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THE CAUCHY-KOWALEVSKI THEOREM

BEATA OSINSKA-ULRYCH AND GRZEGORZ SKALSKI

ABsTrACT. We give a recursive description of polynomials with non-negative
rational coefficients, which are coefficients of expansion in a power series so-
lutions of partial differential equations in Cauchy-Kowalevski theorem.

1. INTRODUCTION

In recent time we can observe the renewed interest in the algorithms associated
with the solution of partial differential equations using power series (see: for ex-
ample [8]). This study initiated by the famous theorem of Cauchy-Kowalevski'
(see original work [9], Theorem 2.1 and Proposition 2.1 in this article, compare [2],
[3]) were later generalized by Riquier [11] for a wide class of orthonomic passive
systems. In both theorems, the proof of the existence and uniqueness consisted
of demonstration, in a first step, the existence and uniqueness of formal solutions,
and in the second step of its convergence. The work of Riquier for polynomial
nonlinear differential equations was complemented by Ritt [12]. The proof used
the method of characteristic set. Since that time many algorithms for determining
the formal solution of partial differential equations was stated. It is well known
that coeflicients of such a formal solution are polynomials depending on coeflicients
occurring in the power series expansion of right-hand side functions in partial dif-
ferential equations (see: for example [1], [4], [8], see also [13]). Moreover, these
polynomials have non-negative rational coefficients. The aim of this paper is to
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tAfter G. B. Folland, [3] the problem of how to spell this name is vexed not only by the usual
lack of a canonical scheme for transliterating from the Cyrillic alphabet to the Latin one but also
by the question of whether to use the feminine ending (-skaia instead of -ski). The spelling used
here is the one preferred by Kowalevski herself in her scientific works.
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146 B. OSINSKA-ULRYCH AND G. SKALSKI

give a recursive description of these polynomials (Theorem 2.5), which is not given
explicitly in textbooks.

Multi-indexes and partial derivatives. The n-element sequence a =

(ai,...,a,) of non-negative integers® will be called multi-index of dimension n.
We introduce the following notations:
n
|a|:Zaj, al=ap! - ap,
j=1

and for x € R™,

x® =aft - xhm.
In general, we will use the shortcut
0
0j =0y, = 7
J 81,‘]

for the partial derivative in R™. For the partial derivatives of higher order it is
more convenient to use multi-index

n (o7
o i glel
0% =07 = H o = oar . Aaoont

, Oz Ox{" - 0xn"

Jj=1
In particular, we note that for a = 0, 9¢ it is the identity operator. Let I be any
non-empty set containing an element j. Then 1; designates a system (J;);ecr, where
0; =1 fori=j and §; = 0 for ¢ # j. With the above descriptions it is easily to
note that the partial derivatives can be defined by induction in the following way:

(1) 9° =id,
(2) 9ot = (0)l = 9;0% for j € {1,2,...,n} and all @ € N".

Let us order the set of multi-indices. We write that o < 3, if a; < ; for all 4.
For the given complex numbers a,, for | < k, by (aq)|a|<x We denote the element
of CN(®) given by ordering the ’s in this fashion, where N (k) is the number of
elements in the set {& € N": |o| < k}. Similarly, if A C {a: |o| < k}, then we
can consider the elements of space CV of the form (aq)aca, where N = #A.

2. THE CAUCHY-KOWALEVSKI THEOREM

Let k be a positive integer and let S be an analytic hypersurface of form
S ={(z,t) = (x1,...,2p_1,t) ER": £ =0}.

Let F: Q — R be an analytic function in some neighbourhood © C R™ x RV ®*) of
the origin, where

N(k) = (n—;—k) ={(e,j) = (1,...,an-1,7) e N": |a] +j < k}.

2Here the set of non-negative integers is denoted by N.
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If ©o,...,pr_1 are the real analytic functions at the origin of R"~!, then the
analytic Cauchy problem is to look for the solution w of system (2.1) analytic at
the origin of R"

Flat (006 =0
(2.1) (x ( v tu)|a+j<k) ’
Hu(z,0) =p;(z), 0<j<k.

We assume that the equation F' = 0 can be solved for dfu to yield 9Fu as an
analytic function G of the remaining variables. We do this because of the bad
behaviour that can occur when this condition is not satisfied (see examples ¢ and
11, page 43 in [3]). The Cauchy problem then takes the form

ko, t a 9J
atlu G <x, , (6'3: o u)a|+j<k7j<k> ,
u(z,0) = p;(z), 0<j<k.

(2.2)

This problem has at most one analytic solution (see [3, Proposition 1,21]):

Proposition 2.1. Assume that G, g, ..., pk—1 are analytic functions near the
origin. Then there is at most one analytic function u satisfying (2.2).

Proof. Functions ¢y, ..., pr—1 together with (2.2) determine all the partial deriva-
tives of function u of order < k on S. Since G is analytic, by differentiating (2.2)
with respect to ¢ we have

Oty = 96 + oG

x,t, (8(18]“) )a(yaj-‘rlu
o Iaﬂ%;,xka“(avi)( T Jal4i<hy i<k F

All the quantities on the right are known on S, so is E}fﬂu; hence we know all
derivatives of u of order < k 4+ 1 on S. Applying 0; more times, we obtain higher
derivatives. All the partial derivatives of the function u at zero are therefore known
and determine v uniquely. O

In our article we focus on the following fundamental existence theorem (see [9],
compare |2, Theorem 2 in paragraph 4.6.3], [3, Theorem 1.25]).

Theorem 2.2 (The Cauchy-Kowalevski Theorem). Assume that G, o, ..., Pk—1
are analytic functions near the origin. Then there is a neighborhood of the origin
on which the Cauchy problem (2.2) has a unique analytic solution.

Uniqueness of solution was proved in Proposition 2.1. It’s proof suggests the
construction of solution: determine all the derivatives of u at the origin by differ-
entiating

oFu=a <x,t, (a;}agu) )
lal+i<k, j<k
and plug the results into Taylor’s formula. The problem is to show that the resulting
power series converges. To this end, it is convenient to replace our k-th order
equation by a first order system of differential equations.
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Theorem 2.3. The Cauchy problem (2.2) is equivalent to the Cauchy problem for
a certain first order quasi-linear system of partial differential equations of the form

n—1
oY = ZAJ'(IIJ7t, Y)0u,Y + B(x,1,Y),
(2.3) j=1
Y (z,0) = &(z),

i.e., a solution to one problem can be read off from a solution to the other. Here
Y, B, and @ are vector-valued functions, the A;’s are matriz-valued functions, and
Aj, B, and & are explicitly determined by the functions in (2.2).

Proof. Let Y = (yoéj)0<|a|+j<k7 where yq; will stand for 920)u as an independent

variable in G. Moreover, for multi-index « # 0, let ¢ = i(«) denote the smallest
index i, for which a; # 0 and let 1; = (01,...,9,—1), where

1 for j=1,
oj = .
0 for j#i.

The first order system we are looking for is

8tyocj = ya(j+1) for |Oé| +.7 < k?
(2 4) 6tyaj = awi(a)y(afli(a))(j+1) for |Oé| +7=k, j<k, |a| # 0,
Oyor = 57+ X i Var) T 0 aOnie Ya—Tiw) (1),
lal+5<k |o¢\+jk=k
<

and the initial conditions are
{yaj(wﬂ) =07p;(z) for j<k,

(2.5) yor(z,0) = G (m,O, (8§@j($))\a|+g‘<k,j<k> :

Obviously, if u is a solution of (2.2), then the functions y,; = 820 u satisfy (2.4)
and (2.5). Conversely, if the ¥ = (ya;)og|a|4,< 15 @ solution of (2.4) and (2.5),
then u = ygo satisfies (2.2). This involves the initial conditions in an essential way.

Observe, that the equation 0iya; = Ya(j+1) of system (2.4) implies that
(2.6) Yajrn) = Oya; for j+1<k.
Then the equation 9;ya; = O, (. Y(a—1,0))(+1) Of System (2.4) implies
OtYaj = 0102, Y(a—1,);, for |a|+j=Fk, j<k.

Therefore
Yaj (xv t) = al"i Y(a—14)j (xv t) + Caj (x)

for some function c,;. But by the first equation of (2.5),

yaj(xv O) = ag@j(x) = aziagilnpj(x) = aziy(a—li)j(x’o)v
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hence c,; = 0 and we have,

(2.7) Yoj = O, Y(a—1,); for |a|+j=Fk, j<k.
Then, from the third equation of (2.4), (2.6) and (2.7), we have
oG 0G 0yo; O
= a5, - t aj P
o=+ Y SO = (G ot ()
lal+5<k
i<k
whence

Yor(, 1) = G (2,1, (ya; (x,1))) + cox(z)
for some function cg,. But by (2.5),

yOk(l'vO) =G (:L’, 0, (33%(@)) =G (:C,07 (yaj(x,O))),

hence again cgr, = 0 and we have

(2.8) yor = G (2,1, (Yay) ol +i<k, j<k) -
Finally, by induction on p = k — j — |a|, we will prove that
(2.9) Yaj = Oz, Y(a—1,); for a#0.

For p = 0, i.e. when |a| + j = k the above is true from (2.7). From the first
equation in (2.4), from (2.6) and from the inductive hypothesis we have
NYaj = Ya(i+1) = Oz Y(a—1,)(G+1) = 00z, Y(a—1.)55
hence
Yoy (xv t) = 8-'L'iy(a*1i)j (l‘, t) + Caj (33)
But by the first equation in (2.5),
Yaj(2,0) = 07 0;j(2) = 02,0771 0;(2) = Os,Y(a—1,);(2,0).
Therefore ¢o; = 0 and we get (2.9).
Finally, applying (2.6) and (2.9) repeatedly we obtain that

Yaj = 3§3gyoo,

and then by (2.8) and the first equation in (2.5) we find that u = yoo satisfies
(2.2). O

We still need a little simplification.

Theorem 2.4. The Cauchy problem (2.3) is equivalent to another problem of the
same form in which ® =0 i A1,...,An_1 and B do not depend on t.

Proof. To eliminate ¢ we set U(x,t) =Y (x,t) —P(z). Then Y satisfies (2.3) if and
only if U satisfies:

n—1
U =3 Ai(x,t,0)0,,U + B(x,t,U),  U(x,0) =0,

=1
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where

Ai(z,t,U) =A;(x, t,U + D),
n—1
B(a,t,U) =B(z,t,U + ®) + > _ Ai(,t,U + )0, 9.
i=1
To eliminate variable ¢ from A; and B we add to U an extra component u° satisfying
the equation 9;u’ = 1 and the initial condition u°(z,0) = 0. Then we replace ¢ by
9in A; and B, by adding the extra equation and initial condition. O

Let us assume the following designations: (z,Y) € R*™! x RN and (z,t) €
R"! x R, where = = (z1,...,%,-1), Y = (y1,-..,yn). Since the constructions in
these theorems preserve analyticity, we have reduced the Cauchy-Kowalevski theo-
rem to the following theorem. This theorem is well known, but we add a recursive
description coefficients of solution as polynomials of the coefficients occurring in
the series in the partial differential equation.

Theorem 2.5. Suppose that B = [bm]ﬁizl s a real analytic vector-valued function
N
and A; = [ ml] =17

defined on a neighborhood of the origin in R* ™' xRN . Then there is a neighborhood
U of the origin in R™, on which the Cauchy problem

i€ {l,...,n—1}, are real analytic matriz-valued functions

n—1
(2.10) AY = 3 Ail@,Y)0:,Y + B(x,Y),

Y(z,0)=0

has a unique analytic solution Y = (y1,...,yn) : U 2 (x,t) = Y(z,t) € RV,
Furthermore, if
ainl(m’ Y- ’yN) = Z a?mol-Txo-YTa bm(xv Yty - 7yN) = Z bfnTngTa
o,

then coefficients ¢ of ym = >, ; ¢zt depends polynomially on coefficients of

; a,j “m
ar.; and by,. The dependance is defined inductively in the following way:
0 =0,
= (S X Ay e v rt |
il ptr=a
g+h=j

where

pam P ( aaf) ’( BA) ,
(@) = Plaj) ( ) oipiri<ialei \F ) sangiben
Pb

oT BA
iy () = Pla; )((bm)|0+|'r|<|a+j7(0k )

B<a«\<j,k<N>
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and P(%j) are polynomz'als m (X(U,T))|o|+\7'|§|a\+j and (Yk(B,)\))ng,ﬂga,)\gj deﬁned
inductively by the following conditions:

1. Po,0) = X(0,0);

2' P(a-‘,—lp,j) =
1 1 ap(a i (n—l N
= : X Y; + X Y,
Z ) Z (04+1k,7) T E(1,,0) Z (o,74+15) T E(1,,0)
a, +1 51! ot 0X (57 = P
<lal+i
! k<;+N BIN OYy 5, Yk(ﬁHW\)
BLa, \J
and
Plaj+1) =
1 1 8P ) n-l N
= — = Xo+1,m) Ye0,1) + ) X(oyr+10) Yr(0,1)
j+1 2%7 o7l 0X(o,m (Z ' ; '
<lal+i
+ Y . Yk(ﬁ)x-&-l) :
k<n—14N BN (e,
B<o¢ A<y

The theorem will be preceded by two lemmas.

Lemma 2.6. Let f(z) = Y cnn G be an analytic function in a neighbour-
hood of 0 € R™ and let gr(§) = > genm brpéP, k = 1,...,n, be an analytic
functions in a neighbourhood of 0 € R™ such that gx(0) = 0. Then the func-

tion F(&) = f(g1(8),...,gn(&)) is analytic in a neighbourhood of 0 € R™, and it’s
Taylor expansion takes a form

= > Py ((@a)al<inl (brip) s<kn) €7
yEN™

where Py € Z[(Xa)al<v)> (Yeg)s<yi<k<nl, ¥ € N™ are polynomials with non-
negative integer coefficients defined by the following induction conditions:

(1) Po(Xo, Yio,..., YnO) = Xy, where Xy = X(Oy--wo) and 0 = (07 RN 0) e N™.
(2) If the polynomial Py = Py ((Xa)jai<|»1» (Yes)p<ri<ksn), then the polyno-
mial Pyy1, is of the form
Pyi1, = Pri, (Xa)jalgyl+1s (Yes) s<y+1, 1<k<n) 5

where

1 1 orP, < 1 aP
Py, = v +1 ) (a' 09X, ';X@“ky’“a‘) + Z Y1,

la|< [ B<y k= 1
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Proof. Obviously,

_0°f(0) _ 9%gx(0)
(2.11) G = — 4, bi.p = 3l for 1<k<n
Let F'(§) = >_, c,&7. Then

O7F(0)
(2.12) ="
Let 1, = (6x)xenn, where 6, =1 and §,, = 0 for k # a. Clearly
oY = H (alj)'Yj )
j=1

The above lemma arises from the fact that
OYF =Y 0 f-0g,
k=1

by induction on |y|. Indeed, it suffices to show that, for every v there exists
a polynomial @, with variables X, |o| < |y| and Yig, 1 < k < n, § < v with
non-negative integer coefficients such that

(213)  OF©) = Qy (0" FGO) ajepy (0°9(O) ey 1 cpen)
and deg Q@ < |y| + 1. For || = 0 that is, for v = 0 we have

8OF(€) = f(gl(g)v s vgn(g))7

hence we set Qo(Xo, Y10,.-.,Yno) = Xo, where deg Qo = 1. If (2.13) holds for
|v] = p, then for |y| = p + 1 multi-index v can be written as v = 7 + 1;, where
[7] = p for some j € {1,...,m}. Therefore, induction hypothesis implies

PEE) =04 TTFE) = Y (alaczv oty (9(5))51-’gk(£)> +
k=1

la|< |7
+D ) (0" Q5 07T gi(€)) -
BT k=1

The right-hand side of this equation is a polynomial with non-negative integer
coefficients of variables (0%f(9(£)))|q <, and (aﬁgk(g))K%k@. It’s degree is

< |y|+1. Thus, it is a searched polynomial @~ for |y| = p+ 1. Induction ends the
above reasoning. By (2.13),(2.11) and (2.12) we obtain

1
Gy = %QW ((8af(0))|a\<|7| ’ (aﬁgk(o))ﬁ@,k@t) -

1
::;TQW((akhﬂkA<WM(ﬁwkﬁ)5<%k<n)'



THE CAUCHY-KOWALEVSKI THEOREM 153

Then the right-hand side of the above formula is a searched polynomial P,. More-
over, from the above formula, we can easily read the inductive conditions describing
polynomial P, of variables (X4 )|a|<|y|s (Yr8)s<ry,k<n:

Py = Xy,

el <[]

1 1 oP, 1 0P,
Py = — X1V,
LT Z (al X, Z e Tkl ) + Z < I OVip Vi1,
ﬂ<7

because Py ((Xa)jal<ivs (Yes)s<yhsn) = 1@y ((@1Xa)jal<irs (B1Yki8)p<rksn)
and

! OP. -
Qy1, (A1 Xa)jal< i1, (BYip) <ty han) = D (a - 'ZXaHkYklj) +

10X,
lal< ] MXa (5
~! OP,
Z < Bl Y5 Yip+1;-
ﬁ<7

O

We say that a power series Y a, (z—2")® with non-negative coefficients magjorize
power series > by (z — 2°), if |by| < a, for every multi-index «. In this case the
series Y b, (z — 2%)® is absolutely convergent everywhere the series Y aq(z — 2%)®
is absolutely convergent. We say that the series a = 3 an(x — 2°)% is @ majorant
of series b = > by(z — 2°)® and we write a < b, after Poincaré. Similarly, for
A = [ai];c; and B = [b];.; symbol A < B means that a; < b; for every i € I.

Lemma 2.7. Suppose that the series Y anx® is convergent in
Tp={x: m%f{|$j| < R}.
=

Then for every positive number r < R end every M > sup{|as|r!®! : o € N}, the
geometric series

) Mlal! o
|
o alrlel
is convergent in T, ,,, = {x : max|x;| <r/n} to the function
M
T 2T " R

r— (x4 ...+ x,)

and majorize series Y . anx®.

Proof. Let r be a positive number less than R. Then the series ) aqrl®! is conver-
gent and for every M > 0 such that |a,r!®!| < M for all o we have
M Mo

|aa|\M\

alrlel”
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On the other hand, function

f(x) = Mr

r— (x4 ...+ )

is analytic in 7}/, and for x € T/,

n M|a|!
Yy et 5 Mok
alrle

k=0 || >0

This ends the proof. O

Let’s move on to the proof of the Theorem 2.5.

Proof of Theorem 2.5. We are looking for the solution Y = (yq,...,yn) of the
Cauchy problem (2.10), where

(2.14) Ym = Zcfj@jxatj for 1<m<N.
Obviously,
Caj _ agagym(ov 0) )

alj!
The initial conditions implies that c2¥ = 0 for every a and m. In order to determine
the coefficients ¢2/ for j > 0, we substitute (2.14) to the differential equations

(2.15) O Ym = Z al (@Y1, YN) O Yt + b (T, Y1, -, YN ).
il
Let

[ 0T o\ T
aml(xaylw--ayN)ZE aml 7Y )

(2.16) b (@, 91, - - YN) :ber:— YT,

o,T

By = Z(al 4 1)Cl(a+1i)jxatj'

a,j
Lemma 2.6 implies that a’,, is a power series in  and ¢, whose coefficients of z*t/
are polynomials with non-negative rational coefficients in (a;)7") ||+ |r|<|al+; and
(¢ 5/\)B<a A< k<N - Moreover the coefficients of the terms in which ¢ occurs to the
j-th power only involve the c/,C * with A < j. The same is true for the series obtained
from b, and 9,,y;, and multiplying a’ , by 0.,y still preserves these properties.

Roughly speaking, on the right side of (2.15) we obtain an expression of the form

- e A .
E pPoI (ai;ff,bgf) ,(cf ) %,
: [o[+|7]|<]al+7,i<n—1,I<N BLa,ALj,k<N
g
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where P2/ is a polynomial with non-negative coefficients. On the left side, we have

O = YU+ a0

a,j

Hence,

aj LOT o7 BA
ij <(a7nl ’bm ) .. ’ (Ck ) . )
o+ |o|+|7|<[al+5,i<n—1,I<N B<aAG RSN

Jj+1

)

so if we know that cg)‘ with A < j, we can determine the c A with A = J+ 1
Proceeding inductively, we determine all the ¢/ and we find that

aj _ yaj ;0T 10T B _
Cm = Qm ((aml 7bm ) .. ’ (ck ) . ) -
lo|+]TI<el+g,i<n—1ISN BLa <G k<N

_ NHajg 0T 101 BA
=Qy (aml » Om 5 Cg, )v

where Q%7 is a polynomial with nonnegative coefficients in Cf/\7 where A\ < j. More

precisely the coefficients of 2t/ of power series a! ; i by, are polynomials with
non-negative rational coefficients of the form:

Pa;nl Pa ( i;oT) 7 ( ,8>\) ,
m)( ") =P )(am’ ol+iri<lal+ \F ) pcar<ihen

b (BN or 2
Fiap(a) = Pos )((bm)"’*“'g"‘“’(ck >B<a,A<j,k<N)’

where P, ;) is a polynomial in (X, 1)) o|+|r|<|al+j a0d (Yisn)) k<N, 8<ang; de-
fined inductively by the following conditions:

L. Po,0) = X(0,0),
2. P(O‘+1p7j) =

1 1 8P(a j) n—1 N
= Z ot 9% ) Z X(ot10,m) Ye(1,,0) T Z Xioyr+11) Yr(1,,0)

ap +1 lo|+|7] k=1 k=1
<lal+j
1 9Py
+ > S Yk(B+1 ,\)]
BN P>
k<n— 1+NB)\ GYW“

BLaN
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and
Plaj+1) =
1 1 6P(a7j) nol N
=71 Z ﬁaX(,, T) : Z Xo4+14,7) Yr(0,1) + ZX(O',T-i‘lk)Yk(O,l)
lo|+]7] ’ k=1 k=1
<laf+j
1 8P(a]
+ TRV = Yk(8,A+1)
k@; BIN OY(5,0)
BLa,AL]
Therefore,

r (i o) )rrepn) -
lo|+|7|<]al+7,i<n—1,I<N BLa, LG, kSN

_ Wt (. (v+1:)h bom
=D D Py i et P
il ptr=a
g+h=j

thereby 29 = Q2 = 0 and

m

aj+1 _ naj+1 0T 301 B _
=@y (aml e )—

1 i
_ Al | . (v+1;)h b
=7 | 2 2 Bl (a0t B

il ptr=a
g+h=j

Now, to show convergence of Y, it suffices to find the Cauchy problem

- n—1 _ ~ ~ ~ ~
oY = Ai(2,Y)0,,Y + B(x,Y),
i=1

-
Il

(where A; and B are analytic equivalents of A; and B respectively), for which:
a) there exists the analytic solution ¥ nearby (0,0);
b) A; < A; and B < B.
Indeed, the solution Y = ({i,...,9n) of this problem has the form g, =
Sedx*t) m=1,...,N, where
ol = st (a7 B a)

and Q%J are polynomials defined for the preceding Cauchy problem. Since Q% has

non-negative coefficients and depends only on CZ)\, where A < j, then we can easily
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show by induction that:

e = [Qa (ana™ v5r. ) | < @ (laid 1 b5 1, 1)
< Quf (an ber. ™) = ol

Therefore Y majorize Y which gives convergence of Y in some neighbourhood of
(0,0).

We will construct such a majorizing system. Let M > 0 be sufficiently large and
r > 0 sufficiently small so that by Lemma 2.7 series for A; and B are all majorized
by the series for

Mr
r—(r1+ .t an1) (Gt yn)
Thus we consider the following Cauchy problem: for m =1,..., N,
(2.17) ty r=3_Ti—2 Y (%:zl: Yl )

Ym(z,0) = 0.

To determine the solution of this Cauchy problem it is enough to solve the
Cauchy problem consisting of one equation

{atu = Mr_ (N(n—1)du+1),

(2.18) 4(6.0) T:O*’N“
for if we will put
yj(z,t) =u(x1 + ...+ Tp_1,t) (j=1,...,N),
we obtain that Y = (y1,...,yn) satisfies (2.17). We will transform (2.18) to
(r—s—Nu)dyu — MrN(n—1)0,u = Mr,
and will solve this by method of characteristics:

dt d d
%:T—S—NU, i:—MrN(n—l)7 d—Z:MT

with the initial conditions:
t(0) =0, 5(0) = o, u(0) = 0.

The solution of the above is given by the formulas:

1
t=§MrN(n—2)r2+(r—o)7, s=—MrN(n—1)7 + o, u= Mrr.
The elimination of ¢ and 7 yields

r—s—+/(r—s)2—2MrNnt
Mn '
Clearly this is analytic for s and ¢ near 0, so the proof is complete. O

u(s,t) =
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There remains the question of whether the Cauchy problem (2.2) might admit
non-analytic solutions as well. In the linear case, the answer is negative: this is the
Holmgren uniqueness theorem. The proof can be found in John [5], Hérmander [6],
[7, vol 1], or Treves [14].

A major drawback of the Cauchy-Kowalevski theorem is that it gives little con-
trol over the dependence of the solution on the Cauchy data.

Example 2.8. Consider the following example in R?, due to Hadamard:

Ou+ 03u =0
u(x1,0) =0, Oou(x1,0) = ke—VF sin kxq,
where k > 0. One easily checks that the solution is

_\/g(

u(xy,x2) =€ sin kz1)(sinh kzo).

As k — o0, the Cauchy data and their derivatives of all orders tend uniformly
to zero since e~V decays faster than polynomially. But if x5 > 0, then

Vi

lim e V¥ sinh kxy = +o00.

k—o0

The solution for the limiting case k = 400 is of course u = 0. This example
shows that the solution of the Cauchy problem may not depend continuously on
the Cauchy data in most of the usual topologies on functions.
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