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Abstract

In this note I am reflecting on interrelations between three concepts of truth:

(1) that employed by Hilbert arguing his formalist view on the nature of math-

ematics, (2) Freges idea of truth supported by mathematical intuition, and (3)

known as Aristotelian correspondence idea of truth concerning any propositions

not merely mathematical.
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According to the Hilbert’s doctrine of formalism, there are no princi-

ples that govern the processes of forming mathematical theories; mathe-

maticians are free to form such theories in any way which, according to

their judgments, results in revealing formal problems of considerable inter-

est. The objects of mathematical analyses are determined by the theory’s

axioms abstract structures; the objectives of such analyses are learning

properties of those structures. In a letter to Frege, who did not share

Hilbert’s formalist attitude Hilbert wrote:

You write: “I call axiom propositions that are true but are not

proved because our knowledge of them flows from a source very

different from the logical source, a source which might be called
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spatial intuition. From the truth of the axioms it follows that

they do not contradict each other.” I found it very interesting

to read this sentence in your letter, for as long as I have been

thinking, writing, and lecturing on these things, I have been

saying the exact opposite: if the arbitrarily given axioms do not

contradict each other with all their consequences, then they are

true and the things defined by the axioms exist. For me this is

the criterion of truth and existence1

Hilbert’s and Frege’s truth criteria of mathematical propositions are

incompatible rather than inconsistent; they are related to different ideas of

truth which thus can be referred to as truthH and truthF , resp. TruthH is

a coherential notion of truth (for a formula, p, of a mathematical theory to

be true, p should be a deductive consequence of logically consistent system

of axioms)2. TruthF is defined in terms of the mathematician’s “spatial

intuition” a somewhat mysterious way of learning truth about something

“behind of” the intuition. TruthF appears to be alternative to TruthH
correspondence notion of truth; the correspondence between the examined

formula p and the determined by the mathematician’ intuition physical

(spatial) state of affair. One may wonder if it can be interpreted in this

way indeed.

The fact that either scientists themselves, or offering their service math-

ematicians are able to make use of mathematics (selected parts of it) as the

instrument of designing models of numerous natural and social phenomena

is denied by no mathematician; mathematics is a powerful tool of handling

questions specific to practically all fields of professional knowledge. The

following issue, familiar as Königsberg bridge problem, exemplifies strong

and direct relevance of mathematics to empirically decidable issues:

The Königsberg bridge problem asks if the seven bridges of the

city of Königsberg [recently Kaliningrad] over the river Preger

can all be traversed in a single trip without doubling back,

with the additional requirement that the trip ends in the same

1 Frege, G. 1980, Philosophical and Mathematical Correspondence. Ed. G. Gabriel,
H. Hermes, F. Kambartel, C. Thiel, and A. Veraart. Abr. B. McGuinness and trans.
H. Kaal. Chicago: University of Chicago Press, 39-40; quoted after Gregory H. Moore
mcps.umn.edu/philosophy/11 4Moore.pdf.

2Some, not restricted to mathematics only variants of truthH have been analyzed by
R. Carnap and by K. Ajdukiewicz.
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place it began (see Fig. 1). [...] This problem was answered in

the negative by Euler (1736), and represented the beginning of

graph theory.

Fig. 1. Königsberg bridges (Quoted after http://mathworld.wolfram.com/

KoenigsbergBridgeProblem.html).

Apparently the field of interest of mathematicians engaged in the de-

scribed problem was a factual situation. In fact, the factual state of affairs

was of interest only as much as it satisfied the conditions defining the

abstract construct corresponding to it. If the problem were examined as

concerning physical reality, examining the possibility of traversing bridges

over the river Preger should include any circumstances, e.g. flood that

could make traversing some bridges impossible.

The abstract nature of the objects of mathematical investigations is

not necessarily the outcome of shifting the interest in physical phenomena

“such as they are” to their “idealized” (some philosophers prefer to say

“counterfactual”) counterparts. There is nothing “idealized” in Konigs-

berg’s bridges and traversing them. What made them “abstract field of

interest” was examining the bridge problem under the assumption that the
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bridges as the object of mathematical analyses will remain the same as

they are at the time of defining with the problem; nothing destroy them or

make non-traversable.

Realism as a view on the nature of mathematics differs radically from

empirical realism being a view on the nature of knowledge conceived of as

“empirically grounded” The most relax version of the latter is determined

by several complementing each the other loose criteria. Of special relevance

is the following:

ERC. Whatever can be confirmed empirically, practically un-

limited number of times, by well-trained impartial observers or

experimenters is likely to be real. So is whatever can be de-

duced (derived by truth-preserving reasoning) from the thus

established “empirical facts”.

Neither any single criterion nor any battery of criteria enables profes-

sional researchers to distinguish real things from appearances in a fully

reliable manner. Fallibility of the idea of reality implies fallibility of that

of truth. But – the point which has been argued by many thinkers (Dewey

and Popper among others) – fallibility of our ideas of what is real and what

is merely a product of our imagination does not imply that the ideas in

question can never be correct. Likewise, fallibility of truth does not imply

that we never can find out whether a state of affairs obtains or it does not.

In its outlined above the most permissive version empirical realism

is compatible with the view that, besides physical bodies, the world is

occupied by numerous mental (purely abstract included), cultural, legal,

political ideas which, if internalized, manifest their existence modifying

human behavior. By examining empirically consequences of internalized

ideas one examines the ideas in question.

The proponents of intuitionism, the third doctrine on the nature of

mathematics, are skeptical about the realist idea of truth accessibility.

They are calling attention to the fact that numerous mathematical no-

tions are neither related to any empirical phenomena nor even inspired by

reflecting upon the phenomena of that kind. Such notions are outcomes

of extrapolating mathematical ideas far beyond the limits of interest of

the theorists using mathematics as an instrument of examining empirical

phenomena. In this way mathematicians may arrive at conceptions leaving

some issues relevant to them undecidable. As Feferman presenting his doc-

trine of “conceptual structuralism” puts it: “One may speak of what is true
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in a given conception, but that notion of truth may be partial. Truth in full

is applicable only to completely definite conceptions.” And he adds: What

is clear in a given conception is time dependent, both for the individual

and historically”3.

The presented above views on the nature of mathematics needs some

additional comments. The formalist view is the outcome of skeptical atti-

tude on the idea of tracing any “factual origins” of mathematical beliefs.

For the theorist of professional knowledge adopting this view is tantamount

of resigning from any attempt of accounting for fundamental relevance of

mathematical ideas to factual knowledge development. The intuitionist

does not deny that the idea of truth characteristic of mathematical anal-

yses is grounded on the factual idea of truth. But, in distinction to the

realist, the intuitionist tends to conceive mathematical truth as the prop-

erty essentially different from its factual counterpart.

Besides defining differently the objects of the mathematician’s analy-

ses, the realist and the intuitionist disagree on which are the right criteria

of soundness of mathematical reasoning. According to the former, the suf-

ficient and necessary condition for a mathematical proof to be sound is

“preserving truth;” if under some interpretation the premises of the math-

ematical argument are true, so has to be the conclusion. The intuitionist

demands more: correct reasoning should not result in demonstrating the

existence objects which one is not able to “construct effectively”. For this

reason, intuitionists “dislike” the set theoretic Axiom of Choice; it states

the existence of sets for which there is no effective way of constructing

them.

The development of mathematics is unlikely to depend on any way

whatsoever to which of the outlined doctrines the mathematicians are ready

to subscribe. Instead, the doctrines in question are of considerable interest

for the theorist of knowledge rather than a mathematician.

The history of numerous mathematical theories, the oldest two – arith-

metic of natural numbers and that of the Euclidean Geometry – included,

exemplify the process of emerging “codified knowledge systems” from its

“experiential” predecessors.

3Cf. Salomon Feferman, Logic, mathematics and conceptual structuralism, in The 
Metaphysics of Logic (P. Rush, ed.), Cambridge University Press (2014), 72-92. See also 
http://math.stanford.edu/~feferman/papers.html.
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By a “knowledge system” I’ll mean a “relatively autonomous” branch

of professional knowledge of any kind whatsoever. In case of mathematics,

knowledge systems, besides taking the form of mathematical theories, may

take the form of complexes of “mathematical units” related to specific

mathematical problems and combining into conceptually coherent wholes:

mathematical analysis, chaos theory, mathematical statistics, etc.

In turn, by codifying a knowledge system I mean setting the system’s

syntactical and semantic properties. Setting the former requires defining

the language in which the specific to the system propositions (both state-

ments and conjectures) are communicated. Setting the latter requires set-

ting instructions enabling the users of the system to learn truth values of

at least some of the system’s propositions (recognize them as either true or

false).

Arithmetic of natural numbers, AN, such as we know it nowadays has

emerged from practical knowledge of counting objects whose scarcity or

abundance might matter, and in particular knowledge of counting the out-

comes of operations resulting in either increasing or decreasing the amount

of such objects (the practical operations corresponding to adding and sub-

tracting numbers). The origins of the Euclidean plain geometry, EG2, go

back to practical abilities of handling topographical problems to which,

among others, moving from one place to another or designing structures

and roads connecting them on a limited area gives rise.

Roughly speaking, experiential knowledge is acquired by forming men-

tal pictures, less or more exact, occasionally only schematized, of frequently

encountered situations. Instances of thus acquired knowledge are referred

to by cognitive psychologists as “cognitive schemata” or, if they concern

some sequences of activities, “cognitive scripts”. Neither AN nor EG2 in

their experiential version reduce to a single cognitive schema. Rather they

are numerous, preserved in the agents’ minds collections of such, both dis-

crete and generic, schemata of corresponding to the nature of these theories

kinds.

With such schemata in the mind one does not needs to be familiar with

any codified system of AN in order to count the number of items of a “col-

lection” (a finite non empty set of objects), master the abstract operation

of adding numbers by learning to count the elements of unified collections,

and master subtracting numbers by learning to count the elements of col-

lections separated as parts of some larger ones. The way in which EG2 is

related to its experiential origins is similar.
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To account of the mental processes that eventually resulted in emerg-

ing the codified version of AN and EG2 is the task of cognitive scien-

tists. But accounting of the codification procedures is the task of meta-

mathematicians. In two provided below subsections I am discussing some

selected aspects of the former.

Euclidean plain geometry EG2. Euclid’s codification of the two di-

mensional geometry has been restricted to setting the axiom system that –

as Euclid expected – should enable its properly trained users to derive by

truth preserving reasoning all theses which one is able to identify as true

by reflecting on the held in mind geometric ideas (in fact, the variety of

topographic schemas). The minimal requirement that properly done codi-

fication of an axiom system should satisfy is distinguishing clearly primi-
tive terms appearing in axiom from the terms determining the “deductive

apparatus” of the theory. The axioms are postulated to determine the

meanings (legitimate usages) of the primitive terms, while the meanings of

terms specific to deductive apparatus should be determined by the valid in

the system inference instructions.

The set by Euclid list of the primitive terms consisted of: points,

straight lines and their segments determined by points located in them,

distances between two points located on the same line (length of a line seg-

ment), angles between two crossing themselves lines, circles determined by

their centers and distances for their radiuses. No list of terms that suffice to

codify the deductive features of EG2 was given; that part of EG2 was left

non-codified. It does not mean, however, that the experiential characteris-

tic of it was unclear. Besides its logical part being the same as in numerous

others cases of reasoning which ancient philosophers employed in its expe-

riential version on numerous occasions, it involved the experiential idea of

moving geometrical figures in the way preserving their metric properties

(distances of located on them points and angles between crossing lines).

Euclidean axioms tell nothing about the operations in question; one

learns them from supplementing the axioms informal comments. But ex-

periential ideas of these operations are as essential complement of the cod-

ified version of EG2 as the Euclid’s axioms. By performing those opera-

tions one may (1) construct new geometric lines and figures thus forming

definitional extensions of EG2 and (2) measure distances and angles and

thus to produce deductive argument involving these concepts. The anal-
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ysis of the problems to which the task of codifying these operations gave

rise was provided by Felix Klein in Vergleichende Betrachtungen ber neuere
geometrische Forschungen, Verlag von Andreas Deichert, Erlangen, 1872.

The very long – lasting many centuries – process of codifying predi-

cate which in its tacit form is traceable in mathematical reasoning, from

the earliest days of people’s struggling with mathematical issues was com-

pleted late in the nineteenth century when as Gregory H. Moore4 put it

“the notion of quantifier was disentangled from the notion of prepositional

connective and was given an appropriate symbolic representation. These

two developments were both brought about independently by two mathe-

maticians having a strong philosophical bent-Charles Sanders Peirce and

Gottlob Frege”.

Peano Arithmetic AN. G. Peano’s (1889) system of five axioms involv-

ing three primitive terms: N (the set of all natural numbers), S (successor

operation), and 0 (the least natural number). The axioms (A1) 0 ∈ N ,

(A2) n ∈ N → Sn ∈ N , (A3) n ∈ N → Sn 6= 0, and (A4) (n ∈ N ∧ n
′ ∈

N ∧ Sn = Sn
′) → n = n

′, and the axiom of induction which, equivalently

to its original version, can be stated as the following instruction of recursive
reasoning: Let P be a unary predicate, then

0 ∈ P, ∀n(n ∈ P → Sn ∈ P ) ⊢ N ⊆ P

As in any case of codifying experiential beginning of a mathematical theory,

Peano AN gives rise to the question of completeness of the offered codi-

fication. All Peano’s axioms are “intuitively true.” Nothing suggests that

they may be logically inconsistent, either. Suppose one decides to take for

granted that the Peano axioms are both trueF and trueH .

As Gödel has succeeded to prove, by establishing his famous Incom-

pleteness Theorem, neither Peano’s axiom system, nor any improved ver-

sion of it can be complete; AN cannot be codified in the way assuring that

every true proposition expressed in the language in which AN has been

codified is either an axiom or is deductively derivable from the axioms,

characterising the codification. Moreover, it is so regardless of whether the

axiom system in question, concerns arithmetic operations exclusively, or

any additional besides them.

4See: mcps.umn.edu/philosophy/11 4Moore.pdf.
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Which of two, trueF and trueH , concepts of truth does Gödel’s Incom-

pleteness Theorem refer to? The right answer is: both. The provided by

Gödel proof of the discussed theorem hinges on two assumptions: (1) de-

ductive reasoning preserves truthH , and (2) whichever criteria of truth one

is ready to follow, in order for a proposition p to be true in virtue of the

criteria in question, p has to be trueH (the adopted criteria of truth cannot

be inconsistent with criteria of “logical truth”).

The relevance of Gödel’s incompleteness theorem for consideration con-

cerning any knowledge systems, not merely mathematical theories is obvi-

ous. In their rigorously codified versions, all such systems become pieces

of “applied mathematics”. As such they cannot represent AN as auxiliary

systems and consequently they are incomplete.
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