of αA. Indeed, it follows from monotonicity
of ψ ∈ C and inequality

m(αA′∩ [−h,h])
2hψ(2h)

=
αm(A′∩ [− h

α
, h

α
])

2h
α

ψ(2h)
≤

αm(A′∩ [− h
α
, h

α
])

2h
α

ψ(2h
α
)

.

On the other hand, if limsup
x→0+

ψ(αx)
ψ(x) = ∞, then there exists a set A ∈ Tψ such

that 1
α

A /∈ Tψ (compare with [22, Theorem 2.8]). It is not difficult to check
(compare [6] and [22]), that the topology Tψ is invariant under multiplication
by a nonzero number if and only if ψ fulfills the condition

limsup
x→0+

ψ(2x)
ψ(x)

< ∞. (∆2)

We will write then ψ ∈ ∆2.

Proposition 4.1 ([8, Remark 9]). Assume that ψ ∈ C .

(1) If ψ ∈ ∆2 and f ∈ Cψψ , then k f ∈ Cψψ for any number k ∈ R.
(2) If ψ ∈ ∆2, then any piecewise linear function is ψ-continuous.
(3) If ψ /∈ ∆2, then no linear function f (x) = kx with |k|> 1 is ψ-continuous.

For ψ = id the topology Tψ coincides with superdensity topology ([18]). This
function evidently fulfills (∆2). The functions ψ(x) = xα for α ≥ 1 are the
most useful for obtaining topologies Tψ satisfying (∆2). Note that, there are
functions which do not satisfy (∆2) but are in C , for instance ψ(x) = e− ln2 x

for x ∈ (0,1) and linear for x≥ 1 (one can find another example in [6]).
Let us remind that if ψ /∈ ∆2 then even linear functions may not be continu-

ous. In [10] it is proved that if ψ ∈ ∆2 and there exist numbers α,β > 0 such
that

0 < α <
f (x)− f (y)

x− y
< β < ∞

for any x 6= y, then f is ψ-continuous.
In [2] it is shown that the sum of two density continuous functions need

not be density continuous. We will show a similar result for ψ-continuous
functions. Moreover, we observe that for any ψ ∈ C there exists a function f
such that f + id is not ψ-continuous.
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Theorem 4.6 ([9, Theorem 2]). For any ψ ∈ C there exists a ψ-continuous
function f such that f + id is not ψ-continuous.

Proof. If ψ does not satisfy the condition (∆2) then we can put f (x) =
1
2 x. Then, from Proposition 4.1 (3), the function g(x) = f (x) + x is not ψ-

continuous. Assume then that ψ ∈ ∆2. Let A =
∞⋃

n=1
[an,bn] be an interval

set such that 0 is its right-hand ψ-dispersion point, 0 < an < bn < an−1,
lim
n→∞

bn = 0 and bn+1− an+1 ≤ bn− an for any natural number n. Put c0 = b1,

cn = an +
bn−an

4 , dn = bn− bn−an
4 for n ∈ N and C =

∞⋃
n=1

[cn,dn]. We define a

continuous function f : R→ R in the following way:

f (x) =


0 for x ∈ (−∞,0],
x+ bn−an

4 for x ∈ [dn,cn−1),n ∈ N,
linear for x ∈ [cn,dn],n ∈ N,
c1 for x≥ c1.

The function f is ψ-continuous at any point x 6= 0 (as piecewice linear). It is
also ψ-continuous at x = 0, because for any measurable set V ∈ Tψ such that
0 ∈V there exists a set U ∈Tψ such that 0 ∈U and f (U)⊂V (for details look
[9, Theorem 2]).

The function
g(x) =− f (x)+ x

is constant on each interval [dn,cn−1] for all natural numbers n≥ 2 and g(dn) =
bn−an

4 . The set

B =

{
b1−a1

4
,
b2−a2

4
, . . .

}
is denumerable so it is closed in topology Tψ . But its preimage g−1(B) =

∞⋃
n=2

[dn,cn−1] is not closed in Tψ . Hence g is not ψ-continuous. ut

Theorem 4.7. For any ψ ∈ C

(1) Coo \Cψψ 6= /0,
(2) Cψo \ (Coo∪Cψψ) 6= /0,
(3) Cdd \Cψψ 6= /0.

Proof. (1). Let A =
∞⋃

n=1
[an,bn] be a set satisfying the conditions: bn+1 < an <

bn, lim
n→∞

bn = 0, such that lim
h→0+

m(A′∩(0,h))
2hψ(2h) = 0 and let {yn}n∈N be a sequence

strictly decreasing to 0. The function
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f (x) =


yn for x ∈ [an,bn],n ∈ N
0 for x≤ 0,
linear for x ∈ [bn+1,an],n ∈ N

is continuous at every point x 6= 0 as piecewise linear function. At x = 0 f is
continuous, because lim

n→∞
f (yn) = 0 = f (0).

From the construction of A we have that x = 0 is its ψ-density point and 0 /∈
A, so A is not a Tψ -closed set. The set {yn}n∈N is Tψ -closed and f−1({yn}) =
A. Therefore f /∈ Cψψ ([8, Example 7]).

(2). Let {tn}n∈N be an arbitrary sequence of positive numbers strictly de-

creasing to 0. Take an interval set A=
∞⋃

n=1
(an,bn) such that lim

h→0+
m(A′∩[−h,h])

2hψ(2h) = 0

and [an,bn]⊂ (tn+1, tn). Let B=
∞⋃

n=1
(cn,dn) be a set such that lim

h→0+
m(B∩[−h,h])

2hψ(2h) =

0 and [cn,dn]⊂ (an,bn) (compare [7, Proposition 1]). We define

f (x) =


0 for x≤ 0 and x = an, n ∈ N
1
n for x ∈ (an,bn)\ (cn,dn),n ∈ N
1 for x = cn+dn

2 ,n ∈ N
linear for the remaining x.

The function f is ψ-approximately continuous at any point. It is neither con-
tinuous nor ψ-continuous at x = 0 (for details see [8, Example 12]).

(3). There exist sets C =
∞⋃

n=1
[cn,dn] and E =

∞⋃
n=1

[en, fn] with 0< dn+1 < cn <

dn < en < fn < dn, lim
n→∞

dn = 0 such that

lim
h→0+

m(C∩ (0,h))
2h

= 0 and
m(C∩ (0,dn))

2dnψ(2dn)
>

1
4
.

The function

g(x) =


0 for x /∈C,

1 for x ∈ [en, fn], n ∈ N,
linear on [cn,en] and [ fn,dn], n ∈ N.

has required properties ([9, Proposition 5]). ut

Theorem 4.8 ([8, Example 11]). If ψ ∈ ∆2 then Cψψ \Coo 6= /0 .

Proof. Let ψ ∈C be a function fulfilling the condition (∆2) and A=
∞⋃

n=1
(an,bn)

be an interval set such that lim
h→0+

m(A∩(0,h))
2hψ(2h) = 0. The function
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f (x) =


0 for x /∈ A,
1 for x = an+bn

2 ,n ∈ N
linear for x ∈

[
an,

an+bn
2

]
∪
[

an+bn
2 ,bn

]
,n ∈ N.

has required properties. ut

Proposition 4.2 ([9, Proposition 4]). If ψ ∈∆2, then the family of ψ-continuous
functions is not closed under the uniform convergence.

The proof of this property is not complicated and it is based on the facts that
there is a continuous function which is not ψ-continuous and each continu-
ous function is a limit of uniformly convergent sequence of piecewise linear
continuous functions.

The following problems are still open: Is the family Cψψ \Coo nonempty
if ψ 6∈ ∆2? Is the class Cψψ closed under uniform convergence if we do not
assume condition (∆2)?

4.2.2 Classes Cψd and Cdψ

Let ψ ∈ C . By property (P2) Cψd ⊂ Cdd ∩Cψψ . Hence every function from
the family Cψd is measurable and DB∗1 because functions from Cdd are mea-
surable and DB∗1 ([4, Theorem 4.1]).

The class Cψd is relatively small. It is easy to check that linear functions do
not belong to it. Moreover, what is surprising, no bijection belongs to Cψd .

Theorem 4.9. If f ∈ Cψd then f is not a bijection.

Proof. Let f : (R,Tψ)→ (R,Td) be a continuous function. Since f is a Dar-
boux function, f (I) is an interval for any interval I. Consequently, for any
U ∈To, f (U) is measurable.

Suppose that there exists the inverse function f−1 : R→R. By Theorem 4.2
there is a nowhere dense and perfect set A such that m(A)> 0 and Intψ(A) = /0.
A is closed in To, so it is closed and nowhere dense in Tψ . Hence A′ is dense in
Tψ . Moreover A′ ∈To, so f (A′) is a measurable set. Hence the set R\ f (A′) =
f (A) is measurable.

Suppose that m( f (A)) > 0. Then there is a nonempty set U ⊂ f (A) open
in topology Td . Since f is continuous, f−1(U) ∈ Tψ . But A′ is dense in Tψ ,
then f−1(U)∩A′ 6= /0 and, consequently, U ∩ f (A′) 6= /0. It is a contradiction,
because U ⊂ f (A). This proves that m( f (A)) = 0.
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Consequently, the set f (A) and any subset B of f (A) is closed in Td . Since
f ∈ Cψd , f−1(B) is closed in Tψ for any B ⊂ f (A). Any Tψ -closed set is
measurable. Obviously, for any C⊂A there exists B⊂ f (A) such that f−1(B)=
C. It gives a contradiction, because the set A (of positive measure) contains a
nonmeasurable set. ut

Modifying the last proof we can prove the following

Theorem 4.10 (compare [8]). If f ∈ Cψd and a < b then f |(a,b) is not an injec-
tion.

We do not know if there exists nonconstant function in Cψd .
From (P2) it follows that Cdψ ⊃ Cdd ∪Cψψ and Cdψ ⊂ Cdo, therefore func-

tions from Cdψ are DB1 and may not be DB∗1. The inclusion Cdψ ⊂ Cdo is

proper. Indeed, take the interval set A =
∞⋃

n=1
[an,bn] such that 0 ∈ Φ+(A) and

put

f (x) =


1
n for x ∈ [an,bn], n ∈ N,
linear for x ∈ [bn,an−1] ,n ∈ N
0 for x≤ 0.

Then Y = (0,∞)\{1
n ;n ∈ N} ∈ Tψ , but f−1(Y ) = (0,∞)\A /∈ Td . Hence f /∈

Cψd . Simultaneously, f is continuous, therefore approximately continuous, so
Cdψ  Cdo and, additionally, we obtained that Coo 6⊂ Cψd .

Moreover f ∈ Cdo \Cdψ for any ψ ∈ C . Therefore, Cdo \
⋃

ψ∈C
Cdψ 6= /0.

However we do not know how to describe the union
⋃

ψ∈C
Cdψ . Obviously, if

Tψ1  Tψ2 then Cdψ2 ⊂ Cdψ1 , but we even can not say whether this inclusion
is proper.

4.3 Functions preserving ψ-density points

In [1] there was introduced the concept of homeomorphism preserving density
points. This notion was examined also in [19]. We will adopt this idea to the
theory of ψ-density continuous functions.

Fix a function ψ ∈ C and let introduce the notion of a function preserving
ψ-density points.

Definition 4.2. We will say that a homeomorphism h preserves ψ-density
points if for any measurable set S⊂ R and any x0 ∈Φψ(S)
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lim
t→0+

m∗((h(S))′∩ [h(x0)− t,h(x0)+ t])
2tψ(2t)

= 0

(m∗ stands for the outer Lebesgue measure).

Observe that if a homeomorphism h preserves ψ-density points, then it also
preserves ψ-dispersion points.

Proposition 4.3. If h is a homeomorphism preserving ψ-density points, then h
satisfies Lusin’s condition (N).

Proof. Let Z be a set of Lebesgue measure zero. There exists a Gδ -set A ⊃ Z
of measure zero. Then h(A) is also a Gδ -set, so it is measurable. Suppose that
Lebesgue measure of h(A) is positive. Hence h(A) has density 1 at a certain
point y0 ∈ h(A):

lim
t→0+

m(h(A)∩ [y0− t,y0 + t])
2t

= 1.

Observe that for S = A′ and any t > 0 such that ψ(2t)≤ 1, we have

m∗((h(S))′∩ [y0− t,y0 + t])
2tψ(2t)

=
m∗(h(S′)∩ [y0− t,y0 + t])

2tψ(2t)
≥

≥m(h(A)∩ [y0− t,y0 + t])
2t

,

therefore h does not preserve ψ-density points. ut

Corollary 4.1. If a homeomorphism h : [0,1]→ [0,1] preserves ψ-density points
then it is an absolutely continuous function.

From Proposition 4.3 it follows that if the homeomorphism h preserves ψ-
density points then, for any measurable set S⊂R, h(S) is a measurable set and
we need not use the outer measure in Definition 4.2.

Theorem 4.11. A homeomorphism h : R → R preserves ψ-density points if
and only if h−1 is a ψ-continuous function.

Proof. First we assume that h preserves ψ-density points. We will show that
h−1 is a ψ-continuous function at any point. Fix a point y0 and a set V ∈ Tψ

such that x0 = h−1(y0) ∈V . We will show that there exists a set U ∈ Tψ such
that y0 ∈U and h−1(U)⊂V . Since V is open in Tψ , for any x ∈V we have x ∈
Φψ(V ). The homeomorphism preserves ψ-density points, so h(x)∈Φψ(h(V )).
Hence h(V ) is open in Tψ and putting U = h(V ), we complete the proof of this
implication.
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Suppose now that h does not preserve ψ-density points. Set x0 ∈ R and
S ∈L such that x0 is a ψ-dispersion point of S and

limsup
t→0+

m∗(h(S)∩ [h(x0)− t,h(x0)+ t])
2tψ(2t)

> 0.

Take a Gδ -set A⊃ S such that m(A\S) = 0, a sequence (an)n∈N decreasing to
0 and a number α > 0 for which

m(h(A)∩ [h(x0)−an,h(x0)+an])

2anψ(2an)
> α

for all n ∈ N. We can assume that for n ∈ N

m(h(A)∩ [h(x0),h(x0)+an])

2anψ(2an)
>

α

2
(4.3)

For any natural n there exists a closed set Bn⊂ h(A)∩ [h(x0)+an+1,h(x0)+an]

such that

m(Bn)> m
(

h(A)∩ [h(x0)+an+1,h(x0)+an]
)
− α

4
· 1

2n ·2anψ(2an). (4.4)

The set B =
∞⋃

n=1
Bn∪{h(x0)} is closed in natural topology and from (4.3) and

(4.4) we obtain
m(B∩ [h(x0),h(x0)+an])

2anψ(2an)
≥ α

4
> 0

for any n. Hence h(x0) is not a ψ-dispersion point of the set B.
On the other hand, x0 is a ψ-dispersion point of h−1(B) and the set C =

R\h−1(B)∪{x0} ∈Tψ , but h(C) =R\B∪{h(x0)} /∈Tψ , so the function h−1

is not ψ-continuous. ut

This survey still leaves numerous questions without answers. In particular
we do not know if:

1. Is the difference Cψψ \Coo nonempty and is the class Cψψ closed under
uniform convergence if ψ /∈ ∆2?

2. Does there exist a nonconstant function f ∈ Cψd?
3. Is the inclusion Cdψ2 ⊂ Cdψ1 proper, if Tψ1  Tψ2?
4. What is the union

⋃
ψ∈C

Cdψ and intersection
⋂

ψ∈C
Cdψ?

5. What is the relation between classes Cψ1ψ1 and Cψ2ψ2 for different func-
tions ψ1,ψ2 ∈ C such that Tψ1 6= Tψ2?
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