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FORMAL AND CONVERGENT SOLUTIONS OF ANALYTIC

EQUATIONS
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Impressed by the power of the Preparation Theorem – indeed, it prepares us
so well! – I considered “Weierstrass Preparation Theorem and its immediate
consequences” as a possible title for the entire book.

Sheeram S. Abhyankar, Preface to [1]

Abstract. We provide the detailed proof of a sharpened version of the
M. Artin Approximation Theorem.

1. Introduction

The famous Approximation Theorem of M. Artin [2] asserts that any formal
solution of a system of analytic equations can be approximated by convergent
solutions up to a given order. In my PhD thesis [7] I was able by analysis of
the argument used in [2] to sharpen the Approximation Theorem: any formal
solution can be obtained by specializing parameters in a convergent parametric
solution. The theorem was announced with a sketch of proof in [8]. The aim
of theses notes is to present the detailed proof of this result. It is based on the
Weierstrass Preparation Theorem. The other tools are: a Jacobian Lemma which
is an elementary version of the Regularity Jacobian Criterion used in [2], the trick
of Kronecker (introducing and specializing variables) and a generalization of the
Implicit Function Theorem due to Bourbaki [4] and Tougeron [10]. All theses
ingredients are vital in the proofs of some other results of this type (see [3], [11]).
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For more information on approximation theorems in local analytic geometry we
refer the reader to Teissier’s article [9] and to Chapter 8 of the book [5].

Let K be a field of characteristic zero with a non-trivial valuation. We put
K[[x]] = K[[x1, . . . , xn]] the ring of formal power series in variables x = (x1, . . . , xn)
with coefficients in K. If f =

∑
k≥p fk is a nonzero power series represented as the

sum of homogeneous forms with fp 6= 0 then we write ord f = p. Additionally we
put ord 0 = +∞ and use the usual conventions on the symbol +∞. The constant
term of any series f ∈ K[[x]] we denote by f(0). A power series u ∈ K[[x]] is
a unit if uv = 1 for a power series v ∈ K[[x]]. Note that u is a unit if and only if
u(0) 6= 0. The non-units of K[[x]] form the unique maximal ideal mx of the ring
K[[x]]. The ideal mx is generated by the variables x1, . . . , xn. One has f ∈ mc

x,
where c > 0 is an integer, if and only if ord f ≥ c. Recall that if g1, . . . , gn ∈ K[[y]],
y = (y1, . . . , yn) are without constant term then the series f(g1, . . . , gn) ∈ K[[y]]
is well-defined. The mapping which associates with f ∈ K[[x]] the power series
f(g1, . . . , gn) is the unique homomorphism sending xi for gi for i = 1, . . . , n. Let
K{x} be the subring of K[[x]] of all convergent power series. Then K{x} is a local
ring. If g1, . . . , gn ∈ K{y} then f(g1, . . . , gn) ∈ K{y} for any f ∈ K{x}.

In what follows we use intensively the Weierstrass Preparation and Division
Theorems. The reader will find the basic facts concerning the rings of formal and
convergent power series in [1], [6] and [12].

Let f(x, y) = (f1(x, y), . . . , fm(x, y)) ∈ K{x, y}m be convergent power series in
the variables x = (x1, . . . , xn) and y = (y1, . . . , yN ) where m,n,N are arbitrary
non-negative integers. The theorem quoted below is the main result of [2].

The Artin Approximation Theorem. Suppose that there exists a sequence of
formal power series ȳ(x) = (ȳ1(x), . . . , ȳN (x)) without constant term such that

f(x, ȳ(x)) = 0 .

Then for any integer c > 0 there exists a sequence of convergent power series
y(x) = (y1(x), . . . , yN (x)) such that

f(x, y(x)) = 0 and y(x) ≡ ȳ(x) (modmc
x) .

The congruence condition means that the power series yν(x)−ȳν(x) are of order ≥ c
i.e. the coefficients of monomials of degree < c agree in yν(x) and ȳν(x). We will
deduce the Artin Approximation Theorem from the following result stated with
a sketch of proof in [8].

Theorem. With the notation and assumptions of the Artin theorem there exists
a sequence of convergent power series y(x, t) = (y1(x, t), . . . , yN (x, t)) ∈ K{x, t}N ,
y(0, 0) = 0, where t = (t1, . . . , tS) are new variables, S ≥ 0, and a sequence of
formal power series t̄(x) = (t̄1(x), . . . , t̄S(x)) ∈ K[[x]]S, t̄(0) = 0 such that

f(x, y(x, t)) = 0 and ȳ(x) = y(x, t̄(x)) .



“24˙Ploski” — 2017/12/1 — 20:50 — page 163 — #4

FORMAL AND CONVERGENT SOLUTIONS OF ANALYTIC EQUATIONS 163

The construction of the parametric solution y(x, t) depends on the given formal
solution ȳ(x). To get the Artin Approximation Theorem from the stated above
result fix an integer c > 0. Let y(x, t) and t̄(x) be series such as in the theorem
and let t(x) = (t1(x), . . . , tS(x)) ∈ K{x}S be convergent power series such that
t(x) ≡ t̄(x) modmc

x. Therefore y(x, t(x)) ≡ y(x, t̄(x)) modmc
x and it suffices to

set y(x) = y(x, t(x)). �

Before beginning the proof of the theorem let us indicate two corollaries of it.

Corollary 1. Assume that m = N , f(x, ȳ(x)) = 0 and

det
J(f1, . . . , fN )

J(y1, . . . , yN )
(x, ȳ(x)) 6= 0 .

Then the power series ȳ(x) are convergent.

Proof. Let y(x, t) and t̄(x) be power series without constant term such that
f(x, y(x, t)) = 0 and ȳ(x) = y(x, t̄(x)). It is easy to check by differentiation of equal-
ities f(x, y(x, t)) = 0 that (∂yν/∂tσ)(x, t) = 0 for ν = 1, . . . , N and σ = 1, . . . , S.
Therefore the series y(x, t) are independent of t and the series ȳ(x) are convergent.

�

Corollary 2. If f(x, y) ∈ K{x, y} is a nonzero power series of n + 1 variables
(x, y) = (x1, . . . , xn, y) and ȳ(x) is a formal power series without constant term
such that f(x, ȳ(x)) = 0 then ȳ(x) is a convergent power series.

Proof. By Corollary 1 it suffices to check that there exists a power series g(x, y) ∈
K{x, y} such that g(x, ȳ(x)) = 0 and (∂g/∂y)(x, ȳ(x)) 6= 0. Let I = {g(x, y) ∈
K{x, y} : g(x, ȳ(x)) = 0}. Then I 6= K{x, y} is a prime ideal of K{x, y}. Assume
the contrary, that is, that for every g ∈ I: (∂g/∂y) ∈ I. Then we get by differ-
entiating the equality g(x, ȳ(x)) = 0 that (∂g/∂xi) ∈ I for i = 1, . . . , n and, by
induction, all partial derivatives of g lie in I. Consequently g = 0 for every g ∈ I
i.e. I = (0). A contradiction since 0 6= f ∈ I. �

2. Reduction to the case of simple solutions

We keep the notation introduced in Introduction. We will call a sequence of
formal power series ȳ(x) ∈ K[[x]], ȳ(0) = 0 a simple solution of the system of
analytic equations f(x, y) = 0 if f(x, ȳ(x)) = 0 and

rank
J(f1, . . . , fm)

J(y1, . . . , yN )
(x, ȳ(x)) = m .

Thus, in this case, m ≤ N .

In what follows we need

The Jacobian Lemma. Let I be a nonzero prime ideal of the ring K{x},
x = (x1, . . . , xn). Then there exist an integer r: 1 ≤ r ≤ n and covergent power
series h1, . . . , hr ∈ I such that
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(i) rank
J(h1, . . . , hr)

J(x1, . . . , xn)
(mod I) = r ,

(ii) ∀h ∈ I, ∃a /∈ I such that ah ∈ (h1, . . . , hr)K{x}.

Before proving the above lemma let us note that it is invariant with respect to
K-linear nonsingular transformations. If Φ is an authomorphism of K{x} defined
by

Φ(f(x1, . . . , xn)) = f

 n∑
j=1

c1jxj , . . . ,

n∑
j=1

cnjxj


with det(cij) 6= 0 then the Jacobian Lemma is true for I if and only if it is true for
Φ(I).

Proof of the Jacobian Lemma (by induction on the number n of variables xi). If
n = 1 then I = (x1)K{x1} and h1 = x1. Suppose that n > 1 and that the lemma is
true for prime ideals of the ring of power series in n− 1 variables. Using a K-linear
nonsingular transformation we may assume that the ideal I contains a power series
xn-regular of order k > 0 i.e. such that the term xkn appears in the power series
with a non-zero coefficients. Therefore, by the Weierstrass Preparation Theorem I
contains a distinguished polynomial

w(x′, xn) = xkn + a1(x′)xk−1
n + · · ·+ ak(x′), where x′ = (x1, . . . , xn−1) .

By the Weierstrass Division Theorem every power series h = h(x) is of the form

h(x) = q(x)w(x′, xn)+r(x′, xn) where r(x′, xn) is an xn-polynomial (of degree < k).
Therefore, the ideal I is generated by the power series which are polynomials in xn
and to prove the Jacobian Lemma it suffices to find power series h1, . . . , hr such
that (i) holds and (ii) is satisfied for h ∈ I ∩K{x′}[xn].

Let I ′ = I ∩K{x′} and consider the set I \ I ′[xn]. Clearly w(x′, xn) ∈ I \ I ′[xn].
Let

h1(x′, xn) = c0(x′)xln + c1(x′)xl−1
n + · · ·+ cl(x

′)

be a polynomial in xn of the minimal degree l, l ≥ 0, which belongs to I \ I ′[xn].
Since the degree l ≥ 0 is minimal, we have

l > 0 ,

c0(x′) /∈ I ′ ,
∂h1

∂xn
∈ I .

Let h(x′, xn) ∈ I be a polynomial in xn. Dividing h(x′, xn) by h1(x′, xn) (Euklid’s

division) we get

(E) c0(x′)p h(x′, xn) = q(x′, xn)h1(x′, xn) + r1(x′, xn),

where xn-degree of r1(x′, xn) is less than l and p ≥ 0 is an integer. Since the
xn-degree of r1(x′, xn) is < l then all coefficients of r1(x′, xn) lie in I ′. If I ′ = (0)
then r1(x′, xn) = 0 and (E) proves the Jacobian Lemma.
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If I ′ 6= (0) then by the induction hypothesis there exists series h2, . . . , hr ∈ I ′
such that

(i′) rank
J(h2, . . . , hr)

J(x1, . . . , xn−1)
(mod I ′) = r − 1 ,

(ii′) ∀h′ ∈ I ′, ∃a′ /∈ I ′ such that a′h′ ∈ (h2, . . . , hr)K{x′}.

We claim that h1, . . . , hr satisfy (i) and (ii) of the Jacobian Lemma. To check (i)
observe that

det
J(h1, . . . , hr)

J(xi1 , . . . , xir−1 , xn)
= det

J(h2, . . . , hr)

J(xi1 , . . . , xir−1)
· ∂h1

∂xn
,

where i1, . . . , ir−1 ∈ {1, . . . , n− 1} and use (i′). Applying (ii′) to the coefficients of
r1(x′, xn) we find a power series a′(x′) such that a′(x′) r1(x′, xn) ∈ (h2, . . . , hr)K{x}.
By (E) we get a(x′)h(x′, xn) ∈ (h1, . . . , hr)K{x} where a(x′) = a′(x′) c0(x′)p /∈ I
which proves (ii). �

Now, we can check

Proposition 2.1. Let f(x, y) = (f1(x, y), . . . , fm(x, y)) ∈ K{x, y}m, f(x, y) 6= 0,
ȳ(x) = (ȳ1(x), . . . , ȳN (x)) ∈ K[[x]], ȳ(0) = 0, be formal power series such that
f(x, ȳ(x)) = 0. Then there exist convergent power series h(x, y) = (h1(x, y), . . . ,
hr(x, y)) ∈ K{x, y}r such that

(i) h(x, ȳ(x)) = 0,

(ii) rank
J(h1, . . . , hr)

J(y1, . . . , yN )
(x, ȳ(x)) = r ,

(iii) suppose that there exist formal power series y(x, t) = (y1(x, t), . . . , yN (x, t)),
y(0, 0) = 0 and t̄(x) = (t̄1(x), . . . , t̄S(x)), t̄(0) = 0, such that h(x, y(x, t)) =
0 and ȳ(x) = y(x, t̄(x)). Then f(x, y(x, t)) = 0.

Proof. Consider the prime ideal

I = {g(x, y) ∈ K{x, y} : g(x, ȳ(x)) = 0} .

Clearly f1(x, y), . . . , fm(x, y) ∈ I and I 6= (0). By the Jacobian Lemma there exist
formal power series h1(x, y), . . . , hr(x, y) ∈ I such that

• rank
J(h1, . . . . . . . . . , hr)

J(x1, . . . , xn, y1, . . . , yN )
(x, ȳ(x)) = r ,

• ∀g ∈ I, ∃a /∈ I such that a(x, y) g(x, y) ∈ (h1, . . . , hr)K{x, y}.

We claim that h1, . . . , hr satisfy the conditions (i), (ii), (iii). Condition (i) holds
since h1, . . . , hr ∈ I. To check (ii) it suffices to observe that

(J) rank
J(h1, . . . . . . . . . , hr)

J(x1, . . . , xn, y1, . . . , yN )
(x, ȳ(x)) = rank

J(h1, . . . , hr)

J(y1, . . . , yN )
(x, ȳ(x)) .
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Indeed, differentiating the equations hi(x, ȳ(x)) = 0, i = 1, . . . , r, we get

∂hi
∂xj

(x, ȳ(x)) +

N∑
ν=1

∂hi
∂yν

(x, ȳ(x))
∂ȳν
∂xj

= 0 for j = 1, . . . , n

and (J) follows. To check (iii) let us write

ai(x, y)fi(x, y) =

r∑
k=1

ai,k(x, y)hk(x, y) in K{x, y} ,

where ai(x, y) /∈ I for i = 1, . . . ,m. Thus ai(x, ȳ(x)) 6= 0 and ai(x, y(x, t)) 6= 0
since ȳ(x) = y(x, t̄(x)) and (iii) follows. �

3. The Bourbaki–Tougeron implicit function theorem

Let f(x, y) = (f1(x, y), . . . , fm(x, y)) ∈ K{x, y}m be convergent power series in
variables x = (x1, . . . , xn) and y = (y1, . . . , yN ). Suppose that m ≤ N and put

J(x, y) =
J(f1, . . . , fm)

J(yN−m+1, . . . , yN )
and δ(x, y) = detJ(x, y) .

Let M(x, y) be the adjoint of the matrix J(x, y). Thus we have

M(x, y)J(x, y) = J(x, y)M(x, y) = δ(x, y)Im

where Im is the identity matrix of m rows and m columns. Let g(x, y) = (g1(x, y),
. . . , gm(x, y)) ∈ K{x, y}m be convergent power series defined by

g1(x, y)
...

gm(x, y)

 = M(x, y)


f1(x, y)

...

fm(x, y)

 .

It is easy to see that

(a) gi(x, y) ∈ (f1(x, y), . . . , fm(x, y))K{x, y} for i = 1, . . . ,m

and

(b) δ(x, y)fi(x, y) ∈ (g1(x, y), . . . , gm(x, y))K{x, y} for i = 1, . . . ,m.

Now, we can state

The Bourbaki-Tougeron implicit function theorem. Suppose that there ex-
ists a sequence of formal power series y0(x) = (y0

1(x), . . . , y0
N (x)), y0(0) = 0, such

that

gi(x, y
0(x)) ≡ 0 mod δ(x, y0(x))2mx for i = 1, . . . ,m .
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Then

I. Let yν(x, t) = y0
ν(x) + δ(x, y0(x))2tν for ν = 1, . . . , N − m where t =

(t1, . . . , tN−m) are new variables. Then there exists a unique sequence of
formal power series u(x, t) = (uN−m+1(x, t), . . . , uN (x, t)) ∈ K[[x, t]]m,
u(0, 0) = 0, such that if we let yν(x, t) = y0

ν(x) + δ(x, y0(x))uν(x, t) for
ν = N −m+ 1, . . . , N and y(x, t) = (y1(x, t), . . . , yN (x, t)) then

f(x, y(x, t)) = 0 in K[[x, t]] .

If the series y0(x) are convergent then u(x, t) and y(x, t) are covergent as
well.

II. For every sequence of formal power series ȳ(x) = (ȳ1(x), . . . , ȳN (x)), ȳ(0) =
0, the following two conditions are equivalent
(i) there exists a sequence of formal power series t̄(x) = (t̄1(x), . . . ,

t̄N−m(x)), t̄(0) = 0, such that ȳ(x) = y(x, t̄(x)),
(ii) f(x, ȳ(x)) = 0 and

ȳν(x)≡ y0
ν(x) mod δ(x, y0(x))2mx for ν = 1, . . . , N −m

ȳν(x)≡ y0
ν(x) mod δ(x, y0(x))mx for ν = N −m+ 1, . . . , N .

Remark. In what follows we call

y0(x) an approximate solution of the system f(x, y) = 0,

y(x, t) a parametric solution determined by the approximate solution y0(x)

ȳ(x) satifying (i) or (ii) a subordinate solution to the approximate solution

y0(x)

Proof. Let v = (v1, . . . , vN ) and h = (h1, . . . , hn) be variables. Taylor’s formula
reads 

f1(x, v + h)
...

fm(x, v + h)

 =


f1(x, v)

...

fm(x, v)

 +
J(f1, . . . , fm)

J(y1, . . . , yN−m)
(x, v)


h1

...

hN−m



+ J(x, v)


hN−m+1

...

hN

 +


P1(u, v, h)

...

Pm(u, v, h)


(T)

where Pi(x, v, h) ∈ (h1, . . . , hN )2K{x, v, h} for i = 1, . . . ,m. Let u = (uN−m+1, . . . ,
uN ) be variables and put

Fi(x, t, u) = fi(x, y1(x, t), . . . , yN−m(x, t), y0N−m+1(x) + δ(x, y0(x))uN−m+1,

. . . , y0N (x) + δ(x, y0(x))uN ) .
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Substituting in Taylor’s formula (T) vi = y0
i (x) for i = 1, . . . , N , hi = δ(x, y0(x))2ti

for i = 1, . . . , N −m and hi = δ(x, y0(x))ui for i = N −m+ 1, . . . , N we get
F1(x, t, u)

...

Fm(x, t, u)

 =


f1(x, y0(x))

...

fm(x, y0(x))

 + δ(x, y0(x))2 J(f1, . . . , fm)

J(y1, . . . , yN−m)
(x, y0(x))


t1
...

tN−m



+ δ(x, y0(x))J(x, y0(x))


uN−m+1

...

uN

 + δ(x, y0(x))2


Q1(x, t, u)

...

Qm(x, t, u)


where Qi(x, t, u) ∈ (t, u)2K{x, t, u} for i = 1, . . . ,m. Multiplying the above identity
by the matrix M(x, y0(x)) and taking into account that M(x, y0(x))J(x, y0(x)) =
δ(x, y0(x))Im and gi(x, y

0(x)) ≡ 0 (mod δ(x, y0(x))2mx) for i = 1, . . . ,m, we get

(*) M(x, y0(x))


F1(x, t, u)

...

Fm(x, t, u)

 = δ(x, y0(x))2


G1(x, t, u)

...

Gm(x, t, u)


where Gi(0, 0, 0) = 0 for i = 1, . . . ,m. Differentiating (*) we obtain

M(x, y0(x))
J(F1, . . . , Fm)

J(uN−m+1, . . . , uN )
(x, t, u) = δ(x, y0(x))2 J(G1, . . . , Gm)

J(uN−m+1, . . . , uN )
(x, t, u)

which implies

(**) det
J(F1, . . . , Fm)

J(uN−m+1, . . . , uN )
(x, t, u)

= δ(x, y0(x))m+1det
J(G1, . . . , Gm)

J(uN−m+1, . . . , uN )
(x, t, u)

since detM(x, y0(x)) = δ(x, y0(x))m−1. On the other hand

J(F1, . . . , Fm)

J(uN−m+1, . . . , uN )
(x, 0, 0) = δ(x, y0(x))J(x, y0(x))

and

det
J(F1, . . . , Fm)

J(uN−m+1, . . . , uN )
(x, 0, 0) = δ(x, y0(x))m+1 .

Therefore we get from (**)

det
J(G1, . . . , Gm)

J(uN−m+1, . . . , uN )
(x, 0, 0) = 1 ,

in particular

det
J(G1, . . . , Gm)

J(uN−m+1, . . . , uN )
(0, 0, 0) = 1 .

By the Implicit Function Theorem there exist formal power series

u(x, t) = (uN−m+1(x, t), . . . , uN (x, t))
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such that

(G1(x, t, u), . . . , Gm(x, t, u))K[[x, t, u]]

= (uN−m+1 − uN−m+1(x, t), . . . , uN − uN (x, t))K[[x, t, u]] .

If y0(x) are convergent then G(x, t, u) and u(x, t) are convergent as well. In particu-
lar G(x, t, u(x, t)) = 0 and by (*) F (x, t, u(x, t)) = 0 which implies f(x, y(x, t)) = 0
where yν(x, t) = y0

ν(x) + δ(x, y0(x))uν(x, t) for ν = N − m + 1, . . . , N . Let
ũ(x, t) = (ũN−m+1(x, t), . . . , ũN (x, t)), ũ(0, 0) = 0, be power series such that
f(x, ỹ(x, t)) = 0 where

ỹ(x, t) = (y1(x, t), . . . , yN−m(x, t), y0
N−m+1(x) + δ(x, y0(x))ũN−m+1(x, t),

. . . , y0
N (x) + δ(x, y0(x))ũN (x, t)) .

Then F (x, t, ũ(x, t)) = 0 and by (*) G(x, t, ũ(x, t)) = 0. Thus we get ũ(x, t) =
u(x, t). This proves the first part of the Bourbaki-Tougeron Implicit Function
Theorem. To check the second part it suffices to observe that for any formal power
series t̄(x) = (t̄1(x), . . . , t̄N−m(x)) and ū(x) = (ūN−m+1(x), . . . , ūN (x)) without
constant term G(x, t̄(x), ū(x)) = 0 if and only if ū(x) = u(x, t̄(x)). �

4. Approximate solutions

We keep the notions and assumptions of Section 3. Let x′ = (x1, . . . , xn−1).

Proposition 4.1. Let ȳ(x) = (ȳ1(x), . . . , ȳN (x)), ȳ(0) = 0, be a formal solu-
tion of the system of analytic equations f(x, y) = 0, such that the power series
δ(x, ȳ(x)) is xn-regular of strictly positive order p > 0. Then there exists an approx-
imate solution v̄(x) ∈ K[[x′]][xn]N of the system f(x, y) = 0 and such that ȳ(x) is
a solution of f(x, y) = 0 subordinate to v̄(x).

Proof. By the Weierstrass Preparation Theorem δ(x, ȳ(x)) = ā(x) · unit where

ā(x) = xpn +

p∑
j=1

āj(x
′)xp−jn

is a distinguished polynomial. Using the Weierstrass Division Theorem we get

ȳν(x) =

2p−1∑
j=0

v̄ν,j(x
′)xjn + ā(x)2(cν + t̄ν(x)) for ν = 1, . . . , N −m

and

ȳν(x) =

p−1∑
j=0

v̄ν,j(x
′)xjn + ā(x)(cν + ūν(x)) for ν = N −m+ 1, . . . , N

where cν ∈ K for ν = 1, . . . , N , while

t̄(x) = (t̄1(x), . . . , t̄N−m(x)) and ū(x) = (ūN−m+1(x), . . . , ūN (x))
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are formal power series without constant term. Let

v̄ν(x) =

2p−1∑
j=0

v̄ν,j(x
′)xjn + ā(x)2cν for ν = 1, . . . , N −m

and

v̄ν(x) =

p−1∑
j=0

v̄ν,j(x
′)xjn + ā(x)cν for ν = N −m+ 1, . . . , N .

Clearly v̄(x) = (v̄1(x), . . . , v̄N (x)) ∈ K[[x′]][xn]N .

Property 1. δ(x, v̄(x)) = ā(x) · unit

Proof. From ȳ(x) ≡ v̄(x) (mod ā(x)mx) we get δ(x, ȳ(x)) ≡ δ(x, v̄(x)) (mod ā(x)mx)
and Property 1 follows since δ(x, ȳ(x)) = ā(x) · unit.

Property 2. gi(x, v̄(x)) ≡ 0 (mod ā(x)2mx) for i = 1, . . . ,m.

Proof. Substituting in Taylor’s formula (T) v = v̄(x), hν = ā(x)2t̄ν(x) for ν =
1, . . . , N −m and hν = ā(x)ūν(x) for ν = N −m+ 1, . . . , N we get

0
...

0

 =


f1(x, v̄(x))

...

fm(x, v̄(x))

 + ā(x)2 J(f1, . . . , fm)

J(y1, . . . , yN−m)
(x, v̄(x))


t̄1(x)

...

t̄N−m(x)



+ ā(x)J(x, v̄(x))


ūN−m+1(x)

...

ūN (x)

 + ā(x)2


Q̄1(x)

...

Q̄m(x)

 .

Multiplying the above identity by M(x, v̄(x)) and taking into account the formula

M(x, v̄(x))J(x, v̄(x)) = δ(x, v̄(x))Im

we get Property 2.

From Properties 1 and 2 it follows that

gi(x, v̄(x)) ≡ 0 (mod δ(x, v̄(x))2mx) for i = 1, . . . ,m

i.e. v̄(x) ∈ K[[x′]][xn] is an approximate solution of the system f(x, y) = 0. Since

ȳν(x) ≡ v̄ν(x) mod δ(x, v̄(x))2mx for i = 1, . . . , N −m

and

ȳν(x) ≡ v̄ν(x) mod δ(x, v̄(x))mx for i = N −m+ 1, . . . , N

ȳ(x) is a subordinate solution to the approximate solution v̄(x). �
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Proposition 4.2. Let (c0ν,j), ν = 1, . . . , N , j = 0, 1, . . . , D, be a family of constants

such that c0ν,0 = 0 for ν = 1, . . . , N . Suppose that D∑
j=0

c01,jx
j
n, . . . ,

D∑
j=0

c0N,jx
j
n


is an approximate solution of the system of equations f(0, xn, y) = 0 such that

ord δ

0, xn,

D∑
j=0

c01,jx
j
n, . . . ,

D∑
j=0

c0N,jx
j
n

 = p , 0 < p < +∞ .

Let V 0 = (V 0
ν,j), ν = 1, . . . , N , j = 0, 1, . . . , D be variables. Then there exists

a sequence

F (x′, V 0) = (F1(x′, V 0), . . . , FM (x′, V 0)) ∈ K{x′, V 0}M

such that for any family (v̄0
ν,j(x

′)) of formal power series without constant term the
following two conditions are equivalent

(i)

 D∑
j=0

(c01,j + v̄0
1,j(x

′))xjn, . . . ,

D∑
j=0

(c0N,j + v̄0
N,j(x

′))xjn


is an approximate solution of the system f(x, y) = 0,

(ii) F (x′, (v̄0
ν,j(x

′))) = 0 in K[[x′]].

Proof. Let

vν̄(xn) =

D∑
j=0

(c0ν,j + V 0
ν,j)x

j
n, v(xn) = (v1(xn), . . . , vN (xn)) .

It is easy to check that δ(x, v(xn)) is xn-regular of order p. By the Weierstrass
Division Theorem

gi(x, v(xn)) = Qi(x, V
0)δ(x, v(xn))2 +

2p−1∑
j=0

Ri,j(x
′, V 0)xjn

for i = 1, . . . ,m. Let

v̄ν(x) =

D∑
j=0

(c0ν,j + v̄0
ν,j)x

j
n, v̄(x) = (v̄1(x), . . . , v̄N (x))

where (v̄0
ν,j(x

′)) is a family of formal power series without constant term. Thus we
get

gi(x, v̄(x)) = Qi(x, v̄(x))δ(x, v̄(x))2 +

2p−1∑
j=0

Ri,j(x
′, v̄0

ν,j(x
′))xjn for i = 1, . . . ,m .

By the uniqueness of the remainder in the Weierstrass Division Theorem we have
that v̄(x) is an approximate solution of the system of analytic equations f(x, y) = 0
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if and only if Ri,j(x
′, (v̄0

ν,j(x
′))) = 0 for i = 1, . . . ,m and j = 0, 1, . . . , 2p − 1 in

K[[x′]]. This proves the proposition. �

5. Proof of the theorem (by induction on the number n of
variables x)

The theorem is trivial for n = 0. Suppose that n > 0 and that the theorem is
true for n − 1. By Proposition 2.1 we may suppose that ȳ(x) is a simple solution
of the system f(x, y) = 0. Let

δ(x, y) = det
J(f1, . . . , fm)

J(yN−m+1, . . . , yN )
.

Without diminishing the generality we may suppose that δ(x, ȳ(x)) 6= 0. If δ(0, 0) 6=
0 then the theorem follows from the Implicit Function Theorem. Suppose that
δ(0, 0) = 0. After a linear change of the variables x1, . . . , xn we may assume that
δ(x, ȳ(x)) is xn-regular of order p > 0. By Proposition 4.1 the system of equations
f(x, y) = 0 has an approximate solution v̄(x) = (v̄1(x), . . . , v̄N (x)) ∈ K[[x′]][xn]N

such that the solution ȳ(x) is subordinate to v̄(x). Write

v̄ν(x) =

D∑
j=0

(c0ν,j + v̄0
ν,j(x

′))xjn, D ≥ 0 an integer

where (v̄ν,j(x
′)) is a family of formal power series without constant term. It is easy

to check that  D∑
j=0

c01,jx
j
n, . . . ,

D∑
j=0

c0N,jx
j
n


is an approximate solution of the system f(0, xn, y) = 0 such that

ord δ

0, xn,

D∑
j=0

c01,jx
j
n, . . . ,

D∑
j=0

c0N,jx
j
n

 = p .

By Proposition 4.2 there exist convergent power series F (x′, V 0) ∈ K{x′, V 0}M
such that F (x′, (v̄0

ν,j(x
′))) = 0. By induction hypothesis there exist convergent

power series (V 0
ν,j(x

′, s)) in K{x′, s}, where s = (s1, . . . , sq) are new variables and
formal power series s̄(x′) = (s̄1(x′), . . . , s̄q(x

′)) without constant term such that

F (x′, (V 0
ν,j(x

′, s))) = 0, V 0
ν,j(x

′, s̄(x′)) = v̄0
ν,j(x

′) .

Let

vν(x, s) =

D∑
j=0

(c0ν,j + V 0
ν,j(x

′, s))xjn for ν = 1, . . . , N

and v(x, s) = (v1(x, s), . . . , vN (x, s)). Thus v̄ν(x) = vν(x, s̄(x′)) for ν = 1, . . . , N .
Again by Proposition 4.2 v(x, s) is an approximate solution of the system



“24˙Ploski” — 2017/12/1 — 20:50 — page 173 — #14

FORMAL AND CONVERGENT SOLUTIONS OF ANALYTIC EQUATIONS 173

f(x, y) = 0. By the Bourbaki-Tougeron Implicit Function Theorem the system
f(x, y) = 0 has the parametric solution determined by v(x, s):

yν(x, s, t) = vν(x, s) + δ(x, v(x, s))2tν for ν = 1, . . . , N −m
yν(x, s, t) = vν(x, s) + δ(x, v(x, s))uν(x, s, t) for ν = N −m+ 1, . . . , N .

On the other hand

ȳν(x, t) = v̄ν(x) + δ(x, v̄(x))2tν for ν = 1, . . . , N −m
ȳν(x, t) = v̄ν(x) + δ(x, v̄(x))ūν(x, t) for ν = N −m+ 1, . . . , N

is the parametric solution determined by v̄(x). Since the formal solution ȳ(x)
is subordinate to the approximate solution v̄(x) there exist formal power series
t̄(x) = (t̄1(x), . . . , t̄N−m(x)), t̄(0) = 0, such that ȳ(x) = ȳ(x, t̄(x)). We have

yν(x, , s̄(x′), t) = v̄ν(x) + δ(x, v̄(x))2tν for ν = 1, . . . , N −m
yν(x, s̄(x′), t) = v̄ν(x) + δ(x, v̄(x))uν(x, s̄(x′), t) for ν = N −m+ 1, . . . , N

By the uniqueness of the parametric solution determined by the approximate so-
lution v̄(x) we get

y(x, s̄(x′), t̄(x)) = ȳ(x, t̄(x)) = ȳ(x).

�
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