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DIVERGENCE-FREE POLYNOMIAL DERIVATIONS

ANDRZEJ NOWICKI

ABSTRACT. In this paper we present some new and old properties of diver-
gences and divergence-free derivations.

Throughout the paper all rings are commutative with unity. Let k be a ring and
let d be a k-derivation of the polynomial ring k[X]| = k[z1,...,x,]. We denote by
d* the divergence of d, that is,

0x1 oxy,
The derivation d is said to be divergence-free if d* = 0.

g = od(z1) T od(zy,)

1. PRELIMINARIES

Let k£ be a ring, and let R be a k-algebra. A k-linear mapping d : R — R is said
to be a k-derivation of R if

d(ab) = ad(b) + d(a)b,
for all a, b € R. We denote by Dery(R) the set of all k-derivations of R. If d, d;,ds €
Derk(R) and z € R, then the mappings xd, di + da and [d1,ds] = d1ds — dad; are
also k-derivations of R. Thus, the set Dery(R) is an R-module which is also a Lie
algebra.

We denote by R? the kernel of d, that is,
R = {a € R; d(a) = o}

This set is a subring of R, called the ring of constants of R (with respect to d). If
R is a field, then RY is a subfield of R.
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124 A. NOWICKI

Now let k[X] = k[z1,...,2,] be a polynomial ring in n variables over a ring k.
For each i € {1,...,n} the partial derivative 3%1' is a k-derivation of k[X]. It is
a unique k-derivation d of k[X] such that d(z;) =1 and d(z;) = 0 for all j # i. If
f1s-.+, fn are polynomials belonging to k[X], then the mapping

0 0

flaixl‘f'“""fnﬁn

is a k-derivation of k[X]. It is a k-derivation d of k[X] such that d(z;) = f; for
all j = 1,...,n. It is not difficult to show that every k-derivation of k[X] is of
the above form. As a consequence of this fact we know that Dery(k[X]) is a free

k[X]-module on the basis 8%1, e %. If d € Derg(k[X]) and f € k[X], then
_of of

Now assume that k is a domain containing Q and d is a k-derivation of k[X].
We say that F € k[X] is a Darboux polynomial of d if F' # 0 and d(F) = AF,
for some A € k[X]. In this case such A is unique and it is said to be the cofactor
of F. Every nonzero element belonging to the ring of constants k[X]? is of course
a Darboux polynomial. If F;, Fy € k[X] \ {0} are Darboux polynomials of d then
the product F3F5 is also a Darboux polynomial of d. The cofactor of F}F5 is in
this case the sum of the cofactors of Fy and Fy. If F € k[X] \ k is a Darboux
polynomial of d, then all factors of I’ are also Darboux polynomials of d. Thus,
looking for Darboux polynomials of d reduces to looking for irreducible ones.

For a discussion of Darboux polynomial in a more general setting, the reader is
referred to [15], [19], [13], [14].

A k-derivation d of k[X] is called homogeneous of degree s if all the polynomials
d(xy1),...,d(z,) are homogeneous of degree s. In particular, each partial derivative
% is homogeneous of degree 0. The zero derivation is homogeneous of every
deéree. The sum of homogeneous derivations of the same degree s is homogeneous
of degree s. Note some basic properties of homogeneous derivations (see [19] for

proofs and details).

Proposition 1.1. Let d be a homogeneous k-derivation of k[X] and let F' € k[X].
If F € k[X]?, then each homogeneous component of F belongs also to k[X]. In
particular, the ring k[X]¢, is generated over k by homogeneous polynomials.

Proposition 1.2. Let d be a homogeneous k-derivation of k[X], where k is
a domain containing Q, and let 0 # F € k[X] be a Darbouzx polynomial of d with
the cofactor A € k[X]. Then A is homogeneous, and all homogeneous components
of F' are also Darboux polynomials with the common cofactor equal to A.

Note that Darboux polynomials of a homogeneous derivation are not necessarily
homogeneous. Indeed, let n = 2, d(z1) = 1, d(x3) = 2x9, and let F = 27 + x5.
Then d is homogeneous, F is a Darboux polynomial of d (because d(F') = 2F), and
F' is not homogeneous.
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2. BASIC PROPERTIES OF DIVERGENCES

Let k be a ring and let d be a k-derivation of the polynomial ring k[X] =
klx1,...,2,]. Let us recall that we denote by d* the divergence of d, that is,
ad od(xy,

(21) . Od@n)

81’1 al‘n
We say that the derivation d is divergence-free if d* = 0. For example, every

partial derivative % is a divergence-free k-derivation of k[X]. It is clear that

(d+0)* = d* + 6* for all d,6 € Derg(k[X]). Thus, the sum of divergence-free
derivations is also a divergence-free derivation.

Proposition 2.1. If d € Dery(k[X]) and r € k[X], then:
(rd)* = rd* +d(r).

d* =

* n Brd zp n ad( zp r " 8d T,
Proof. (rd)* = > Z (,, Uep) 4 00 (o )) , Zl i,
p:

p:l :

+z ad(xy) = rd* +d(r). O

Thus, if d is a divergence-free k-derivation of k[X] and r € k[X]¢, then the
derivation rd is divergence-free.

Proposition 2.2. Let d,§ € Dery(k[X]) and let [d,0] = dé — éd. Then
[d, 0] =d(6™) — o(d¥).

Proof. Put f; = d(x;), g; = 0(x;) for i = 1,...,n, and observe that

n n 9 - 9 o
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This completes the proof. O

The above propositions imply that the set of all divergence-free derivations of
k[X] is closed under the sum and the Lie product.

Let d be a k-derivation of k[X]. Given a polynomial f € k[X], we denote
by Vy, the k-submodule of k[X] generated by the set {f,d(f),d*(f),d*(f),...}.
The derivation d is called locally finite, if every module Vy, for all f € k[X], is
a finitely generated over k. The derivation d is called locally nilpotent, if for every
f € Ek[X] there exists a positive integer m such that d™(f) = 0. Every locally
nilpotent derivation is locally finite. There exist, of course, locally finite derivations
which are not locally nilpotent. Locally finite and locally nilpotent derivations was
intensively studied from a long time; see for example [7], [6], [12], [19], where many
references on this subject can be found.

The following result is due to H. Bass, G. Meisters [2] and B. Coomes,
V. Zurkowski [4]. Another its proof is given in [19] (Theorem 9.7.3).

Theorem 2.3. Let k be a reduced ring containing Q. If d is a locally finite k-
deriwation of k[X] = kl[z1,...,x,], then d*, the divergence of d, is an element
of k.

Recall that a ring k is called reduced if k has no nonzero nilpotent elements. If
k is non-reduced then the above property does not hold, in general.

Example 2.4. Let k = Q[y]/(y?) and let d be the k derivation of k[z] (a polynomial
ring in a one variable) defined by d(x) = az?, where a = y + (y?). Since d?(z) =
2a%2% = 0, d is locally finite. But d* = 2az ¢ k.

Note the following important property of locally nilpotent derivations.

Theorem 2.5. ([19], [6]). If k is a reduced ring containing Q, then every locally
nilpotent k-derivation of k[X] is divergence-free.

The derivation d from Example 2.4 is locally nilpotent. This means that if & is
non-reduced then there exist locally nilpotent k-derivations of k[X] with a nonzero
divergence.

In the paper of Berson, van den Essen, and Maubach [3] is quoted the following
result, which is related to their investigation of the Jacobian Conjecture.

Theorem 2.6. ([3]). Let k be any commutative Q-algebra, and let d be a k-
derivation of k[x,y]. If d is surjective and divergence-free, then d is locally nilpotent.

This result was shown earlier by Stein [21] in the case k is a field.
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3. DIVERGENCES AND JACOBIANS

If hy,...,h, are polynomials belonging to k[X] = k[z1,...,z,], then we
denote by [hi,...,h,] the jacobian of hq, ..., h,, that is,

oxq oxq oz

dhy  Ohy . Ohy

Oxo Oxo Oxa
[hi,. ., hp] =

Oy oz, Oy,

Proposition 3.1. Let d be a k-derivation of k[X] and let hy, ..., hy, € k[X]. Then

d([hl,...,hn]) :—[hl,...,hn]d*+Zn:[h1,...,d(hp),...7hn].

Proof. Put f; = d(z;), fij = ngj_, hij = gh
denote the group of all permutations of {1,...,n}. Observe that

.,n}, and let S,

8
(a) d(ha(p)p) a(p) Z ho(p)qfaps

forall o € S, and p € {1,...,n}, and

Y Do hop1y - howaho ) 1) ho(nn
(b) oceSy

= [h1,..., hpl0pg,
for all p,q € {1,...,n}, where |o| is the sign of ¢, and 6,4 is the Kronecker delta.
The above determines that

d([hh Sy hnD = Z Z (_l)la‘ha(l)l T d(hU(P);D) T ho(n)n

p=1lo€eS,
ORN o] 9
= Z (=1 ha(l)l"'(a Zh pafra)  homn
p=1locS,
( ) n n n
= Z[hla 7d(hp)7 ahn]_zzqu[hlv h ]5Pq
p=1 p=1q=1
= Z[hla 7d(hp)v ahn} fpp[hla 7hn]
p=1 p=1
= Z[hla 7d(hp)a ahn} - [hla ahn]d*
p=1

This completes the proof. O
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As a consequence of the above proposition we obtain the following proposition
for divergence-free derivations.

Proposition 3.2. Ifd is a divergence-free k-derivation of k[X] and hq,..., h, are
polynomials belonging to k[X], then

(.. d(hy), .. ).
1

%Wwmez

p

n

Consider the case n = 2. Put x = z7 and y = 5. If f € k[z, y], then we denote:
fe = %, fy = %' Observe that for every f € k[z,y] we have the equality

[for 2] + [fy, 9] = 0.

In fact, [fz,z] + [fy,y] = Jaa 1‘+ fyz 0

N fxu 0 fw l’fmy+fym0.

In the case n = 3 we have a similar equality. If f, g € k[z,y, 2], then

[fo,9,2] + [fy,g,y} + [fz2r9,2] = 0.

Let us check: [fma.%x]+[fyagvy}+[fzagaz]

= facy gy 0 |+ fyy gy 1|+ fzy gy O
f:L'Z gz 0 fyZ gZ 0 fzz gZ 1
_ Jey 9y ‘ _ fyz 9z + Jer Ga
fzz  9: fy= 9- fey 9y

(fa:ygz - f:x:zgy) - (fy:}cgz - fyzgz) + (fzmgy - fzygz)
= fmy(gz - gz) + fmz(gy - gy) + fyz(gm - gz) =0.

The same we have for every n > 2.

Proposition 3.3. If f,g1,92,...,9n—2 are polynomials belonging to k[xy,...,T,],

th@n
E 779 7gz,...,g ,271'17 —().
(93:17 "

p=1

Proof. Put f, = ng, foi = Ofy — &f  and
P

ox; Oxpx;’

dg1 O OGn_
A;D:[fp7gl7927"'agn727xp]7 Gj: ( I1 92 J 2)7

T ey
8:z:j an 6Ij

for all p,j € {1,...,n}. Note, that A, is the jacobian of fy, g1,...,gn—2,2p, and G;
is a sequence of n — 2 polynomials from k[X]. Observe that, for every p =1,...,n,
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we have
G 0
o i G
fop-1 Gp-1 0 : .
Ay =1 fop Gy 1 | =(-1)"*?D,, where D, = ﬁp,p—l gp—l
Jowr1 Gpr1 0 .M)H . e
fp,n Gn 0 fp,n Gn

Consider the n x (n — 2) matrix

If p, ¢ are different elements of {1,...,n}, then denote by B, , the determinant of
the (n —2) x (n — 2) matrix that results from deleting the p-th row and the g-th
row of the matrix M. It is clear that B, , = B, , for all p # q.

Now consider the Laplace expansions with respect to the first column for all the
determinants Dy,...,D,. Let p,q € {1,...,n}, p < ¢. We have

p—1 ) n )

D, = (_1)Z+1fp7in,i + Z (‘1)]fp7ij7jv
i=1 j=p+1
q—1 ) n .

Dy = <_1)1+1fq,qu,i + Z (_1)]fq,qu7j'
i=1 j=q+1

In the first equality appears the component (—1)?f, ;Bp 4, and in the second equal-
ity appears the component (—1)P*1f, .B, .. But f,q = fop» Bpq = Bqp, and

moreover
n

f:AT => (-1)"*"D,.

r=1

Hence, in the sum Zle A, the polynomial f, , appears exactly two times, and we
have

(_1)p+n(_1)qu7q3p7q + (_I)Q+n(_1)p+1fp,q3p7q
— ((_1)n+p+q + (_1)n+p+q+1)fp)qu)q
=0- fp,gBpq=0.

n n
Therefore, > [%791792,...,97;—2,1'19} => A,=0. O
p=1 p=1



130 A. NOWICKI

4. JACOBIAN DERIVATIONS IN TWO VARIABLES

Now assume that n = 2. If f € k[z,y], then we denote by A the k-derivation
of k[z,y] defined by

Ar(g) =[f. 9],

for all g € k[x,y]. We say that a k-derivation d of k[x,y] is jacobian, if there exists
a polynomial f € k[z,y] such that d = Ay. Note, that

Af(z)sz?ﬁ Af(y):fr'

If f € k[z,y] is a homogeneous polynomial of degree m, then Ay is a homogeneous
k-derivation of degree m — 1.

Proposition 4.1. Let f,g € klz,y], and a € k. Then:
(1) Af—&-g = Af + Ag;

(2) af — aAf’
(3) Apg=fAg+gAy;
(4) [Afp,Agl=Ag-

Proof. The conditions (1) and (2) are obvious. Let h € k[z,y]. Then we have
Agg(h) = [fg,h] = —=[h, fg] = =An(fg) = = (fAr(g) + 9An(f))

= —flhgl = glh, 1= flo, Bl + glf, h] = FAg(h) + Az (h)

= (fAg+9A5)(h).
Thus, we proved (3). We now check (4):

[Ags Ag](2) (ArAg = AgAy) (2) = Af (=gy) = Bg (= fy)
—9ya (—fy) = Gyy o + fya (=9y) + fyy9a
(ya fy + 9o fyy) — (Gyyfo + 9y fya)
= (92fy)y — (fagy), = Gafy = fagy), = —[f, 9ly = Biy.g(2);

[ApAgl(y) = (AfAg = AgAf) (y) = A (92) = Ag (fa)
Yoz [y + oy fo + fraGy — foyga
Yoy fo + gyfoa) = (Gzafy + 9o fay)
9y fo)y = (Fy92)y = (Fogy = Fy92)y = [f: 9la = Bip.9)()-
Thus, we proved that [Af, Ag] and Ay gy are k-derivations of k[, y] such that

[Af’ Ag] (x) = A[ﬁg] (x)7 [Aﬁ Ag] (y) = A[f,g] (y)
This implies that [Ay, Ag] = Ars g1 O

Let us recall the following result of the author [18].

Theorem 4.2. Let k be a field of characteristic zero, and let f,g € k[z,y] \ k. If
[f,g] = 0, then there exist a polynomial h € k[z,y] and polynomials u(t),v(t) € k[t]
such that f = u(h) and g = v(h).
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If d and ¢ are k-derivations of k[z,y|, then we write d ~ § in the case when ad =
bs, for some nonzero a,b € k[z,y]. It is clear that if d ~ §, then k[z,y]? = k[x, y]°
and k(z,y)? = k(z,y)°. As a consequence of Theorem 4.2 we get

Proposition 4.3. Let k be a field of characteristic zero, and let f,g € k[z,y] \ k.
Then [f,g] =0 if and only if Ay ~ A,.

Proof. Let us observe that if u(t) € k[t] \ k, then 2%(f) # 0 and Ay ~ Ay,
because

ou
Assume that [f,g] = 0. It follows from Theorem 4.2 that f = u(h) and g = v(h),
for some w,v € k[t] and some h € k[z,y]. Since f € k and g & k, we have u & k
nad h & k. Hence, Ay = Aypy ~ Ap ~ Ayn) = Ay, and hence Ay ~ Ay,

Now suppose that Ay ~ Ay, Let aAy = bA,, for some nonzero a,b € k[z,
Then we have af; = aA;(y) = bA,(y) = by, and af, = —al(z) = —bA,(z)
bg,. Hence, f, = ug, and f, = ug,, where u = b/a. Therefore,

yl.

[f7 g] = f:cgy - fygx = UGGy — UGyYs = 0.
This completes the proof. O

Every Ay is a divergence-free k-derivation of k[z,y]. Indeed:

A} = Af(x)a: + Af(y)y = _fy:v + fzy =0.
We now show that if k contains QQ, then the converse of this fact is also true. The

main role in our proof plays the following lemma.

Lemma 4.4. If Q C k and f,g € k[z,y], then the following conditions are equiv-
alent:

(a) there exists H € k[z,y] such that Hy = f and Hy, = g;

(b) fy = 9gx-
Proof. (a) = (b) follows from the equality 0,0, = 0,0,.

(b) = (a). Let

f=Y ale.p)ay’, g=Y bla,f)z"y’,
a,B a,B

where all a(a, ), b(a, ) belong to k. If @« > 1 and 8 > 1, then éa(a -1,8) =
%b(a,ﬂ —1). Put

F= Zc(a,ﬁ)m“yﬁ,
a,B

where ¢(0,0) = 0 and, if @ > 1 then ¢(a, 8) = La(a—1,5), and if 8 > 1 then
cla, B) = %b(a,,@’ —1). It is easy to check that H, = f and H, = g. O
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Proposition 4.5. If Q C k and d is a divergence-free k-derivation of klx,y], then
there exists a polynomial h € k[z,y| such that d = Ay,.

Proof. Let d(z) = P, d(y) = @ and suppose that P, + Q, = 0. Put f = Q
and g = —P. Then f, = g, and hence, by Lemma 4.4, there exists a polynomial
h € klz,y] such that h, = f and hy, = g, that is, d = Ay, O

Thus, we have

Proposition 4.6. Let Q C k, and let d be a k-derivation of k[z,y]. Then d is
jacobian if and only if d is divergence-free .

Theorem 4.7. If Q C k and d is a nonzero k-derivation of k[x,y] then the fol-
lowing two conditions are equivalent:

(1) kla,y)? # k;

(2) d ~ 5, where 6 is a divergence-free k-derivation of k[z,y].

Proof. Since k[x,y]? = k[x,y]" for every nonzero polynomial h in k[z,y], we may
assume that the polynomials d(z) and d(y) are relatively prime.

(1) = (2). Suppose k[x,y]? # k and let F € k[z,y]¢~k. Put d(x) = P, d(y) = Q
and h = gcd(Fy, Fyy). Then PF, + QF, =0, h # 0 and there exist relatively prime
polynomials A, B € k[z,y] such that F, = Ah and F, = Bh. Hence AP = —BQ
and hence, A \ Q, Q| A B|Pand P| B. This 1mphes that there exists an
element a € k ~ {0} such that cA = Q and aB = —P. Let 6 = hd. Then d ~ §
and ¢ is divergence-free . Indeed,

0 = (hP)y + (hQ)y = —(ahB), + (ahA)y = —aFy, + aFyy = 0.
The implication (2) = (1) is obvious. O
Now it is easy to prove the following theorem (see [19] Theorem 7.2.13).

Theorem 4.8. Let Q C k, and let d and § be k-derivations of k[x,y] such that
k[z,y]? # k and k[z,y]’ # k. Then k[z,y]? = k[z,y]° if and only if d ~ 4.

5. JACOBIAN DERIVATIONS IN 7 VARIABLES

Assume that n > 2. Let F = (f1,..., fan—1), where fi1,..., fn_1 are polyno-
mials belonging to k[X] = k[x1,...,z,]. We denote by Ap the mapping from k[X]
to k[X] defined by

AF(h) = [flv"‘,fnflvh];
for all h € k[X]. This mapping is a k-derivation of k[X]. We say that it is
a jacobian derivation of k[X]. If n = 2, then Ap = Ay, is the jacobian k-derivation
from the previous section. If the polynomials fi,..., f,—1 are homogeneous of de-
grees my, ..., My_1, respectively, then the derivation Ap is homogeneous of degree

mi+---+mpu_1) — (n—1), provided rank afi_ =n-—1.
( ) ( p oz
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Now assume that n = 3. In this case F' = (f, g) is a sequence of two polynomials
f,g from k[X] = k[z,y, 2], and Ay 4 is a k-derivation of k[z,y, 2] such that

A(fg ( ) fugz fzgya A(f,g)(x) = f29z — f=9-, A(f,g)(-r) = fwgy - fygm-

It is easy to check that A(s ) is a divergence-free k-derivation of k[z,y,z]. In
general, for any n > 2, we have the following theorem.

Theorem 5.1. FEvery jacobian k-derivation of k[x1,...,x,)] is divergence-free .

Proof. Consider a jacobian k-derivation Ap with F' = (f1,..., fn—1), where f1,...,
fn—1 are polynomials belonging to k[X] = k[z1,...,x,]. Since every partial deriv-
ative of k[X] is a divergence-free k-derivation, we have (see Proposition 3.2) the
equalities of the form

[flv"'afn 1axp] [fh"'?fﬂ—lv Z|:f17 afla"'vfn—lvxp )

i— Lp

3xp

for all p = 1,...,n. Note that [fi,..., fn_1,1] = 0. Using Proposition 3.3 we
obtain also the equalities of the form

- ofi
Z |:f17"'aaxpa"'7fn—lvxp:| :Oa

p=1
foralli=1,...,n—1. We now have:
(AF)* = ZlTi’AF(xp): 21%[f17--~7f7z—171‘p]
— p:

n—1
[fla"'vfnflv]-}—’— Z [flv"‘vggz)v"'vfnlaxp}>

i=1

||M: ﬁM:

Ofi
Z |:f17"'7%7"'7fn—1axp:|

n—1 n—1
-y Z[fl,...,awp...,fn_l,xpD:Zozo
=1 i=1

Therefore, the derivation Ap is divergence-free . O

Other proofs of the above theorem appear in Connell and Drost [5], Theorem
2.3; in Makar-Limanow [12]; and in Freudenburg’s book [7], Lemma 3.8.

Let k be a field of characteristic zero and let f1,..., f, be polynomials in k[X] =
k[x1,...,z,]. Denote by w the jacobian of (f1,..., fn), that is, w = [f1,..., fal-
It is well known and easy to be proved that if k[f1,..., fn] = k[X], then w is
a nonzero element of k. The famous Jacobian Conjecture states that the converse
of this fact is also true: if w € k ~ {0} then k[f1,..., fn] = k[X]. The problem is
still open even for n = 2. There exists a long list of equivalent formulations of this
conjecture (see for example [22], [1], [6]). One of the equivalent formulations of the
Jacobian Conjecture is as follows.
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Conjecture 5.2. Let k be a field of characteristic zero, and let F = (f1,..., fn—1),
where f1,..., fn_1 are polynomials belonging to k[X] = k[x1,...,x,]. If there exists
g € k[X] such that Ar(g) = 1, then the jacobian derivation A is locally nilpotent.

It is difficult to prove that the above Af is locally nilpotent. Let us recall (see
Theorem 2.5) that every locally nilpotent derivation is divergence-free. Thus, by
theorem 5.1 we already know that Ap is divergence-free.

We know that Dery (k[X]) is a free k[X]-module on the basis 8%1, ..., 5> This
basis is commutative. We say that a basis {d1,...,d,} is commutative, if d; od; =

djod; for all 4,5 € {1,...,n}. A basis {di,...,d,} is called locally finite (resp.
locally nilpotent) if each d; is locally finite (resp. locally nilpotent). Note the
following results of the author.

Theorem 5.3. ([17]). If k is a field of characteristic zero, then the following
conditions are equivalent.

(1) The Jacobian Conjecture is true in the n-variable case.
(2) Every commutative basis of the k[X]-module Dery(k[X]) is locally finite.
(3) Every commutative basis of the k[X]|-module Dery(k[X]) is locally nilpotent.

Theorem 5.4. ([19] Theorem 2.5.5). Let k be a reduced ring containing Q. If
{dy,...,dn} is commutative basis of the k[ X]-module Dery (k[ X]), then each deriva-
tion d; is divergence-free.

Note also some results of E. Connell, J. Drost [5] and L. Makar-Limanow [12].

Theorem 5.5. ([5]). Let D be a k-derivation of k[X]| = klx1,...,x,], where k is
a field of characteristic zero. If tr.degik[X]|P = n — 1, then there exists g € k[X]
such that the derivation gD is divergence-free.

A k-derivation D of k[X] is called irreducible, if ged (D(x1), ..., D(zy,)) = 1.

Theorem 5.6. ([12]). Let D be an irreducible locally nilpotent k-derivation of
k[X] = klx1,...,x,], where k is a field of characteristic zero. Let f1,..., fn—1 be
n — 1 algebraically independent elements of k[X|P, and set F = (f1,..., fa_1).
Then there exists g € k[X]P such that Ap = gD. In particular, the derivation Ap
1s locally nilpotent.

6. THE IDEAL I(D) FOR HOMOGENEOUS DERIVATIONS

In this section k is a field of characteristic zero, k[X]| = k[z1,...,x,] is
a polynomial ring over k, and d : k[X] — k[X] is a homogeneous k-derivation
of degree s > 0. Put
9ij = wid(z;) — x;d(z;),
for all 4,5 € {1,...,n}. Each g;; is a homogeneous polynomial of degree s + 1. In
particular, g;; = 0 and g;; = —g;; for all 4, j. Moreover, for all 4,j,p € {1,...,n},

ZiGip + TjGpi + Tpgij = 0.
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We denote by I(d) the ideal in k[X] generated by all the polynomials g;; with
ije{l,...,n}.
Proposition 6.1. The ideal I(d) is differential, that is, d(I(d)) C I(d).

Proof. Put fi = d(z1),..., fn = d(x,). Since fi,..., f, are homogeneous polyno-
mials of degree s, we have the Euler formulas:

33:1 " n 8mn = sfi
foralli=1,...,n. Thus, we have

d(gij) = d(zif; —z;fi)
= [fify +xid(f;) = [ifi — x5d(fi) = wd(f;) — 25d(f3)
— (E)mlfl S 8fj fn) _x](aﬂ fi+- sz fn)
= ($13£J+ +xn‘r’ff)fif(x13—£§+ +xndfl>fj+a
= (sfi) fi—(sfi) fj +a=a,

where a is a polynomial belonging to I(d). Thus, d(g;;) € I(d) for all ¢, j, and this
implies that d(I(d)) C I(d). O

We denote by E the Fuler derivation of k[X], that is,

0 0
E=z1—+220—+ - +z,

ox T ox xTo aS(}n
This derivation is homogeneous of degree 1. If 0 # F € k[X] is a homogeneous
polynomial of degree s, then E(F) = sF. Thus, every nonzero homogeneous

polynomial of degree s is a Darboux polynomial of E with cofactor s.

Proposition 6.2. The ideal I(d) is equal to 0 if and only if d = h- E for some
h € k[X].

Proof. Suppose that d = hE with h € k[X], Then d(z;) = z;h fori =1,...,n
Thus, ¢;; = zi(z;h) = z;(x;h) = 0 and so, I(d) = 0.

Now let I(d) = 0. Put f; = d(x;) for all . Then, for all ¢,j € {1,...,n}, we have
the equality x;f; = x;f; so, each z; divides f;. Thus, f; = wx; for ¢ =1,...,n,
where u; € k[X]. Put h = u;. Observe that u; = h for all i = 1,...,n. Therefore,
d=hE. O

Proposition 6.3. Let d : k[X] — k[X] be a homogeneous k-derivation of degree
s = 1 and let h € k[X] be a homogeneous polynomial of degree s — 1. Then
I(d) = I(d — hE).
Proof. Put § =d — hE. Then, for all i,5 € {1,...,n}, we have

2i6(w5) — wjo(wi) = @i (d(x;) — w;h) — 2 (d(2:) — wih) = wid(x;) — w;d(x).
Thus, the ideals I(d) and I(d) are generated by the same elements. O
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Proposition 6.4. Let d : k[X] — k[X] be a homogeneous derivation of degree s.
Then there exists a homogeneous k-derivation § : k[X] — k[X], of degree s, such
that I(d) = I1(0) and 6(z,) € k[z1,...,Tn_1].

Proof. Let d(z,) = Az, + B, where A € k[X] and B € k[z1,...,2,-1]. Put
0 =d— AE. Then I(d) = I(6) (by Proposition 6.3) and §(z,) = d(zy,) — Az, =
B e klxy,...,xn-1]. O
Let us recall that all the polynomials g;; are homogeneous of degree s+1, g;; = 0
and x;g;p + T;9p; + 2pgi; =0, for all ¢, 5,p € {1,...,n}.
Proposition 6.5. Let {w;j; 4,7 =1,...,n} be a family of polynomials in k[X].
Suppose that:
(1) all the polynomials w;; are homogeneous of degree s + 1;
(2) wi; =0 fori=1,...,n;
(3) miwjp + xjwp; + xpwi; =0, for all i, j,p € {1,...,n}.
Then there exist homogeneous of degree s polynomials f1,..., fn € k[X] such that
wij = i f; — x5 fi,
foralli,je{l,...,n}.

n
ow;; . ..
Proof. Let Y; = Z 3 Y fori=1,...,n. Then, fori,j, € {1,...,n}, we have:
=1 9
n [‘)w ow;
wiYy —aYi = @ =T Z o
p=1
_ wj;  Owyj ) Bw]p Qwip
= T ox; Lj oz + 27; Oz Ty ; Oz
p#i p#j
_ awﬂ a’u)” . a’w]'p _ . 6wip
= T ox; — T ox; + T 7542#4 Oxyp Ty 75.2?9 Oxyp
p#i, p#] p#j, pFi
o Ow.i; f o
= xX; aT] 'IJ a,rj -+ ;ﬁZ;ﬁ 311, (xzw]p 7$]w1p)
i, p#j
o Qwj; ow; o
= Tigg, — azj + ;éZ;é' g, (—TpWij)
pF#i, p#]
Owj; Owj; w;
= x 6; + x; 61; — ;ﬁz;é Tp 811 = #Z?é,wij
p#i, p#j p#i, p#]
n Ow; j o
= — X1 Tp e — (n—2wij = —(s + Dwij — (n — 2)wi;
= —(s—i-n—l)wij.
Thus, z;Y; — z;Y; = —(s +n — L)w;;. Let f; = H_n 1Y, fori =1,...,n. Then
we have

wij =z fj — xj fi,
for all i,5 € {1,...,}. It is clear that the polynomials f1,..., f, are homogeneous
of degree s. O



DIVERGENCE-FREE POLYNOMIAL DERIVATIONS 137

Proposition 6.6. Let {w;;; 4,5 =1,...,n} be a family of polynomials in k[ X] such

Qwi; - N OY
8%_,]‘07“1*1,...,11. Then . O, =0.

n
as in Proposition 6.5, and let Y; = >
j=1

1=

Proof. Put A= 3 9%, Then we have:
i=1 "

A:

@,
s

o 2 awij D n 8211)7'1, D n 82’(1)7'1'
1=1j=

j=1

Thus, A =0. U

Theorem 6.7. Let k be a field of characteristic zero, and let d : k[X] — k[X]
be a homogeneous k-derivation of degree s. Then there exists a divergence-free k-
derivation § : k[X] — k[X] such that § is homogeneous of degree s and I(d) = I(9).

Proof. Let w;; = z;d(xj) — x;d(z;) for 4,5 € {1,...,n}. The polynomials w;;
satisfy the properties (1) — (3) of Proposition 6.5. Put

81111" 1
Y=Y =% fi=——Y,
25, T

for i = 1,...,n. Then w;; = x;f; — ; f; (see the proof of Proposition 6.5). Let
d : k[X] — k[X] be the k-derivation defined by §(x;) = f;, for i =1,...,n. Then ¢
is homogeneous of degree s and I(d) = I(5). Moreover, it follows from Proposition
6.6 that the divergence 6* is equal to zero. O

7. POLYNOMIALS M, IN TWO VARIABLES

In this section we assume that n = 2 and k is a field of characteristic zero.
Given a homogeneous k-derivation d of k[X] we studied in the previous section the
differential ideal generated by all polynomials of the form x;d(x;) —x;d(x;). In the
case n = 2 this ideal is generated only by one polynomial

My = zd(y) — yd(x).

If d is homogeneous derivation of degree s, then M, is a homogeneous polynomial
and deg My = s+ 1. If d is the Euler derivation E, then My = 0. It is easy to
check that My = 0 if and only if d = h - E for some h € k[z,y].

Proposition 7.1. If d is a homogeneous k-derivation of k[x,y] and My # 0, then
My is a Darboux polynomial of d and its cofactor is equal to the divergence d*, that
18,

d(My) = d*M,.
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Proof. Put f = d(x),g = d(y). Since d is homogeneous, we have zf; + yfy, = sf
and g, + ygy = sg, where s is the degree of d. So, we have,

d(zg —yf) — (fo + gy)(xg — yf)

fog+2(gef +9y9) — 9f —y(fuf + fy9) — (fo + 9y)(xg — yf)
= 29 f +x9y9 —yfof —yfyg —Tfs9+yfaf — 29,9 +ygy f

= (29: +ygy)f — (@fz +yfy)g

= sgf —sfg=0,

and hence, M, is a Darboux polynomial with cofactor d* O

d(My) — d* M,

The above property does not hold when d(z), d(y) are homogeneous of different
degrees. Let for example, d(x) = 1, d(y) = z. Then My = 2% — y, d* = 0 and
d(My) = d(z?—y) = 2x—2 = x # 0-(z?—y). The above property also does not hold
when deg d(x) = degd(y) and the polynomials d(x), d(y) are not homogeneous. Let
dlz) =z +1, d(y) =y. Then My = —y, d* =2, d(My) = —y # —2y.

We say that a Darboux polynomial f is said to be essential if f & k.

Proposition 7.2. Every homogeneous k-derivation of klx,y] has an essential Dar-
bouzx polynomial f € klz,y] \ k.

Proof. If My # 0 then, by the previous proposition, My is a Darboux polynomial.
If My =0, then x — y is a Darboux polynomial. t

The following examples show that the above property does not hold when d is
not homogeneous, and when d is a homogeneous derivations in three variables. Let
us recall that k is a field of characteristic zero.

Example 7.3. ([10], [19], [20]). The derivation 0, + (xy + 1)0, has no essential
Darboux polynomial.

Example 7.4. ([8]). The derivation (1 — zy)0, + 239, has no essential Darboux
polynomial.

Example 7.5. ([9]). Let d be the k-derivation of k[x,y, z] defined by:
d(z) =y dy)=2", d(z)=2"

Then d is homogeneous, divergence-free , and d has no essential Darbouzx polyno-
maal.

Proposition 7.6. Let d : k[z,y] — k[z,y] be a homogeneous k-derivation, and
let f =d(x), g =d(y). If h, A\ € klz,y] are homogeneous polynomials such that
d(h) = Ah, then

Mdhw = (y)‘ - mg)h’ Mdhy = (mf = .Z‘)\)h,

where m = deg h.
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Proof. We have the following sequences of equalities:

fhe + ghy = A,
yfha +yghy = yAh,
yfha + g(mh —zhy) = yAh,
(g —yfhe = (yA—mg)h,
Mgh, = (yA— mg)h.
Jha 4+ ghy = Ah,
xfhy +xghy = xR,
f(mh —yhy) +zgh, = x\h,
(kg —yf)hy = (mf—axX)h, Mghy = (mf = zA)h.
We used the Euler formula. O

Proposition 7.7. If d : k[z,y] — k[z,y] is a nonzero homogeneous k-derivation,
then every irreducible Darboux polynomial of d is a divisor of the polynomial My.

Proof. Let h € k[z,y] \ k be an irreducible Darboux polynomial of d, and let
A be its cofactor. Thus, d(h) = Ah. We know, by Proposition 1.2, that A is
homogeneous. Since h & k, we have either h, # 0 or hy, # 0. Let us suppose that
hy # 0. Then the polynomials h, and h are relatively prime and (by Proposition
7.6) Mgh, = (yA — mg)h. Thus, h divides M. In the case h, # 0 we do the same
procedure, O

The Euler derivation E : k[z,y] — k[z,y] is a nonzero homogeneous derivation,
and every nonzero homogeneous polynomial from k[z,y] is a Darboux polynomial
of E. Thus, E has infinitely many homogeneous irreducible Darboux polynomials,
The same property has every derivation hE with a nonzero homogeneous h €
klx,y]. Let us recall that in this case the polynomial M, is equal to zero. The
following proposition states that other homogeneous derivations have only finitely
many homogeneous irreducible Darboux polynomials.

Theorem 7.8. Let k be a field of characteristic zero, and let d : klx,y] — k[x,y] be
a nonzero homogeneous k-derivation of degree s such that My # 0. Then d has at
most s + 1 pairwise nonassociated irreducible homogeneous Darboux polynomials.

Proof. 1t follows from Proposition 7.7, because M, is a nonzero homogeneous
polynomial of degree s + 1. O

In the above theorem we were interested in irreducible homogeneous Darboux
polynomials. Without the word ”homogeneous” such property does not hold, in
general. Let for example, d = 20, + 2yd,. Then d(z? + ay) = 2(z? + ay) for every
a € k and hence, d is a nonzero homogeneous k-derivation and d has infinitely
many, pairwise nonassociated, irreducible Darboux polynomials,
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8. SUMS OF JACOBIAN DERIVATIONS

In this section k is always a commutative ring containing Q.

We know (see Proposition 4.6) that every divergence-free k-derivation of k[x, y]
is a jacobian derivation. A similar property for n > 3 variables does not hold in
general. Let, for example, d be the k-derivation of k[z,y, 2], defined by: d(x) =
v, d(y) = 2%, d(z) = 2% (as in Example 7.5). Then d is divergence-free . It is
known that k[z,y,2]? = k (see [9] or [15], [19]) so, d is not jacobian. There exist
many similar examples for arbitrary n > 3 (see [11], [23], [19]). In this section we
will show that every divergence-free k-derivation of k[X]| = k[z1,...,x,] is a finite
sum of some jacobian derivation.

Let f be a polynomial from k[X], and let i,5 € {1,...,n}. We denote by Q{J
the k-derivation of k[X] defined by

of dg
of ()= | % %= ]—fzigx_j—ijgxi
6:Ej al’j

for all g € k[X]. Tt is clear that O, = 0 and Qf, = -0/ for all i,j € {1,...,n}.
If i # j, then we have

0, ifp#i, p#J,

Q{j(:z:p): ~ B2y ifp=i,
) . .
Txfiv 1f pP=17
for all p=1,...,n. Note the following obvious proposition.

Proposition 8.1. FEvery derivation of the form ij is divergence-free .

Another common notation for Qij, is QII] If n =2 and f € k[z,y], then
ng = Ay, where Ay is the jacobian derivation of k[x,y] from a previous section.
If n =3 and f € k[x,y, 2], then we have three k-derivations of the above forms:
Qf ., Qf , and Q{;,z-

x,y) T,z

Proposition 8.2. Let d be a k-derivation of k[x,y, z], where k is a commutative
ring containing Q. If d is divergence-free , then there exist polynomials u,v €
klx,y, z] such that

d=QL, +QU..

Proof. Put f =d(z), g =d(y), h =d(z) and R = k[z,y, z]. Since d is divergence-
free , we have the equality f, + g, + h. = 0. Since the partial derivative 6% is
a surjective mapping from R to R, there exists a polynomial H € R such that
h=H,. Let

f:fa g=g+H.,
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and consider the k[z]—derivationia of R = k[z][x,y] defined by d(x) = f and d(y) =
g. Observe that the derivation d is divergence-free . Indeed,
(a)* :?z—’_gy :fr+gy+sz = fm+gy+Hyz :fm+gy+hz =0.

It follows from Proposition 4.5, that there exists a polynomial F' € R such that
d = Ap. Hence, d(z) = —F, and d(y) = F, and hence, f = —F,, g = F, — H,.
Put w=F,v=H and § = Qg , +Qy .. Then we have:

Uy 1] o
o(x) = w, 0|~ —uy = —F, = f,
| uz O vy 1| o B _
5(:(/)_ u, 1 "’_ v, 1 ’_U»L v, = F, Hz—97
v, 0
d(z) = v‘z 1‘:vy=Hy:h
Therefore, d =60 = Qf , +Q .. O

Example 8.3. Let d = ysa% + zsa% + xs%, where s =2 1. Then d = Q0 + €

foru= 2%z — st oand v = 2%y.

1Y
Proposition 8.4. Let d be a k-derivation of k[x,y, z], where k is a commutative
ring containing Q. If d is divergence-free , then there exist polynomials A, B,C €
klx,y, z] such that

d=97, +). +af,.

In other words, there exist polynomials A, B,C € k[z,y, z] such that

dz)=C, —4,, dly)=A,—-B,, d(z)=B,—C,.
Proof. Let u,v € k[z,y, 2] as in Proposition 8.2. Put A = u, B = v and C = 0.
Then d = Q7 +QF, +QF,. O
Example 8.5. Let d = ysa% + zsa% + xsﬁ, where s > 1. Then d = Q;;‘yy +

Qf:z + ng where A = (zsx — S%ys“) , B=3 (xsy - S%ZSH) and C =

(1= ).
Example 8.6. If f,g € k[z,y,z], then Ay g = Q2 + Q5 +QF,, where
A=f.9, B=feg, C=lyg

Quite recently, Piotr Jedrzejewicz generalizes Propositions 8.2 and 8.4 for arbi-
trary n > 3. Such generalizations seem to be well-known, although we could not
find a reference.

Theorem 8.7 (Jedrzejewicz). Let d be a k-derivation of k[X] = k[x1,...,x,],
where n > 3 and k is a commutative ring containing Q. If d is divergence-free,

then there exist polynomials uy, ..., un—1 € k[X] such that
Upp—
R A

n—1ln-
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In particular, we have the following equalities

diz1) = —(u1)a,
d(ze) = (w1)z, — (U2)as,
dwz) = (u2)e, — (U3)ay,
(*) .
d(xn 1) - (un72)wn,2 - (unfl)zna
d(,) = (Un—1)zn_,-

Proof. By induction on n. For n = 3 it follows from Proposition 8.2. Let n > 3 and
suppose that our assertion is true for this n. Let d be a divergence—free k-derivation
of R=k[z1,...,2ny1]. Put fi = d(a;) foralli =1,...,n+1. We have the equality
Z"+1 (fi)e. = O Since the partial derivative ai is a surjective mapping from R
to R, there exists a polynomial P € R such that fn+1 P, . Let

g1=1[1, 92=J2y oy Gn—1= Fn-1, Gn = fr + Pr, 1,

and consider the k [z,,11]-derivation d of R defined by d(x;) = g; foralli =1,...,n
Observe that the derivation d is divergence-free . Indeed,

n n—1 n+1
Z Z fl) (fn) $n$n+1 = Z fl - ’
i=1 i=1
because Py, ;. ., = (fnJrl)wn+1 . By induction there exist polynomials vy, ...,v,_1 €

R satisfying the equalities (%) for the derivation d, that is,

g1 = 8(1’1) = (Ul):tz )y Gn = E(x") = (,Un_l)xn—l

and g; = d(z;) = (Vi-1)y, , — (vi),,,, for i = 2,...,n — 1. Let us recall that
Gn = fn+ Py, Put us=v; fori=1,...,n—1, and u, = P. Then d(z,) = f1 =
—(u1) gy, and d(z;) = —(uj—1)s,_, for i =2,...,n — 1. Moreover,

d(xn) =fn=09n— Pmn+1 = (Unfl)xn,l - P:rn+1 = (unfl)x T (un>zn+1

and d (#p41) = for1 = Pe, = Uy, . This means that d = Q?flz —|—Q;‘23 4+ —|—Qn 1)
and this completes the proof. O

Theorem 8.8. Let d be a k-derivation of k[x1,...,z,], where n > 3 and k is
a commutative ring containing Q. If d is divergence-free, then there exist polyno-
mials Ay, ..., Ay € k[z1,...,2,] such that

d=0f + Q5%+ + Q"+

n—1n

In particular, d(z;) = (Ai-1),, | — (Ai),,,, for alli € Zy.

Proof. Let uy,...,un—1 € k[z1,...,2,] be as in Theorem 8.7. Put A; = u; for
i=1,...,n—1and A, = 0. Then our assertion follows from Theorem 8.7. O



DIVERGENCE-FREE POLYNOMIAL DERIVATIONS 143

Example 8.9. Let d be the k-derivation of k[x1, ..., x,] defined by d(x;) = x5, for
i=1,...,n, where k is a commutative ring containing Q, s > 0, and x,41 = 21,
o = Tn. Then d is divergence-free, and d = Qfé +Q3%5+ -+ Qint 4 Qﬁﬁ. with

n—1n
1 1
_ s s+1
Ai—2(xi+2xi—s 1xi+1>

foralli=1,...,n.
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