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RATIONAL CONSTANTS OF CYCLOTOMIC DERIVATIONS

JEAN MOULIN OLLAGNIER AND ANDRZEJ NOWICKI

1. INTRODUCTION

Let K(X) = K(xg,...,2p—1) be the field of rational functions in n > 3
variables over a field K of characteristic zero. Let d be the cyclotomic derivation
of K(X), that is, d is the K-derivation of K(X) defined by

d(l‘]) = Tjt1, for j € Zy.

We denote by K(X)¢ the field of constants of d, that is, K(X)? = {f €
K(X); d(f) =0}

We are interested in algebraic descriptions of the field K(X)?. However, we
know that such descriptions are usually difficult to obtain. Fields of constants
appear in various classical problems; for details we refer to [2], [3], [12], [9] and
[11].

We already know (see [10]) that if K contains the n-th roots of unity, then
K(X)% is a field of rational functions over K and its transcendence degree over K
is equal to m = n — p(n), where ¢ is the Euler totient function. In our proof of
this fact the assumption concerning n-th roots plays an important role. We do not
know if the same is true without this assumption. What happens, for example,
when K =Q 7

In this article we give a partial answer to this question, for arbitrary field K of
characteristic zero.

We introduce a class of special positive integers, and we prove (see Theorem 9.1)
that if n belongs to this class, then the mentioned result is also true for arbitrary
field K of characteristic zero, without the assumption concerning roots of unity.
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Moreover, we construct a set of free generators of K (X)?, which are polynomials
with integer coefficients. Thus, if the number n is special, then

KX)'=K(Fy,...,Fp_1),

for some, algebraically independent, polynomials Fp,..., F,,_1 belonging to the
polynomial ring Z[X] = Z [z, ...,Zn—1], and where m = n — ¢(n). Note that in
the segment [3,100] there are only 3 non-special numbers: 36, 72 and 100. We do
not know if the same is true for non-special numbers, for example when n = 36.

In our proofs we use classical properties of cyclotomic polynomials, and an im-
portant role play some results ([4], [5], [16], [17] and others) on vanishing sums of
roots of unity.

2. NOTATIONS AND PREPARATORY FACTS

Throughout this paper n > 3 is an integer, € is a primitive n-th root of
unity, and Z, is the ring Z/nZ. Moreover, K is a field of characteristic zero,
K[X] = K|zo,...,%n—1] is the polynomial ring over K in variables zg,...,2,_1,
and K (X) = K (o, ...,Tn—1) is the field of quotients of K[X]. The indexes of the
variables zg, ..., z,_1 are elements of the ring Z,. The cyclotomic derivation d is
the K -derivation of K(X) defined by d(x;) = x;41 for j € Z,.

For every sequence o = (g, a1, ..., an—1), of integers, we denote by H,(t) the
polynomial from Z[t] defined by

Hy(t) = ag + gttt + agt? + -+ + g t" L
An important role in our paper will play two subsets of Z™ denoted by G, and

M,,. The first subset is the set of all sequences @ = («,...,ay,—1) such that
ag, . ..,q,_1 are integers and

ap+ et +age? + -+ ap_1e" " = 0.
The second subset M, is the set of all such sequences o = (ag,...,a,—1) which

belong to G,, and the integers «y,...,a,_1 are nonnegative, that is, they belong
to the set of natural numbers N = {0,1,2,...}. To be precise,

Gn={a€Z" Hy(e) =0}, M, ={aeN" H,(c) =0} =G, NN".

If a, B € G,, then of course a £ 3 € G,, and if o, f € M,,, then a+ 5 € M,,. Thus
Gy is an abelian group, and M, is an abelian monoid with zero 0 = (0,...,0).

Let us recall that € is an algebraic element over QQ, and its monic minimal
polynomial is equal to the n-th cyclotomic polynomial @, (t). Recall also (see
for example [6] or [7]) that ®,(¢) is a monic irreducible polynomial with integer
coefficients of degree ¢(n), where ¢ is the Euler totient function. This implies the
following proposition.

Proposition 2.1. Let o € Z". Then o € G, if and only if there exists a polynomial
F(t) € Z[t] such that Hy(t) = F(t)®,(t).
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Put ¢y = (1,0,0,...,0), e; = (0,1,0,...,0), ..., en—1 = (0,0,...,0,1), and let
e=3""lei=(1,1,...,1). Since 321" " ¢’ = 0, the element e belongs to M,,.

The monoid M,, has an order >. If o, 8 € G,,, the we write a > 3, if a— 8 € N,
that is, « > B <= there exists v € M,, such that « = § + . In particular,
a > 0 for any a € M,,. It is clear that the relation > is reflexive, transitive and
antisymmetric. Thus M,, is a poset with respect to >.

Let a € M,,. We say that « is a minimal element of M,,, if a # 0 and there is
no B € M,, such that 8 # 0 and 8 < «. Equivalently, « is a minimal element of
M, if @ # 0 and « is not a sum of two nonzero elements of M,,.

We denote by ¢, the rotation of Z"™ given by ((a) = (n—1, 0,41, -,Qn_2),
for a = (ag,1,...,n—1) € Z". The mapping ¢ is a Z-module automorphism of
Z™. Note that ("Ha) = (a1,...,an_1,x), for all @ = (ap,a1,...,0n_1) € Z". If
a,b € Z and a = b(mod n), then (¢ = ¢*. Moreover, ((e;) = e;4+1 for all j € Zy,
and ((e) =e.

Let us recall from [10] some basic properties of M,, and G,,.

Proposition 2.2 ([10]).

(1) If « € Gy, then there exist 8,7 € M,, such that o = 3 — .

(2) The poset M,, is artinian, that is, if a® >a® >al > s a sequence
of elements from M.,,, then there exists an integer s such that o) = aU+D for all
Jj=s.

(3) The set of all minimal elements of M,, is finite.

(4) For any 0 # o € M,, there exists a minimal element 8 such that 8 < a.
Moreover, every nonzero element of M., is a finite sum of minimal elements.

(5) Let « € Z™. If a € G,, then ((a) € G,. If a € M, then ((a) € M,,.
Moreover, « is a minimal element of M,, if and only if ((«) is a minimal element

of M.

Look at the cyclotomic polynomial ®,,(¢). Assume that ®,(t) =co+c1t+---+
cw(n)t*"(”). All the coefficients cy, ..., cy(n) are integers, and c¢p = c,(,) = 1. Put
m=mn— p(n) and

Yo (007017...,%(”), 0,...1,0).
Note that 79 € Z", and H,,(t) = ®,(t). Consider the elements Yo, V1, ..., Ym—1
defined by v; = ¢/ (10), for j = 0,1,...,m —1. Observe that H,, (t) = ®,(t) -t/ for
all j € {0,...,m — 1}. Since ®,(¢) = 0, we have H,,(¢) = 0, and so, the elements
Y05 - - - s Ym—1 belong to G,. Moreover, we proved in [10], that they form a basis
over Z, which is the following theorem.

Theorem 2.3 ([10]). G, is a free Z-module, and the elements Yo, ..., Ym—1, where
m=n—@(n), form its basis over Z.



100 J. MOULIN OLLAGNIER AND A. NOWICKI

3. STANDARD MINIMAL ELEMENTS

Assume that p is a prime divisor of n, and consider the sequences
p—1

m(p7 T) = Z 67‘+i%7

i=0

forr =0,1,... ,% — 1. Observe that each m(p,r) is equal to ¢" (m(p,0)). Each
m(p,r) is a minimal element of M,, (see [10] for details). We say that m(p,r) is
a standard minimal element of M,,. In [10] we used the notation E™ instead of
m(p,r). It is clear that if r1,ro € {0,1,... ,% — 1} and r1 # rg, then m(p,r1) #
m(p,ra).

If o = (ag,...,an—1) € Z"™, then we denote by |a| the sum ag + -+ + qp_1.
Observe that, for every r, we have |m(p,r)| = p. This implies, that if p # ¢ are
prime divisors of n, then m(p,r1) # m(q,r2) for all r; € {O,...,% -1}, m €
{0,1,..., i 1}. Note the following two obvious propositions.

|
Proposition 3.1. > m(p,r)=(1,1,...,1) =e.
r=0

Proposition 3.2. Ifp is a prime divisor of n, then the standard elements m(p,0),
m(p,1), ..., m(p, % — 1) are linearly independent over Z.

The following two propositions are less obvious and deserve a proof.

Proposition 3.3. Let n = pgN, where p # q are primes and N is a positive
integer. Then

p—1 q—1
Z m(q, kN) = Z m(p, kN).
k=0

which, for any shift r, is easily extended to

p—1 q—1
Zm(q7 EN +7r) = Zm(p7 EN + 7).
k=0 k=0

Proof. If m is a positive integer, then we denote by [m] the set {0,1,...,m — 1}.
First observe that {k—i—ip; kelp], i€ [q]} = {k+iq; kelq, i€ [p]} = [pq].
Hence,

p—1 p—1lg—1 p—1lg-—1 pq—1
m(kaN) = CkN+iZ = ZZeN(kJrzp Z ENEK;

k=0 k=0 i=0 k=0 i=0 k=0

q—1 g—1p—1 qg—1p—1 pq—1
m(p,kN) = Z%NH% = ZZCN(kJﬂq) = Z ENk-

k=0 k=0 i=0 k=0 i=0 k=0

p—1 pg—1 q—1
Thus, > m(q, kN) = > exny = Y. m(p,kN). O

k=0 k=0 k=0
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Proposition 3.4. Let p be a prime divisor of n. Let 0 < r < %, and a € Z. Then

¢o (m(n r)) =m(p,b), where b= (a+r) (mod Z)

Proof. Putw:%, and [p] = {0,1,...,p—1}. Let a4+ r = cw + b, where ¢,b € Z

with 0 < b < w. Observe that {b—i— (c+9)w (mod n); i € [p]} = {b—l—iw; i€ [p]}
Hence,

p—1 p—1 p—1
¢* (m(p, 7“)) = ¢ (Z €r+iW> = an (€T+iw) = Z Ca+r+iw
1=0 =0 1=0

p—1 p—1 p—1
= E Chtcwtiw = § eb+(c+i)w = E Cht+iw = m(pa b)7
=0 =0 =0

and b = (a +r) (mod w). O
We will apply the following theorem of Rédei, de Bruijn and Schoenberg.

Theorem 3.5 ([13], [1], [15]). The standard minimal elements of M,, generate
the group G,.

Known proofs of the above theorem used usually techniques of group rings. Lam
and Leung [5] gave a new proof using induction and group-theoretic techniques.

We know (see for example [10]) that if n is divisible by at most two distinct
primes, then every minimal element of M, is standard. It is known (see for example
[5], [17], [14]) that in all other cases always exist nonstandard minimal elements.

4. THE SETS I;

Let n > 3 be an integer, and let n = pJ* - - p%=, where p1, ..., ps are distinct
primes and aq,...,a, are positive integers. Put n; = 1% for j = 1,...,s. Let
J
Iy,..., I be sets of integers defined as follows:
I = {rGZ; O<r<n1},
L, = {r €Z; 0<r<mng, ged(r,pr) = 1},
I; = {r €Z; 0<r<ng, ged(r,pip2) = 1},
Is - {TEZ; O<T<nsv ng(T7p1p2"’ps—l):1}'
That is, I1 = {r € Z; 0 < r < m}and I; = {r € Z; 0 < r <
n;, ged(r,p1---pj—1) = 1} for j = 2,...,s. This definition depends of the fixed
succession of primes. We will say that the above Iy,..., I are the n-sets of type

1., Ds)-
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Let for example n = 12 = 223. Then I, = {0,1,2,3,4,5}, I = {1,3} are the
12-sets of type [2,3], and I} = {0,1,2,3}, I = {1,2,4,5} are the 12-sets of type
3,2].

Example 4.1. The 30-sets of a a given type:

type I I I3

2,3,5] | {0,1,2,..., 14} 11,3,5,7,9) ,5]

2,53 | {0,1,2,...,14} 1,3,5) 11,3,7,9]
3,2,5] | {0,1,2,...,9} | {L,2.4,5,7,8,10,11,13, 14} 1,5)

3,5,2] | {0,1,2,...,9 1,2,4,5] 11,2,4,7,8,11, 13, 14}
52,3 | {0,1,2,3,4,5) | {1,2,3,4,6,7,8,9, 11,12, 13, 14} 11,3,7,9]
53,2 | {0,1,2,3,4,5) {1,2,3,4,6,7,8,9} 11,2,4,7,8,11, 13, 14}

Now we calculate the cardinality of the sets I,...,I;. We denote by |X]| the
number of all elements of a finite set X . First observe that if a, b are relatively prime
positive integers, then in the set {1,2,...,ab} there are exactly p(a)b numbers
relatively prime to a. In fact, let v € {1,2,...,ab}. Then u = ka + r, where
0<k<band 0 <r <a, and ged(u,a) =1 <= ged(r,a) = 1. Thus, every such
u, which is relatively prime to a, is of the form ka+r with 1 < r < a, ged(r,a) =1
and where k is an arbitrary number belonging to {0,1,...,b — 1}. Hence, we have
exactly b such numbers k, and so, the number of integers in {1, ..., ab}, relatively
prime to a, is equal to ¢(a)b. As a consequence of this fact we obtain

Lemma 4.2. Let a > 2, b > 2 be relatively prime integers. Then there are exactly
©(a)b such integers belongmg to {0,1,...,ab — 1} which are relatively prime to a.

Let us recall that ¢(n) =n (1 - p%) <1 - pi) Now we are ready to prove
the following proposition.

Proposition 4.3. |I;| = n1, and |I;| = n, (1 - p%) (1 — p%) ( p:) , for
allj=2,3,...,s
Proof The case |I;| = ny is obvious. Let j > 2, and put a = pJ* -- -p?i‘ll, b=
p] 1p?jr+11 ---p%=. Then ged(a,b) =1, n;—1=ab—1,and if r € {0,1,...,n; — 1},
then r € I; <= gcd(r,a) = 1. Hence, by Lemma 4.2, we have
L] = plap=ppiy (1= ) o (1= )
Q; -1 «j a
= pP cpy” 11<1_p%),..<1_m 1>pj pj++11...pss
_ £<l_i)...(1_ L) oy (1) (12 50)
Pj P1 Pj—1 J P1 pj-1) "
This completes the proof. O
Lemma 4.4. Consider some nonzero numbers z1,...,zs. Define wy by w; = =

Z1

and w; bywj—z (1——) (1——)~-~( Zal)forj:2,...,s. Then

w1+w2+~~-+ws—l(1>J(1>~~~(lzls).
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Proof. The case s = 1 is obvious. Assume now that it is true for an integer s > 1,
and consider nonzero numbers z1,...,2s41. Then we have

T sy

:w1+"’+ws+ws+1'

Proposition 4.5. |I1|+ ||+ -+ |Is| =n — p(n).

Proof. We know, by Proposition 4.3, that |I;| = nw;, for j = 1,...,s, where
w; = L and wj = % (1— i) (1—i) (1— p,l_l) for j =2,...,s. Thus, by

p1 p1 p2

Lemma 4.4,
4 IRl 4o Ll = n (w44 )
(1) 07 ()

pP1 p2 DPs

_ 1 _ 1) _ 1)Y=y
—n—n(l—p1)<1 pz) (1 ps)—n w(n).

This completes the proof. O

Let us recall the following well-known lemma where € is a primitive n-th root of
unity.

n—1
Lemma 4.6. Let ¢ be an integer and let U = > ()" . If nt ¢ then U is equal to

r=0

0, and in the other case, when n | ¢, this sum is equal to n.

Using this lemma we may prove the following proposition.

Proposition 4.7. If ¢ € Z then, for any j € {1,...,s}, the sum W; = > (ePi€)"
rel;
18 an integer.

Proof. First consider the case j = 1. Let n = ¢P*. Then 7 is a primitive ni-th root
ni—1
of unity, and Wy = > (n°)". It follows from Lemma 4.6 that W; is an integer.
r=0
Now assume that j > 2. Put X = {0,1,...,n; — 1}, and D; = {r € X; p; | r}
fori=1,...,7—1. Then I; = X N~ (D;U---UDj_1), and then W; = U -V,

where
T NEC T SRR

reX TED1U"'UDj_1

’I’Ljfl

Observe that U = Y (n°)", where n = ePs is a primitive nj-root of unity. Thus,

=
by Lemma 4.6, U is an integer. Now we will show that V' is also an integer. For
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this aim first observe that

j—1
EDICORDIID I
k=1 11 <<ty TED; ip
where the sum > runs through all integer sequences (iy,...,i;) such that

i <o <ig
1< < < <j—1, andwhereDl-lmik :Dilﬂ"'mDik'

Let 1 <idp < -+ < i, <j— 1 be a fixed integer sequence. Then we have

Ju

Yo=Y )

IS

r€D;; .. r=0
Y S FIRERRY s I n; . . . o .
where n = ePiPirPix and u = —L— = —2——_ Since 7 is a primitive u-th
Diy " Piy, DjPiy - Piy,

root of unity, it follows from Lemma 4.6 that the last sum is an integer. Hence,

every sum of the form ST (ePi€)" is an integer, and consequently, V is an
T€D; ...y

integer. We already know that U is an integer. Therefore, W; = U — V is an

integer. U

5. SPECIAL NUMBERS

As in the previous section, let n = p{* ---p%=, where py,...,p, are distinct
primes and aq,. .., a, are positive integers. Put n; = % for j=1,...,s. Assume
J

that [p1,...,pn] is a fixed type, and I4,..., I are the n-sets of type [p1,...,ps].
If j € {1,...,s} and 0 < r < n;, then we have the standard minimal element

m(p;,r) = Zfigl €ryin,. Let us recall that each m(p;,r) belongs to the monoid
M, and it is a minimal element of M,,. Moreover, n; = ﬁ forj=1,...,s.
J

The main role in this section will play the sets A1, ..., As, which are subsets of
the monoid M,,. We define these subsets as follows

A = {m(pj,r); re Ij},

for all j =1,...,s. We denote by A the union 4 = A; U---U A,. Note that the
above sets A and Ay, ..., A, are determined by the fixed succession P = [p1, ..., ¢,]

of the primes p1,...,ps. In our case we will say that A is the n-standard set of
type P.
Observe that the sets Ay, ..., As are pairwise disjoint, and as a consequence of

Proposition 4.5 we have the equality |A| = n — p(n).

Let us recall (see Theorem 2.3) that the group G, is a free Z-module, and its
rank is equal to n — p(n), so this rank is equal to |.A|. We are interested in finding
conditions for A to be a basis of G,. First we need A to be linearly independent
over Z.
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Special numbers will then be convenient to prove Theorem 9.1. We will say that
the number n is special of type P if the n-standard set A of type P is linearly
independent over Z. Moreover, we will say that the number n is special if there
exists a type P for which n is special of type P. We will say that the number n is
absolutely special if it is special with respect to any type P.

Example 5.1. Let n = 12 = 223 and consider the type [2,3]. In this case we have:
s=2,p1=2,p2=3,n1 =6,n, =4, I ={0,1,2,3,4,5} and Iy = {1,3}. The
12-standard set A of type [2,3] is the set of the following 8 sequences:

m(2,0) = (1,0,0,0,0,0,1,0,0,0,0,0),
m(2,1) = (0,1,0,0,0,0,0,1,0,0,0,0),
m(2a2) - (0707 1,0,0,0,0,0, 1a07070)7
m(2,3) = (0,0,0,1,0,0,0,0,0,1,0,0),
m(2,4) = (070,0,0, 1,070,0,0,0,170),
m(2,5) = (0,0,0,0,0,1,0,0,0,0,0,1),
m(3,1) = (0,1,0,0,0,1,0,0,0,1,0,0),
m(3,3) = (0,0,0,1,0,0,0,1,0,0,0,1).

Observe that m(2,1) +m(2,3) +m(2,5) = m(3,1) + m(3,3). Hence, the set A
is not linearly independent over Z. This means, that 12 is not a special number of
type [2,3].

Now consider n = 12 and the type [3,2]. In this case py = 3, po = 2, ny = 4,
ny =6, I ={0,1,2,3} and Ir = {1,2,2,5}. The 12-standard set A of type [3,2]
is in this case the set of the following 8 sequences:

m(3,0) = (1,0,0,0,1,0,0,0,1,0,0,0),
m(?’a 1) - (0,1,0,0,0,1,0,0,0,1,0,0),
m(3,2) = (0,0,1,0,0,0,1,0,0,0,1,0),
m(3,3) = (070,0,1,0,070,1,0,0,071),
m(2, 1) = (0,1,0,0,0,0,0,1,0,0,0,0),
m(2,2) = (0,0,1,0,0,0,0,0,1,0,0,0),
m(2,4) = (0,0,0,0,1,0,0,0,0,0,1,0),
m(2,5) = (0,0,0,0,0,1,0,0,0,0,0,1).

It is easy to check that in this case the set A is linearly independent over Z. Thus,
12 is a special number of type [3,2], and 12 is not a special number of type [2, 3].

O

We will prove that the number n is absolutely special if and only if either n is
square-free or n is a power of a prime number. Moreover, we will prove that the
number n is special if and only if n = p1ps - - - ps—1p$*, where p1, ..., ps are distinct
primes and ag > 1.

Proposition 5.2. Fvery power of a prime is an absolutely special number.
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Proof. Let n = p™, where p is a prime and m > 1. Then s = 1, ny = p™ 1,

I, = {0,1,...,p™ ! — 1} and there is only one type P = [p]. Thus, A = A; and,
by Proposition 3.2, the set A is linearly independent over Z. (]

Lemma 5.3. Let p be a prime number, and let N > 2 be an integer such that p{ N.
Then, for every integer r, there exists a unique ¢, € {0,1,...,p— 1} such that the
number r + ¢, N is divisible by p. Moreover, all numbers of the form r 4+ ¢, N with
0 < r < N are pairwise different.

Proof. Let r € Z. Consider the integers r,r + N,r + 2N,...,r + (p — 1)N, and
observe that these numbers are pairwise noncongruent modulo p. Thus, there
exists a unique ¢, € {0,1,...,p— 1} such that r + ¢,N = 0 (mod p). Assume that
r1+ ¢, N =719+ ¢, N for some r1,79 € {0,1,...,N —1}. Then N | r; —ry and
S0, 11 = Tg. O

Despite the fact that we need the full Theorem 5.10 (A generates G, ), we first
state and prove the following Proposition (A is linearly independent over Z) for
a better understanding. This Proposition is not equivalent, as A could generate
a subgroup of G,, of finite index.

Proposition 5.4. Let n = p1---ps—1 - 0%, where s 2 2, a > 1, and p1,...,ps
are distinct primes. Then n is a special number of every type of the form
[po(l), e ,pg(s_1),ps] ,where o is a permutation of {1,...,s —1}.

Proof. Let P be a fixed type with ps at the end. Without loss of generality, we
may assume that P = [py,...,ps—1,ps]. Let Ir,...,Is be n-sets of type P, and
assume that

(a) Z Zvﬁj)m(pj,r) =(0,0,...,0),

S

j=1 \rel;
where each ,77(] ) is an integer. We will show that 'yﬁj ) =0 for all g,
Note, that every standard element u = m(p;,) is a sequence (ug, U1, . .., Un—1),

where all ug, ..., u,—_1 are integers belonging to {0, 1}. We will denote by S(u) the
support of u, that is, S(u) = {k €{0,1,...,n—1}; ug = 1}.

Consider the case j = 1. Put p = p; and N = ny = % = paps...Ds—1 D

Observe that p { N, and all the numbers no,...,n, are divisible by p. Let u =
m(p;,r) with r € I;, where j > 2. Then p{r, and

S(u)={r, r+nj, r+2n;, ..., r+ (p; — 1)n,},
and hence, all the elements of S(u) are not divisible by p.

Look at the support of m(py,r) with r € I;. We have S(m(pl,r)> = {r, T+
N, 42N, ..., r+(p— 1)N}. It follows from Lemma 5.3 that in this support there

exists exactly one element divisible by p. Let us denote this element by r + ¢, V.
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We know also from the same lemma, that all the elements r + ¢, N with r € I; are

pairwise different. These arguments imply, that in the equality (a) all the integers

fyT(.l), with r € I;, are equal to zero.

Now let 2 < jg < s, and assume that we already proved the equalities fy(] ) =0

for all j < jo and r € I . Then the equality (a) is of the form

(b) Z Z Vﬁj)m(pj’ T) = (0’ 0,... ,0)7

Jj=jo \r€l;
We will show that ) = 0 for all r € I,

Put p = pj, and N = n;, = %. Observe that p{ N, and all the numbers n; with
J > jo are divisible by p. Let w = m(p;,r) with r € I;, where j > jo. Then p{r,
and
S(u) ={r, r+n;, r+2n;, ..., r+ (p; — 1)n,;},
and hence, all the elements of S(u) are not divisible by p.

Look at the support of m(pj,,r) with r € I;,. We have S(m(pjo,'r)> = {r, T+

N, 742N, ..., r+(p— 1)N}. It follows from Lemma 5.3 that in this support there
exists exactly one element divisible by p. Let us denote this element by r + ¢.IN.
We know also from the same lemma, that all the elements r + ¢, N with r € I;; are
pairwise different. These arguments imply, that in the equality (b) all the integers

(JO) , with r € I;

jo» are equal to zero.

Hence, by the induction hypothesis, the equality (b) reduces to the equality
Z ~&m(ps,r) = (0,0,...,0),
rel,

where each 7, (s) is an integer. Now we use Proposition 3.2 and we have ~,(s) =0
for all » € I,. Thus, we proved that in the equality (a) all the integers of the

form 7, where j € {1,...,s} and r € I;, are equal to zero. This means that the
n-standard set A of type P is linearly independent over Z. Therefore, n is a special
number of type P. O

Using the above proposition for & = 1 we obtain
Proposition 5.5. Fvery square-free integer n > 2 is absolutely special.

Lemma 5.6. Let n = p{* ---p%=, where s > 2, p1,...,ps are distinct prime num-
bers and a, . .., a5 are positive integers. Let P = [p1,...,ps]. If aq > 2, then n is
not a special number of type P.

v—1

pes @ Z m(p,pk+1), b= 3> m(q,pk+

n
2

p’v

Proof. Put p = p1, ¢ =p2, u=

1). Observe that a is a sum of elements from Al, and b is a sum of elements from
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Ap. Moreover, ny = % = pu, ng = 7 = pv,

u—1p—1 u—1p—1 u—1p—1 ni—1
a = Z Epk+1+in, = Z Z Epk+1+ipu = Z Z Ep(k+iu)+1 = Z €pj+1,
k=0 =0 k=0 =0 k=0 =0
v—1q—1 v—1¢g—1 v—1¢q—1 ni—1
b = Epk+1+ing = Z Z Epk+1+ipv = Z Z ep(k+w)+1 = Z €pj+1-
k=0 i=0 k=0 i=0 k=0 i=0
71171
Hence, a = Z epj+1 = b. This implies that the n-standard set A of type P is not
§=0
linearly independent over Z. Thus, n is not a special number of type P. O
Lemma 5.7. Let n = p{* - p%=, where s > 2, p1,...,ps are distinct prime num-
bers and aq,...,as are positive integers. Let P = [p1,...,ps]. If there exists

Jo €{1,2,...,s — 1} such that o, > 2, then n is not a special number of type P.

Proof. If jo = 1 then the assertion follows from Lemma 5.6. Assume that jo > 2,
and let Ay,..., As be the n-standard sets of type P. Put N = p{*-- pjaojﬂll,

u—1

P = Pioy €= Piots U= Fyp U= Fyge @ 3y @ = 2 mippNE+ 1), and
v—1

b= > m(q,pNk + 1). Observe that a is a sum of elements from A;,, and b is
k=0

a sum of elements from A;,41. Moreover, nj, = % =pNu, njo41 = % = pNw,

u—1p—1 u—1p—1
a = § § ekaJrlJrinjO = § § EpNk+1+ipNu
k=0 i=0 k OL 0
u—1p—1
= E E EpN (k+iu)+1 = E EpNj+1,
k=0 i=0
v—1qg—1 v—1qg—1
b = E E EpNk+1+in, 41 = epNk+1+ipNov
k=0 i=0 k=0 i=0
v—1g—1 w—1
= E E EpN (k+iv)+1 = E EpNj+1-
k=0 i=0 §=0
w—1
Hence, a = g epNj+1 = b, where w = 1%. This implies that the n-standard set
=0
A of type P is not linearly independent over Z. Thus, n is not a special number of
type P. O

As a consequence of the above facts we obtain the following theorems.

Theorem 5.8. An integer n > 2 is special if and only if n = pips - ps—1p%,
where p1,...,ps are distinct primes and ag > 1.
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Theorem 5.9. An integer n > 2 is absolutely special if and only if either n is
square-free or n is a power of a prime number.

The smallest non-special positive integer n > 2 is n = 36. In the segment [2, 100]
there are 3 non-special numbers: 36, 72 and 100.

Let us recall that if n is a special number, then its n-standard set A is linearly
independent over Z. Now we will show that, in this case, the set A is a basis of
G... Let us denote by A the subgroup of G,, generated by A. Every element of A
is a finite combination over Z of some elements of A.

We already know (see Theorem 3.5) that the group G, is generated by all the
standard minimal elements of M,,. Thus, for a proof that A is a basis of G,, it
suffices to prove that every standard minimal element of M,, belongs to A.

Theorem 5.10. Let n = py---ps_1pS, where s 2 1, a 2 1, and p1,...,ps are
pairwise different primes. Let P = [p1,...,ps], and let A be the n-standard set of
type P. Then every standard minimal element of M, belongs to A.

Proof. First, all p;-standard elements m(p1,r) with 0 < r < pil belong to A; and
thus to A.

To go further, for 5 > 1, we will use the relations given in Proposition 3.3 and
we define therefore the height of a pj-standard element (that may not belong to
Aj;) as the number of primes among {pi,--- ,p;j_1} that divide  and denote it by
h(m(pj;,r)). Elements of A; have height 0. A pj;-standard element has an height
at most 5 — 1.

By definition all standard elements of height 0 belong to A and thus to A.

To achieve the proof by induction, we use the following fact.

Key fact. For j > 1, let m(p;,r) be a p;-standard element with a non-zero height.
Then some of the p;, 1 < ¢ < j divide 7. Let then denote by p one of them and p;

by q.

As all prime factors but the last have exponent 1 in the decomposition of n, when
we apply Proposition 3.3, N = n/pq is coprime with p and a multiple of all p;, 1 <
l<j, l#1.

For any k, 1 < k < p—1, r+ kN is coprime with p and keeps the same other
divisors among the other p;,1 <1 < j,l # i : the height h(m(p;,r + IN)) is then
h(m(pj,r)) — 1.

Whence the following relation we get from Proposition 3.3

q—1 p—1
m(q,r) = m(p, kN +r) — Zm(q, EN + 7).
k=0 k=1
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which means

g—1 p—1
mpj,r) = > m(pi, kN +r) =3 m(p;, kN + 7).
k=0 k=1

and m(p;,r) is a Z-linear combination of some m(p;,r’) with a strictly smaller
height and of some m(p;, ") for an index i < j.

The proof is now a double induction with the following steps.

Let j > 1 and suppose that all m(p;,r) have been proven to belong to A for all
i< j.

All m(p;,r) with a 0 height belong to A; and then to A.

For any h/,1 < h' < j, if we know that all m(p;,r) with h(m(p;,r)) < b’ belong
to A, then the same is true for all m(p;,r) with h(m(p;,7)) = b’ according to the
previous key fact. O

6. THE CYCLOTOMIC DERIVATION D

Throughout this section n > 3 is an integer, K is a field of characteristic zero,
K[X] = K|zo,...,%n_1] is the polynomial ring over K in variables zg,...,2,_1,
and K(X) = K(zog,...,2n—1) is the field of quotients of K[X]. We denote by Z,,
the ring Z/nZ. The indexes of the variables x, ..., z,_1 are elements of Z,. We
denote by d the cyclotomic derivation of K[X], that is, d is the K-derivation of
K[X] defined by

d(z;) =z, for jeZ,.

We denote also by d the unique extension of d to K (X). We denote by K[X]? and
K(X)? the K-algebra of constants of d and the field of constants of d, respectively.
Thus,

K[X]'={F € K[X]; d(F) =0}, K(X)'={fe K(X); d(f) = 0}.

Now we recall from [10] some basic notions and facts concerning the derivation
d. As in the previous sections, we denote by & a primitive n-th root of unity, and
first we assume that € € K.

The letters p and 7 we book for two K-automorphisms of the field K (X)), defined
by

o(wj) = i1, T(r;) =elw; forall j €Ly

Observe that pdo~! = d. We denote by ug, u1,. .., un—1 the linear forms, belonging
to K[X], defined by

Uj = Z (€j)i$i, for j€Z,.
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Then we have the equalities

for all i € Z,,. Thus, K[X] = KJug,...,un—1], K(X)= K(ug,...,un—_1), and the
forms ug, . ..,u,—1 are algebraically independent over K. Moreover,

T(uj) = ujy1,  o(uj) = €7juj, d(u;) = s’juj,
for all j € Z,.
It follows from the last equality that d is a diagonal derivation of the polynomial

ring K[U] = KJug, . .., un—1] which is equal to the ring K[X].

If « = (ag,...,an—1) € Z"™, then we denote by u® the rational monomial
ug® - -up"7t. Recall (see Section 2) that H,(t) is the polynomial ag + ast! +

n—1

-+ + an_1t""! belonging to Z[t]. Since d(u;) = e Ju; for all j € Z,, we have
d(u®) = Ho(e"Hu®, forall a€Z".

Note that e~! is also a primitive n-th root of unity. Hence, by Proposition 2.1, we
have the equivalence H,(¢71) =0 <= H,(c) = 0, and so, we see that if o € Z",
then d(u®) =0 < «a € G,, and if & € N, then d(u®) =0 < a € M,,.
Moreover, if F = blu"(n +-- ~—|—bru“m, where by,...,b, € K and o, ..., a(") are
pairwise different elements of N™, then d(F) = 0 if and only if d (biua(i)) =0 for

every i = 1,...,r. In [10] we proved the following proposition.

Proposition 6.1 ([10]). If the primitive n-th root € belongs to K, then:

(1) the ring K[X]? is generated over K by all elements of the form u® with
a € My;

(2) the ring K[X]? is generated over K by all elements of the form u®, where 3
is a minimal element of the monoid M, ;

(3) the field K(X)? is generated over K by all elements of the form u” with
v e gn;

(4) the field K(X)? is the field of quotients of the ring K[X]<.

Let m = n — ¢(n), and let ~o,...,ym—1 be the elements of G, introduced in
Section 2. We know (see Theorem 2.3) that these elements form a basis of the
group G,. Consider now the rational monomials wy, ..., w,,_1 defined by

wj =u" for j=0,1,...,m—1

It follows from Proposition 6.1, that these monomials belong to K (X)? and they
generate the field K (X)9. We proved in [10] that they are algebraically independent
over K. Moreover, in [10] proved the following theorem.
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Theorem 6.2. If the primitive n-th root € belongs to K, then the field of constants
K(X)? is a field of rational functions over K and its transcendental degree over K
is equal to m = n — @(n), where ¢ is the Euler totient function. More precisely,

K(X)! = K(wo, . ,wm_1>,

where the elements wy, ..., w,_1 are as above.

7. THE POLYNOMIALS S,

In this section we use the notations from the previous section, and we again
assume that K is a field of characteristic zero containing €. Let us recall that if p
is a prime divisor of n and 0 < r < % — 1, then m(p,r), is the standard minimal

p—1
element of the monoid M,, defined by m(p,r) = Z Eryiz. Observe that if a, b are

integers such that a = b (mod 7), then E €atin = Z eptiz. Thus, we may define

i=0
p—1

m(p,a) = Zea_,_i%, for a € Z.
=0

Note, that if a € Z, then m(p, a) = m(p,r), where r is the remainder of division of a
by %. Moreover, (? (m(p, b)) = m(p,b) for b € Z, and more general, * (m(p7 b)) =
m(p,a+b) for all a,b € Z (see Proposition 3.4).

For every integer a, we define

Spa o= wm Huw,.

Observe that S, , = Sp, -, where r is the remainder of division of a by %. Each S, ,
is a monomial belonging to K[U] = K|ug,...,un—1]. Since m(p,a) € M,, C Gy,
each S, belongs to the constant field K (X)2.

Recall (see Section 6) that g is the K-automorphism of the field K (X), defined

by
Q(mj) =Tj+1, for j € Z,.

We have o(u;) = e Ju; for j € Zy. In particular, o(ug) = ug. The proof of the
following proposition is an easy exercise.
Proposition 7.1. If a € Z, then 0(Spq) = e °Sp.q, where b = pa + 2= 1)". In
particular, if p is odd then 9(Spq) = € ®PSpq. If p = 2, then n is even and
o (52,(1) = 57(2a+%)52,a

Recall the following well known lemma, which appears in many books of linear
algebra.
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Lemma 7.2. For any integer n > 2,

Lo Ty 0 Tp-1
Tp—-1 To -~ Tp—2
Uy - .- Up—-1 =
‘Tl ‘/11'2 ... ‘/I’.O

In particular, the product uguy ... un—1 s a polynomial belonging to Z[X].
Using this lemma we obtain the following proposition.
Proposition 7.3. The polynomial S, o belongs to Z[X].

b—1
Proof. Putb = %, n=-c’ andv; = up, yi = >, ZTiqjp foralli =0,1,...,p—1, Then
j=0

p=1
7 is a primitive p-th root of unity, and v; = ) (nz)k Yk, foralli =0,1,...,p— 1.
k=0
Now we use Lemma 7.2, and we have
Yo Yr - Yp—1
ypfl Yo e yp72
Sp_;’ﬁ = VoU71 """ 'Up71 = . . .
Y Y2 - Yo
Thus, S, 0 € Z[X]. O
Let n = p{*---p%s, where pi,...,ps are distinct primes and ai,...,a, are
positive integers. Let n; = ﬁ for j = 1,...,s. Assume that P = [p1,...,py] is

a fixed type, and I, ..., I; are the n-sets of type P.

For every j € {1,...,s} we denote by V; the K-subspace of K[U] generated by
all the monomials S, . with r € I;. Let us remember

V; = <Spj7r; r Elj>, for j=1,...,s.

We will say that Vs, ..., Vs are n-spaces of type P. As a consequence of Propositions
4.3 and 4.5 we obtain the following proposition.
Proposition 7.4. If Vi,...,Vs are n-spaces of type P = [p1,...,ps], then
dimg Vi = nq, and dimg V; = n; (1 — i) (1 — i) (1 — L) for all j =

p1 P2 pj—1)"’
2,3,...,s. Moreover,

dimg V1 @ --- @ Vs) =n — p(n).
Let A be the n-standard set of type P. Let us recall (see Section 5) that
A=A U---UA,, where A; = {p(p;, r); r € I;} for j =1,...,s. Hence, for each

J we have the equality V; = (u% a € A;). Let S the set of all the monomials u®
with a € A, that is,

S = {S,,_,.,T; jefl,... s}, re Ij}.
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Proposition 7.5. If the number n is special of type P, then the above set S is
algebraically independent over K, and K(X)? = K (S).

Proof. Assume that n is special of type P. Let vg,...,7¥m—1 be the elements
of G,, defined in Section 2, and let w; = u” for i = 0,...,m — 1. Recall that
m=n—¢n). PuT = {v,...,Ym-1}, and W = {wo, ..., wmn_1}. We know
(see Theorem 2.3) that T" is a basis of G,. Since n is special, the set A is also
a basis of G,,. This implies that K (S) = K(W). But, by Theorem 6.2, the set W is
algebraically independent over K and K (W) = K(X)?. Moreover, |S| =|W|=m
Hence, the set S is also algebraically independent over K, and we have the equality
K(X)¥=K(S). O

In the above proposition we assumed that n is special of type P. This as-
sumption is very important. Consider for example n = 12 and P = [2,3]. We
know (see Example 5.1) that 12 is not special of type P. In this case the set S
is not algebraically independent over K. In fact, we have the polynomial equality
52,152,352,5 = 53,153 3.

8. THE POLYNOMIALS T,

Let n = p{*---p%, where pi,...,ps are distinct prime numbers and
aq,...,0, are positive integers. Let n; = ﬁ for j = 1,...,s. Assume that
J
P =[p1,...,pn] is a fixed type, and I,..., I, are the n-sets of type P.

Now assume that j is a fixed element from the set {1,..., s}, and a is an integer.
Put
TPM = Z (giapj)r‘gpjﬂ“'
rel;

Observe that T, o = T}, m, where m is the remainder of division of a by n;. Let
us recall that ¢ € K. Thus, every T}, , is a polynomial from K[U] belonging to
the subspace V;.

Proposition 8.1. For every j =1,...,s, all the polynomials T}, m, with 0 < m <
nj, generate the K-space V;.

njfl
Proof. Let ¢ € I and consider the sum H = )~ (%)™ T}, ,,. Put p = €Ps. Then

m=0
7 is a primitive n;-th root of unity, and we have

n;—1 n;—1
g o= S ey (z m5> _ 5 (z <>m) Spr

rel; rel; \ m=0

’I’Lj*l
= Z < Z n(Q—r)m) Spj,r = anpj,q~

m=0
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In the last equality we used Lemma 4.6. Thus, if ¢ € I;, then S, , =

n;—1

n%_ > (e%9)™ T, m- But € € K, so now it is clear that all T}, ,, with 0 < m < nj,
m=0

generate the K-space V;. O

Now we will prove that every polynomial T}, , belongs to the ring Z[X]. For
this aim first recall (see Section 6) that 7 is a K-automorphism of K (X) defined
by

7(x;) =€elz; forall j€Z,.

Since 7(u;) = u;yq for all i € Z,,, we have
Spjr =T" (SPJ',O)

for j € {1,...,s} and r € Z (in particular, for r € I;). We say (us in [10]) that
arational function f € K(X) is T7-homogeneous, if f is homogeneous in the ordinary
sense and 7(f) = e°f for some ¢ € Z,,. In this case we say that ¢ is the T-degree of
f and we write deg,_(f) = c¢. Note that deg_(f) is an element of Z,,. Every rational

n—1

monomial z* = zg°---x,";", where @ = (ap,...,ap—1) € Z", is T-homogeneous
n—1

and its 7-degree is equal to > ia; (mod n).
i=0

Let j be a fixed number from {1,...,s} and consider the polynomial S, o
We know by Proposition 7.3 that this polynomial belongs to Z[X]. Hence, we
have the unique determined polynomials By, ..., B,-1 € Z[X] such that S, o =
By + -+ B,_1, and each B; is 7-homogeneous of 7-degree i. '

Put C; = 7% (B;), for all i = 0,...,n — 1. Since 7(B;) = €'B;, we have C; =
€' B;, and this implies that 7(C;) = €*C;. In fact,

T(Cy))=7(T"(By)) =71 (6””31») =eMir(B;)) =™ - £'B; =¢" - "™ B; = £'C;.
Thus, every polynomial C; is 7-homogeneous of 7-degree i. Observe that

Tnj (Spj70) = Spj70.

But 77 (Sp,0) = Z C;, so C; = 7 (B;) = B; and so, €™ B; = B;, for all

i=0,...,n—1 Thus if B; # 0, then n | in;. But n = p;n; so, if B; # 0, then ¢
is divi&ble by p;. Therefore,

njfl

Spj,O = § kaj7
k=0
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where each By, is T-homogeneous polynomial from Z[X] of 7-degree kp;. Hence,
for every m € {0,...,n — 1}, we have

Toym = 2 € ™PMSp = 3 &P (S 0)
TEI]‘ TEI]'
n;—1 n;—1

= > e TPimgT ( > kaj> =Y e Pim ( > T”(kaj)>

rel; rel; k=0
nj—1 nj—1

= S e[S By, | = 5 By, (X emtom )

rel; k=0 k=0 rel;

Observe that, by Proposition 4.7, every sum e"Pi(k=m) ig an integer. Moreover,
rel;
every polynomial By, belongs to Z[X]. Hence, T}, m € Z[X].

Recall that T}, o = Ty, m, where m is the remainder of division of a by n;. Thus,
we proved the following proposition.

Proposition 8.2. For any j € {1,...,s} and a € Z, the polynomial Ty, ,m belongs
to the polynomial ring Z[X].

Now we will prove some additional properties of the polynomials T}, ,

Proposition 8.3. Assume that s > 2, and let i,5 € {1,...,s}, i < j. Then

pi—1
Z ij pwJ -
Proof. Put p = p;, ¢ = pj, and N = . Then we have

pi—1 p—1 p—1 ENO\T p=1, . \k

k=0rel; rel; \k=0

Let n = £~ 7. Then 7 is a primitive p-th root of unity. If » € I;, then p { r and, by
Lemma 4.6, we have

p—1 p—1
S () =
k=0 k=0
pi—1 p—1 n k
Thus, 32 Ty, (=% )SW. =308, =0. 0
i reIJ k=0 rel;

Proposition 8.4. For any integer a, we have

0 (T ) . ij,a+17 when V2 7& 27
Pana —Tp, a1, when p;=2.
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Proof. First assume that p; is odd. In this case (see Proposition 7.1), o (Spj T) =
e~Pi"S)y. , for any r € Z. Hence,

0(Tpa) = X (7)) 0(Sp,r) = X (7%) P8,
rel; rel;
= Z (57(a+1)pj)r Spj r= ij’a+1.
rel;

Now let p; = 2. Then, by Proposition 7.1, Q(Sp]. ,,) = Ef(ij%)Spj’r for any

r € Z. Moreover, e~2 = —1. Thus, we have
0(Tp,0) = ; (e=%5)" 0 (S, ) = EZI (e=aps) e~ (port3)g, |
= T;j e (e-atir) g, = ,Téj (e=(@tDri)" S, = ~T) at1.
This completes the proof. O

Proposition 8.5. Assume that s > 2. Leti,j € {1,...,s}, i< j, and let a € Z.
Then
pi—1

Tpja=— E , ij,a+k,,[;,j~
k=1

Proof. It follows from Proposition 8.4 that T}, , = (—1)pi=1pe (ij,0)~ Hence,
using Proposition 8.3, we obtain

pi—1
Tp;,a (=171 (Tp,,0) = (1) 1o" (_ Z,: ij’kp;;j>
pi—1 pi—1 1
— _ j a n — (_ j _ i— "
= (=1)Ps k§1 0 (ijykmj) (—1)Pi 1;::1( 1)Pi Tp].,a+kpwj
pi—1
- kZ::1 Loyt miry
This completes the proof. O

For any j € {1,...,s}, let us denote by W; the Z-module generated by all the
polynomials T}, with r € I;. It is clear that every polynomial T}, ,, for arbitrary
integer a, belongs to W;.

Theorem 8.6. If the number n is special, then for all j € {1,...,s} and a € Z,
the polynomial Ty, o belongs to W;.

Proof. Let n = py---ps—1 - pS, where s > 1, a > 1, and py,...,ps are distinct
primes. Let n; = - for j =1,...,s. Assume that P = [p1,...,pn] is a fixed type,
J
and Iy,..., I are the n-sets of type P.
Let j be a fixed element from {1,...,s}. If s =1 or j = 1, then we are done.
Assume that s > 2, j > 2, and a is an integer. Since T}, o = T}, 1, Where m is



118 J. MOULIN OLLAGNIER AND A. NOWICKI

the remainder of division of a by n;, we may assume that 0 < a < n;. We use the
following notations:

M :={p1,p2,...,pj—1}, q:=pj, Be:=T,, . for ceZ.

We will show that B, € W;. If ged(a, p1---pj—1) = 1, then a € I; and so,
B, € W;. Now let ged(a, p1---pj—1) > 2. In this case, a is divisible by some
primes belonging to M.

Step 1. Assume that a is divisible by exactly one prime number p; belonging
to M. Then i < j and, by Proposition 8.5, we have the equality

pi—1

B, =— E Ba+k#-
k=1

Let k € {1,...,p; — 1}, and consider ¢:=a + k%. Since n is special, the number

# is not divisible by p;. But p; | a, so p; 1 c. If p € M and p # p;, then pta and
D | kpt%q’ so p { c¢. Hence, the numbers ¢ and p; ---p;j_1 are relatively prime. This
implies that the element ¢ (mod n;) belongs to I;, and so, B, € W,. Therefore, by
the above equality, B, € W;.

We see that if s = 2 or j = 2, then we are done. Now suppose that s > 3 and
Jj=3.

Step 2. Let 1 <t < j — 2, and assume that we already proved that B. € W;
for every integer ¢ which is divisible by exactly ¢ primes belonging to M. Assume
that a is divisible by exactly ¢+ 1 distinct primes my, ..., m;y1 from M. We have:
m;|afori=1,...;t+1,and mtaforme M~ {my,...,mip1}. Put p=mysq.
It follows from Proposition 8.5, that have the following equality:

p—1
B, =— E Batrn.
k=1

Let k € {1,...,p — 1}, and consider ¢ := a + k%. Since n is special, the number

% is not divisible by p. But p | a, so pt ¢, and consequently, m;y1 t ¢. It is clear
that m; | cforalli =1,...,¢, and m 1 cfor all m € M ~{mq,...,m;}. This means
that c is divisible by exactly ¢ primes from M. Thus, by our assumption, B, € W;.

Therefore, by the above equality, B, € W.

Now we use a simple induction and, by Steps 1 and 2, we obtain the proof of
our theorem. O

9. THE MAIN THEOREM

Assume that n > 3 is a special number of a type P. Let Iy,...,I; be the
n-sets of type P, let A be the n-standard set of type P, and let

S:{Sp].’rg je{l,..., s}, relj}, 'T:{ij’r; je{l,..., s}, relj}.
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Since n is special, we have the following sequence of important properties.
(1) A is a basis of the group G, (Theorems 5.8, 3.5 and 5.10).

(2) S is algebraically independent over K, and K(X)% = K (S) (Proposition
7.5).

(3) K (S8) = K (T) (Proposition 8.1 and Theorem 8.6).

We know also (see Proposition 8.2) that each element of T is a polynomial
belonging to Z[X]. Moreover, |T| = |S| = |A] = n — ¢(n). In particular, the
set T is algebraically independent over K. Put an order on the set 7. Let
T ={Fy, F1,...,Fyn_1} where m = n — ¢(n). Thus, if the number n is special,
then K(X)? = K(Fy,...,Fp_1), where Fy, ..., F,,_1 are polynomials belonging
to Z[X], and these polynomials are algebraically independent over Q.

Let us recall, that K is a field of characteristic zero containing ¢ (where ¢ is
a primitive n-th root of unity). But the polynomials Fy,..., F,,_; have integer
coefficients, and they are constants of d. They are not dependent from the field
K. Since the polynomials d(xg),...,d(z,—1) belong to Z[X], we see that we may
assume that K is a field of characteristic zero, without the assumption concerning
€. Thus, we proved the following theorem.

Theorem 9.1. Let K be an arbitrary field of characteristic zero, n > 3 an integer,
and K[X]| = K [zo,...,2n_1] the polynomial ring in n variables over K. Let
d : K[X] — K[X] be the cyclotomic derivation, that is, d is a K-derivation of
K[X] such that

d(z;) = xiq41  for i€ ZLy.

Assume that n = p1pa---ps—1pS, where s 2 1, a« > 1 and p1,...,ps are distinct
primes. Let m =n — @(n), where ¢ is the Euler totient function. Then

K(X)' =K (Fo,...,Fmn_1),

where Fy, ..., Fi,_1 are algebraically independent over Q polynomials belonging to
Z[X].

More ezactly, {Fo,Fi,...,Fpn_1} = {T,,» j€{l,....,s}, r€I;}, where
I, ..., I are the n-sets of type [p1,...,Ds).

We end this article with several examples illustrating the above theorem.

Example 9.2. Ifn = 4, then K(X)? = K (Fy, F1), where Fy = 22 — 2z123 + 22,
and Fy = o(Fp).

Example 9.3. If n = 8, then K(X)? = K (Fy, F1, F», F3), where F| = o(Fp),
Fy = 0*(Fy), F3 = 0*(Fy) and Fy = 22 + 23 — 22375 — 22771 + 22976.
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Example 9.4. If n = 9, then K(X)? = K (Fy, F1, Fy), where Fy = o(Fy),
F2:Q2(FO):

Fy, = 3x1mi + 3x§x2 + 3m8x§ — 3x0x425 — 3T1Txg — 3T2T4T3 — 3T2T7T0

—3xr8reTqs + 35(:%305 + 337?954 + 333%307 + x% + x% — 3x1x375 + 6T0T6T3

—3x8T7T3 — 3T2x1Xg — 3T5T7Te + x%

Example 9.5. Ifn =6 and P = [2,3], then K(X)? = K (Fy, Fy, s, F3), where

Fy, = x% — 2x125 + 2T004 — x%,
F; = (x% + x4r3 — 20124 + ToT1 + x% — T5x3 + ToT3 — 2X9X5 + ToTs

—2ToT3 — ToTa — TaXy + a:i — 13 + x% + X4T5 + T1XT2 + 33%
2
—X1%5 — T4To + 25) (X0 — T1 + T2 — T3 + T4 — T5),

and Fl = Q(Fo), FQ = QZ(Fo).
Example 9.6. Ifn =6 and P = [3,2], then K(X)? = K (Fy, Fy, I, F3), where

Fy, = :v% + 333 + xf’l + 330035% + 3.’172.%'% + 3.%‘45(3% — 3xor2x4 — 3x5T0T
—31‘1.2?21‘3 - 3I31‘4l‘5,
F, = 22242322223 — 2%+ 3

—2x123 4 22024 + 4325 + 2240, —2x521 — 4ToX(.
and Fy = o(Fy), F3 = o(Fb).
Example 9.7. Ifn =12, then K(X)? = K (Fy, ..., Fy), where

Fy = —3xgrors — 3x6x8%10 — 3T4T0oxs + x% + Sx%xo — 3r1x873 + 395%956
+3x3x6 + xg —3x1x1120 + 6501108 — 3T1T576 + 33:%9610 + 3x%0x4
—|—3x%1z2 + 3:5%x10 + 33:%1:2 + 3$§$8 + 6xzxorg + 62120774 — 3T7X11X6
731‘71’5‘%0 — 3:]'}10’1311:]']3 — 31‘10175’139 — 33341’11’1}9 — 3$4$5£L‘3 — 3(131332:7}9
—3x7T03 — 3x7X8T9 + :Ei — 3x10Z2T0,

Fy, = 4dxgxs+ l‘% — 2x10T8 + 22723 + 227211 — 2X10%0 — 2T4T2 — 2X4X¢
+2x129 + 22175 + dxgre — 20006 — 43711 — QIE% + $%1 + 1’% + 4z 719
—2xox8 — 2:1:% + xg — 4xgxs,

and Fy = o(Fy), Fo» = 0*(Fy), F3 = 0*(Fy), F5 = o(Fy), Fs = 0*(Fy), Fr = o*(Fy).
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