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ŁOJASIEWICZ EXPONENT OF OVERDETERMINED
SEMIALGEBRAIC MAPPINGS

STANISŁAW SPODZIEJA AND ANNA SZLACHCIŃSKA

Abstract. We prove that both local and global Łojasiewicz exponent of
a continuous overdetermined semialgebraic mapping F : X → Rm on a closed
semialgebraic set X ⊂ Rn (i.e. m > dimX) are equal to the Łojasiewicz
exponent of the composition L ◦ F : X → Rk for the generic linear mapping
L : Rm → Rk, where k = dimX.

1. Introduction

Łojasiewicz inequalities are an important and useful tool in differential equa-
tions, singularity theory and optimization (see for instance [12, 13] in the local case
and [18, 19] at infinity). In these considerations, estimations of the local and global
Łojasiewicz exponents play a central role (see for instance [11, 14, 17, 18, 25] in
the local case and [9, 16] at infinity). In the complex case, essential estimations of
the Łojasiewicz exponent at infinity of a polynomial mapping F = (f1, . . . , fm) :
CN → Cm (see Section 2.3) denoted by LC

∞(F ), was obtained by J. Chądzyński
[4], J. Kollár [10], E. Cygan, T. Krasiński and P. Tworzewski [6] and E. Cygan [5].

We recall the estimation of Cygan, Krasiński and Tworzewski. Let deg fj = dj ,
j = 1, . . . ,m, d1 ≥ . . . ≥ dm > 0 and let

B(d1, . . . , dm; k) =

{
d1 · · · dm for m 6 k,

d1 · · · dk−1dm for m > k.
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Then for arbitrary m ≥ N , under the assumption #F−1(0) <∞, we have

(CKT) LC
∞(F ) ≥ dm −B(d1, . . . , dm;N) +

∑
b∈F−1(0)

µb(F ),

where #A denotes the cardinality of a set A, and µb(F ) is the intersection multiplic-
ity (in general improper) in the sense of R. Achilles, P. Tworzewski and T. Winiarski
of graphF and Cn × {0} at the point (b, 0) (see [1]). A generalization of (CKT)
for regular mappings was obtained by Z. Jelonek [7, 8].

In the proof of (CKT) the following theorem was used (see [20, Corollary 1], in
Polish).

Theorem 1.1. Let m > N > 1, and let #F−1(0) < ∞. Then there exists
a polynomial mapping G = (g1, . . . , gN ) : CN → CN of the form

gi = fi +

m−1∑
j=n

αj,ifj for i = 1, ..., N − 1, gN = fm,

where αj,i ∈ C, such that
#G−1(0) <∞,

and
LC
∞(F ) ≥ LC

∞(G).

The above theorem has been generalized for complex polynomial mappings in
[21, Theorem 2.1] and in the local case in [22, Theorem 2.1], and for real polynomial
mappings in [24, Theorems 1–3] both at infinity and in the local case.

The purpose of the article is a generalization of the above fact to continuous
semialgebraic mappings. More precisely, we prove that both: local and global Ło-
jasiewicz exponent of an overdetermined semialgebraic mapping F : X → Rm on
a closed semialgebraic set X ⊂ RN (i.e. m > dimX) are equal to the Łojasiewicz
exponent of the composition L ◦ F : X → Rk for the generic linear mapping
L : Rm → Rk, where k = dimX (see Theorems 2.2, and 2.3). For more detailed
informations about semialgebraic sets and mappings, see for instance [2]. Moreover,
we prove a version of the above fact for an analytic mapping with isolated zero (see
Theorem 2.1).

A mapping F : KN → Km, where K = R or K = C, is called overdetermined if
m > N .

2. Results

2.1. Notations. Let K = R or K = C. By the dimension dimK,0X at 0 of a set
X ⊂ KN we mean the infimum of the dimensions over K at 0 of local analytic sets
0 ∈ V ⊂ KN such that X ∩ U ⊂ V for some neighbourhood U ⊂ Kn of 0.

By the dimension dimRX of a setX ⊂ RN we mean the infimum of dimensions of
local analytic sets V ⊂ RN such that X ⊂ V . In particular, if X is a semialgebraic
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set, dimRX is the infimum of dimensions of algebraic sets V ⊂ RN such that
X ⊂ V .

We will write "for the generic x ∈ A" instead of "there exists an algebraic set V
such that A \ V is a dense subset of A and for x ∈ A \ V ".

By LK(m, k) we shall denote the set of all linear mappings Km → Kk (we identify
K0 with {0}). Let m ≥ k. By ∆K(m, k) we denote the set of all linear mappings
L ∈ LK(m, k) of the form L = (L1, ..., Lk),

Li(y1, ..., ym) = yi +

m∑
j=k+1

αi,jyj , i = 1, ..., k,

where αi,j ∈ K.

2.2. The Łojasiewicz exponent at a point. Let X ⊂ KN be a closed suban-
alytic set. If K = C we consider X as a subset of R2N . We will assume that the
origin 0 ∈ KN belongs to X and it is an accumulation point of X. We denote by
F : (X, 0) → (Km, 0) a mapping of a neighbourhood U ⊂ X of the point 0 ∈ KN
into Km such that F (0) = 0, where the topology of X is induced from KN .

Let F : (X, 0)→ (Km, 0) be a continuous subanalytic mapping, i.e. the graph of
F is a closed subanalytic subset of (X ∩U)×Km for some neighbourhood U ⊂ KN
of the origin. If K = C, we consider KN as R2N and Km as R2m. Then there are
positive constants C, η, ε such that the following Łojasiewicz inequality holds:

(Ł0) |F (x)| ≥ C dist(x, F−1(0) ∩X)η if x ∈ X, |x| < ε,

where | · | is the Euclidean norm in Kn, respectively in KN , and dist(x, V ) is the
distance of x ∈ KN to the set V ⊂ KN (dist(x, V ) = 1 if V = ∅). The smallest
exponent η in (Ł0) is called the Łojasiewicz exponent of F on the set X at 0 and
is denoted by LK

0 (F |X). If X contains a neighbourhood U ⊂ KN of 0 we will
call it the Łojasiewicz exponent of F at 0 and denote by LK

0 (F ). It is known that
LK
0 (F |X) is a rational number and (Ł0) holds with any η ≥ LK

0 (F |S) and some
positive constants C, ε, provided 0 is an accumulation point of X \ F−1(0) (see
[3, 23]). If 0 is not an accumulation point of X \ F−1(0), we have LK

0 (F |X) = 0.
In Section 3 we will prove (cf [22, Theorem 2.1] and [24, Theorem 1])

Theorem 2.1. Let F = (f1, . . . , fm) : (X, 0) → (Rm, 0) be an analytic mapping
with isolated zero at the origin, where X ⊂ RN is a closed semialgebraic set and
0 ∈ X. Let dimR,0X = n, and let n ≤ k ≤ m. Then for any L ∈ LR(m, k) such
that the origin is an isolated zero of L ◦ F |X, we have

(2.1) LR
0 (F |X) ≤ LR

0 (L ◦ F |X).

Moreover, for the generic L ∈ LR(m, k) the origin is an isolated zero of L ◦ F |X
and

(2.2) LR
0 (F |X) = LR

0 (L ◦ F |X).

In particular, for the generic L ∈ ∆R(m, k) the origin is an isolated zero of L◦F |X
and (2.2) holds.
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The above theorem gives a method for reduction of the problem of calculating the
Łojasiewicz exponent of overdetermined mappings to the case where the domain
and codomain are equidimmensional. It is not clear to the authors whether the
above statement is true if the origin is not isolated zero of f or the set X is
subanalytic instead of semialgebraic.

If F : X → Km is a semialgebraic mapping then without any assumptions on
the set of zeroes of F we will prove in Section 4 the following

Theorem 2.2. Let F : (X, 0) → (Km, 0) be a continuous semialgebraic mapping,
X ⊂ KN be a closed semialgebraic set of dimension dimR,0X = n, and let n ≤ k ≤
m. Then for any L ∈ LK(m, k) such that

(2.3) F−1(0) ∩ UL = (L ◦ F )−1(0) ∩ UL for a neighbourhood UL ⊂ X of 0

we have

(2.4) LK
0 (F |X) ≤ LK

0 (L ◦ F |X).

Moreover, for the generic L ∈ LK(m, k) the condition (2.3) holds and

(2.5) LK
0 (F |X) = LK

0 (L ◦ F |X).

In particular, for the generic L ∈ ∆K(m, k) the conditions (2.3) and (2.5) hold.

2.3. The Łojasiewicz exponent at infinity. The second aim of this article is to
obtain a similar results as in the previous section but for the Łojasiewicz exponent
at infinity.

By the Łojasiewicz exponent at infinity of a mapping F : X → Km, where
X ⊂ Kn is an unbounded set, we mean the supremum of the exponents ν in the
following Łojasiewicz inequality :

(Ł∞) |F (x)| ≥ C|x|ν for x ∈ X, |x| ≥ R
for some positive constants C, R; we denote it by LK

∞(F |X). If X = KN we call
the exponent LK

∞(F |X) the Łojasiewicz exponent at infinity of F and denote by
LK
∞(F ).
In Section 5 we will prove the following version of Theorem 2.1 for the Łojasiewicz

exponent at infinity (cf [21, Theorem 2.1], [24, Theorem 3]).

Theorem 2.3. Let F = (f1, . . . , fm) : X → Rm be a continuous semialgebraic
mapping having a compact set of zeros, where X ⊂ RN is a closed semialgebraic
set, dimX = n, and let n ≤ k ≤ m. Then for any L ∈ LR(m, k) such that
(L ◦ F )−1(0) ∩X is compact, we have

(2.6) LR
∞(F |X) ≥ LR

∞(L ◦ F |X).

Moreover, for the generic L ∈ LK(m, k) the set (L ◦ F )−1(0) is compact and

(2.7) LR
∞(F |X) = LR

∞(L ◦ F |X).

In particular, (2.7) holds for the generic L = (L1, ..., Lk) ∈ ∆R(m, k) and deg fj =
degLj ◦ F for j = 1, . . . , k, provided deg f1 ≥ . . . ≥ deg fm > 0.
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The above theorem gives a method of reduction of the problem of calculating
the Łojasiewicz exponent at infinity of overdetermined semialgebraic mappings to
the case where the dimensions of domain and codomain are equal.

3. Proof of Theorem 2.1

Let k ∈ Z, n ≤ k ≤ m. Take a closed semialgebraic set Z ⊂ RN of dimension
dimR Z = n, and let

π : Z 3 (x, y) 7→ y ∈ Rm.
Then the set π(Z) is semialgebraic with dimR π(Z) ≤ n. Denote by Y ⊂ Cm the
complex Zariski closure of π(Z). So, Y is an algebraic set of complex dimension
dimC Y ≤ n.

Assume that 0 ∈ Y . Let C0(Y ) ⊂ Cm be the tangent cone to Y at 0 in the
sense of Whitney [26, p. 510]. It is known that C0(Y ) is an algebraic set and
dim CC0(Y ) ≤ n. So, we have

Lemma 3.1. For the generic L ∈ LK(m, k),

L−1(0) ∩ C0(Y ) ⊂ {0}.

In the proofs of Theorems 2.1, 2.2 and 2.3 we will need the following

Lemma 3.2. If L ∈ LK(m, k) satisfies L−1(0) ∩ C0(Y ) ⊂ {0}, then there exist
ε, C1, C2 > 0 such that for z ∈ Z, |π(z)| < ε we have

(3.1) C1|π(z)| ≤ |L(π(z))| ≤ C2|π(z)|.

Proof. It is obvious that for C2 = ||L|| we obtain |L(π(z))| ≤ C2|π(z)| for z ∈ Z.
This gives the right hand side inequality in (3.1).

Now, we show the left hand side inequality in (3.1). Assume to the contrary,
that for any ε, C1 > 0 there exists z ∈ Z such that

C1|π(z)| > |L(π(z))| and |π(z)| < ε.

In particular, for ν ∈ N, C1 = 1
ν , ε = 1

ν there exists zν ∈ Z such that

1

ν
|π(zν)| > |L(π(zν))| and |π(zν)| < 1

ν
.

Thus |π(zν)| > 0 and

(3.2)
1

ν
>

1

|π(zν)|
|L(π(zν))| =

∣∣∣∣L( 1

|π(zν)|
π(zν)

)∣∣∣∣ .
Let λν = 1

|π(zν)| for ν ∈ N. Then |λνπ(zν)| = 1 so, by choosing subsequence, if
necessary, we may assume that λνπ(zν)→ v when ν →∞, where v ∈ Cm, |v| = 1
and π(zν)→ 0 as ν →∞, thus v ∈ C0(Y ) and v 6= 0. Moreover, by (3.2), we have
L(v) = 0. So v ∈ L−1(0)∩C0(Y ) ⊂ {0}. This contradicts the assumption and ends
the proof. �
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We will also need the following lemma (cf. [15, 22]). Let X ⊂ RN be a closed
semialgebraic set such that 0 ∈ X.

Lemma 3.3. Let F, G : (RN , 0) → (Rm, 0) be analytic mappings, such that
ord0(F − G) > LR

0 (F |X). If 0 is an isolated zero of F |X then 0 is an isolated
zero of G|X and for some positive constants ε, C1, C2,

(3.3) C1|F (x)| ≤ |G(x)| ≤ C2|F (x)| for x ∈ X, |x| < ε.

In particular, LR
0 (F |X) = LR

0 (G|X).

Proof. Since F is a Lipschitz mapping in a neighbourhood of 0, then 1 ≤
LR
0 (F |X) <∞ and for some positive constants ε0, C,

(3.4) |F (x)| ≥ C|x|L
R
0(F |X) for x ∈ X, |x| < ε0.

From the assumption ord0(F − G) > LR
0 (F |X) it follows that there exist η ∈ R,

η > LR
0 (F |X) and ε1 > 0 such that ||F (x)| − |G(x)|| ≤ |x|η for x ∈ X, |x| < ε1.

Assume that (3.3) fails. Then for some sequence xν ∈ X such that xν → 0 as
ν →∞, we have

1

ν
|F (xν)| > |G(xν)| or

1

ν
|G(xν)| > |F (xν)| for ν ∈ N.

So, in the both above cases, by (3.4) for ν ≥ 2, we have

C

2
|xν |L

R
0(F |X) ≤ 1

2
|F (xν)| < |F (xν)−G(xν)| ≤ |xν |η,

which is impossible. The last part of the assertion follows immediately from (3.3).
�

Proof of Theorem 2.1. We prove the assertion (2.1) analogously as Theorem 2.1 in
[22]. We will prove the second part of the assertion.

Let G = (g1, . . . , gm) : (RN , 0) → (Rm, 0) be a polynomial mapping such that
ordR

0 (F − G) > LR
0 (F |X). Obviously, such a mapping G does exist. By Lemma

3.3, LR
0 (F |X) = LR

0 (G|X) and 0 is an isolated zero of G|X. Taking, if necessary,
intersection of X with a ball B centered at zero, we may assume that dimR,0X =
dimRX. So, by Lemmas 3.1 and 3.2 for the generic L ∈ LR(m, k) we have that
L ◦G|X has an isolated zero at 0 ∈ Rn, LR

0 (G|X) = LR
0 (L ◦G|X), and

ord0(L ◦G− L ◦ F ) = ord0 L ◦ (G− F ) ≥ ord0(G− F )

>LR
0 (F |X) = LR

0 (G|X) = LR
0 (L ◦G|X),

so, by Lemma 3.3, LR
0 (L ◦ F |X) = LR

0 (L ◦G|X) = LR
0 (F |X). This gives (2.2). The

particular part of the assertion is proved analogously as in [22, Proposition 2.1]. �
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4. Proof of Theorem 2.2

Let X ⊂ RN be a closed semialgebraic set dimRX = n, and let 0 ∈ X. Taking,
if necessary, intersection of X with a ball B centered at zero, we may assume that
dimR,0X = dimRX.

From [21, Proposition 1.1] we immediately obtain

Proposition 4.1. Let G = (g1, ..., gm) : X → Km be a semialgebraic mapping,
gj 6= 0 for j = 1, ...,m, where m ≥ n ≥ 1, and let k ∈ Z, n ≤ k ≤ m.

(i) For the generic L ∈ LK(m, k),

(4.1) #[(L ◦G)−1(0) \G−1(0)] <∞.

(ii) For the generic L ∈ ∆K(m, k),

(4.2) #[(L ◦G)−1(0) \G−1(0)] <∞.

Proof. Let Y ⊂ CN × Cm be the Zariski closure of the graph of G, and let
π : Y 3 (x, y) 7→ y ∈ Cm. Then for (x, y) ∈ Y such that x ∈ X and y ∈ Km
we have y = G(x). Let us consider the case n = k. Let

U = {L ∈ LC(m,n) : #[(L ◦ π)−1(0) \ π−1(0)] <∞}.
By Proposition 1.1 in [21], U contains a non-empty Zariski open subset of LC(m,n).
Then U contains a dense Zariski open subset W of LR(m,n). This gives the asser-
tion (i) in the case n = k.

Let now k > n. Since for L = (L1, . . . , Lk) ∈ LK(m, k),

(L ◦ π)−1(0) ⊂ ((L1, . . . , Ln) ◦ π)−1(0),

then the assertion (i) follows from the previous case. We prove the assertion (ii)
analogously as [21, Proposition 1.1]. �

Proof of Theorem 2.2. Without loss of generality we may assume that F 6= 0. By
the definition, there exist C, ε > 0 such that for x ∈ X, |x| < ε we have

(4.3) |F (x)| ≥ C dist(x, F−1(0))L
K
0 (F |X),

and LK
0 (F |X) is the smallest exponent for which the inequality holds. Let L ∈

LK(m, k) be such that F−1(0) ∩ UL = (L ◦ F )−1(0) ∩ UL for some neighbourhood
UL ⊂ KN of 0. Diminishing ε and the neighbourhood UL, if necessary, we may
assume that the equality dist(x, F−1(0)) = dist(x, F−1(0) ∩ UL) holds for x ∈ X,
|x| < ε. Obviously L 6= 0, so, ||L|| > 0, and |F (x)| ≥ 1

||L|| |L(F (x))|. Then by (4.3)
we obtain LK

0 (F |X) ≤ LK
0 (L ◦ F |X), and (2.4) is proved.

By Proposition 4.1 and Lemmas 3.1 and 3.2, for the generic L ∈ LK(m, k) we
have that F−1(0) ∩ UL = (L ◦ F )−1(0) ∩ UL for some neighbourhood UL ⊂ KN of
0 and there exist ε, C1, C2 > 0 such that for x ∈ X, |x| < ε,

(4.4) C1|F (x)| ≤ |L(F (x))| ≤ C2|F (x)|.
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This and (4.3) gives (2.5) and ends the proof of Theorem 2.2. �

5. Proof of Theorem 2.3

The argument of Lemma 2.2 from [21] gives

Lemma 5.1. Let F : X → Rm with m ≥ n = dimRX be a semialgebraic mapping,
where X ⊂ RN , and let n ≤ k ≤ m. Then there exists a Zariski open and dense
subset U ⊂ LR(m, k) such that for any L ∈ U and any ε > 0 there exist δ > 0 and
r > 0 such that for any x ∈ X,

|x| > r ∧ |L ◦ F (x)| < δ ⇒ |F (x)| < ε.

Proof. (cf. proof of Lemma 2.2 in [21]). Let us consider the case k = n. LetW ⊂ CN
be the Zariski closure of F (X). Then dimCW ≤ n. In the case dimCW < n,
by Lemma 2.1 in [21] we easily obtain the assertion. Assume that dimW = n.
We easily see that for an algebraic set V ⊂ W , dimC V ≤ n − 1, the mapping
F |X\F−1(V ) : X \ F−1(V ) → W \ V is proper. By Lemma 2.1 in [21] there exists
a Zariski open and dense subset U1 ⊂ LR(m, k) such that for any L ∈ U1 and for
any ε > 0 there exists δ > 0 such that for z ∈ V ,

(5.1) |L(z)| < δ ⇒ |z| < ε.

Moreover, for L ∈ U1,

(5.2) W ⊂ {z ∈ Cm : |z| ≤ CL(1 + |L(z)|)}
for some CL > 0.

Let
U = {L ∈ LR(m,n) : L ∈ U1}.

Obviously, U is a dense and Zariski open subset of LR(m,n). Take L ∈ U and ε > 0.
Assume to the contrary that there exists a sequence xν ∈ X such that |xν | → ∞,
|L(f(xν))| → 0 and |f(xν)| ≥ ε. By (5.2) we may assume that f(xν)→ y0 for some
y0 ∈ W . Since F |X\F−1(V ) : X \ F−1(V ) → W \ V is a proper mapping, we have
y0 ∈ V . So, |y0| ≥ ε and L(y0) = 0. This contradicts (5.1) and ends the proof in
the case n = k.

Let now, k > n and let

U = {L = (L1, . . . , Lk) ∈ LR(m, k) : (L1, . . . , Ln) ∈ U1}.
Then for any L = (L1, . . . , Lk) ∈ U and x ∈ Rn we have

|(L1, . . . , Ln) ◦ F (x)| ≤ |L ◦ F (x)|,
so, the assertion immediately follows from the previous case. �

Proof of Theorem 2.3 (cf. proof of Theorem 2.1 in [21]). Since for non-zero L ∈
LR(m, k) we have |L ◦ F (x)| ≤ ||L|||F (x)| and ||L|| > 0, then by the definition of
the Łojasiewicz exponent at infinity we obtain the first part of the assertion. We
will prove the second part of the assertion.



“26_Spodzieja_Szlachcinska_27_04_2017_rozdz” — 2017/12/1 — 20:52 — page 187 — #10

ŁOJASIEWICZ EXPONENT OF OVERDETERMINED SEMIALGEBRAIC MAPPINGS 187

Since F−1(0) is a compact set, by Proposition 4.1, there exists a dense Zariski
open subset U of LR(m, k) such that

U ⊂ {L ∈ LR(m, k) : (L ◦ F )−1(0) is a compact set}.

So, for the generic L ∈ LR(m, k) the set (L ◦ F )−1(0) is compact.
If LR

∞(F |X) < 0, the assertion (2.7) follows from Lemmas 3.1, 3.2 and 5.1.
Assume that LR

∞(F |X) = 0. Then there exist C, R > 0 such that |F (x)| ≥ C as
|x| ≥ R. Moreover, there exists a sequence xν ∈ X such that |xν | → ∞ as ν →∞
and |F (xν)| is a bounded sequence. So, by Lemma 5.1 for the generic L ∈ U and
ε = C there exist r, δ > 0 such that |L ◦F (x)| ≥ δ as |x| > r, so LR

∞(L ◦F |X) ≥ 0.
Since |L ◦ F (xν)| is a bounded sequence, we have LR

∞(L ◦ F |X) ≤ 0. Summing up
LR
∞(L ◦ F |X) = LR

∞(F |X) in the considered case.
In the case LR

∞(F |X) > 0, we obtain the assertion analogously as in the proof
of Theorem 2.1 in [21]. �
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