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Abstract

This paper presents a fundamentally improved statement on asymptotic behaviour
of the well-known Gaussian QML estimator of parameters in high-order mixed regres-
sive/autoregressive spatial model. We generalize the approach previously known in the
econometric literature by considerably weakening assumptions on the spatial weight ma-
trix, distribution of the residuals and the parameter space for the spatial autoregressive
parameter. As an example application of our new asymptotic analysis we also give a
statement on the large sample behaviour of a general fixed effects design.
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1 Introduction

Spatial econometrics constitutes an important chapter in the econometric literature. In the
case of cross-sectional and panel data, researchers often have to deal with spatial interactions
which are embodied through spatial autocorrelation, see, e.g. Cliff, A. D. and Ord, J. K.
(1973), Paelinck, J. et. al. (1979), Anselin, L. (1988), and Cressie, N. (1993). Through the
years, applied spatial econometrics attracted attention of researchers in the fields of regional
science, urban and real estate economics. In the past decade, a dynamic development of the
theory of spatial econometrics could also be observed. Importantly, many contributions aimed
at providing rigorous arguments on asymptotic properties of estimators for spatial models.

Our work has been largely motivated by the seminal paper of Lee, L. F. (2004), where
consistency and asymptotic distribution of the Gaussian Quasi-Maximum Likelihood estimators
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for spatial autoregressive models are investigated. In particular, the paper describes conditions
imposed on, inter alia, asymptotic behaviour of the spatial weight matrix and distribution of
the residuals which imply consistency and asymptotic normality of estimates.1 Many significant
theoretical studies have already applied the asymptotic theory of Lee, L. F. (2004) in extended
model specifications. Among other things, spatial models with various forms of fixed effects
have been considered. For example, Lee, L. F. and Yu, J. (2010a) develop a QML estimator for
a spatial autoregressive model with time and individual fixed effects. In addition, they suggest
a bias correction for estimates of the error variance. In Lee, L. F. et. al. (2010) a further
extension to a non-balanced panel case is described, together with an application to social
networking models. Furthermore, Shi, W. and Lee, L. F. (2017) consider a QML estimation
scheme of a dynamic spatial panel data model with interactive fixed-effects. The ideas of Lee,
L. F. (2004) have also been used to study model specifications with dynamic dependence of
the explained variable, see e.g. Yu, J. et. al. (2008). Finally, a very recent paper of Qu, X.
and Lee, L. F. (2017) extends the standard asymptotic analysis to the case of dynamic spatial
models with time-varying endogenous spatial weight matrix.

In recent years, high-order spatial autoregressive models have been gaining popularity in
applied spatial econometrics. Therefore, they are also an increasingly interesting subject for
theoretical considerations. For example, Gupta, A. and Robinson, P. (2015) develop a high-
order specification where the number of autoregressive terms grows to infinity and Elhorst,
J. P. et. al. (2012) provide insight on the problem of high-order autoregressive parameter
space definition. Also, alternative estimation procedures for high-order models have been
investigated. Most notably, Han, X. et. al. (2017) exercise the Bayesian approach. Badinger,
H. and Egger, P. (2013), in turn, refine GMM estimation of spatial high-order error component
models. Moreover, recently Li, K. (2017) studies impulse response analysis in the case of fixed
effects dynamic high-order spatial panel models, using the standard asymptotic analysis.

The large sample analyses presented in the papers based on Lee, L. F. (2004) inherit some
of the limitations of the original argument. In particular, the set of possible spatial weight
matrices is restricted to those which are row and column summable.2 Unfortunately, this
prerequisite excludes from theoretical considerations some of the spatial interaction patterns in
which the number of spatial units influenced by any given unit grows to infinity. In particular,
under infill asymptotics, if spatial units are assumed to interact with other units within a given
distance, then the number of non-zero elements in a row or column of the spatial weight matrix
grows with the sample size. Similarly, if the increasing domain asymptotics is considered,
then certain spatial weight matrices based on inverted distance also lead to non-summable
interaction patterns.3 Moreover, in cases where the original specification is transformed, e.g.
by linear filtering or demeaning, it is necessary to ensure that the applied transformation
preserves the summability of rows and columns of the spatial weight matrix. As a result, this
requirement narrows the class of possible transformations of the model.4 Furthermore, the
standard approach stipulates for the components of the model residuals to be independent

1For the purpose of the present paper we will refer to the asymptotic theory presented therein as the standard
asymptotic analysis.

2See Assumption 5 in Lee, L. F. (2004). Moreover, the inverse spatial difference operator (∆−1 =

(I− λW )
−1

) is also required to be row and column summable for each possible value of the spatial autore-
gressive parameter λ.

3An example of a spatial weight matrix which describes an interaction pattern not covered by the standard
analysis of Lee, L. F. (2004) is given in Section 2.6.

4An example of a theoretical argument which would not be possible under the standard asymptotic analysis
is presented in Section 3. Somewhat similar situation can be observed in Lee, L. F. and Yu, J. (2013), where a
transformation of spatial weight matrix is introduced to eliminate its near unit root eigenvalues. The analysis
could be more general and the assumptions made therein could be simpler and less restrictive if our improved
asymptotic analysis were employed.
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identically distributed. Also, the existence of high-order moments (higher than four) for the
distribution is required. Likewise, as will be shown in the present paper, these prerequisites
unnecessarily reduce the usability of the QML estimation scheme.

The standard asymptotic analysis of the Gaussian QML estimators requires the true value
of the spatial autoregressive parameter λ = (λj)j≤d to lie within the interior of its parameter
space. In many applications this prerequisite on its own is not overly restrictive. In practice,
the space is assumed to be the interior of a compact subset of the pre-image of [0, 1) under the
continuous map Rd 3 λ 7→ ‖

∑d
j=1 λjWj‖0, where Wj are the spatial weight matrices and ‖·‖0 is

an arbitrary matrix norm. However, it is still beneficial to search for asymptotic theories which
alleviate such restrictions. Firstly, they could allow one to consider more flexible definitions
of the parameter space, see Elhorst, J. P. et. al. (2012) for a pioneering approach. Secondly,
under model specifications in which further restrictions on elements of λ are imposed, such
theories could provide immediate implications on the consistency and asymptotic distribution
of QML estimates.

Therefore, the aim of this paper is to present a refined asymptotic analysis of the Gaussian
QML estimator for high-order spatial autoregressive models. Our argument, as compared to
the standard analysis originating in Lee, L. F. (2004), features the following improvements.

• It accounts for a larger class of spatial weight matrices, i.e. not necessarily having all rows
and columns absolutely summable As a result, models with a greater amount of spatial
interaction can be considered.

• It allows for the consideration of a larger class of distributions for the vector of model
residuals. In particular, individual innovations do not have to follow the same distribu-
tion.

• Consistency of the Gaussian QML estimator is proven with minimal assumptions.

• The parameter space for the autoregressive parameter is considered in a fully general
form – it is merely assumed to be compact. The space is not required to be connected,
nor to contain the true parameter as its internal point.

• It is possible to apply a larger class of transformations to model specification in theoretical
arguments, while preserving the asymptotic properties of the Gaussian QML estimators.

Furthermore, we will present an extension of the general fixed effects model described in Olejnik,
A. and Olejnik, J. (2017). Our approach to elimination of fixed effects from the spatial process
also generalises the approaches of Lee, L. F. and Yu, J. (2010a) and Lee, L. F. et. al. (2010).
As an example of possible applications of our improved analysis, we will develop theorems on
consistency and asymptotic normality of this estimation technique which would not be possible
with the standard approach.

The paper is organized as follows. Section 2.1 introduces the basic notation used throughout
the paper. Section 2.2 describes the Gaussian QML estimator for the high-order spatial au-
toregressive model. Our improved statements on its consistency and asymptotic normality are
presented in Sections 2.3 and 2.4 respectively. Section 2.5 discusses the assumptions adopted
in this paper and compares them with the prerequisites for the standard asymptotic analysis.
Finally, Section 3 develops an estimator for a high-order spatial autoregressive general fixed
effects model, together with an analysis of its large sample behaviour.

2 Improved asymptotic analysis of high-order SAR model

This section presents the foundations of our improved asymptotic analysis. Let us note that
there are two important tools used in the subsequent arguments. The first is a more or less
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standard lemma used for obtaining consistency, namely Lemma 3.1 in Pötscher, M. B. and
Prucha, I. R. (1997). The second is a new CLT for linear-quadratic forms (our Theorem C.1).
We prove it in Appendix C by the use of an argument based on bounds originally developed
in Bhansali, R. J. et. al. (2007), where a CLT for quadratic forms of i.i.d. vectors is shown.

2.1 Basic notation and the SAR model

Throughout the paper we assume the following natural notation. Let d ∈ N be fixed. Suppose
A1, . . . , Ad are matrices of the same, arbitrary dimension and let A = 〈A1, . . . , Ad〉T be a d
element vector of those matrices. Let λ ∈ Rd, λ = (λ1, . . . , λd)

T. Then, the formula λTA
denotes the matrix

∑d
r=1 λrAr. Furthermore, if B and C are arbitrary matrices for which the

products A1B and CA1 are defined, then we set

λTAB =
(
λTA

)
B and CλTA = C

(
λTA

)
.

Clearly, the newly defined product λTA is associative in a manner that is consistent with the
ordinary product of matrices.

Unless stated differently, vectors, i.e. elements of Rm, for some m ∈ N, are m × 1 col-
umn vectors. The symbol ‖x‖ for a non-stochastic x ∈ Rm ∪ (Rm)T, denotes the usual
vector norm (i.e.

√
xTx or

√
xxT). The same symbol, when used for matrices, denotes

the induced operator norm, i.e. the spectral norm. Namely, for an m1 × m2 matrix A we
have ‖A‖ = supx∈Rm2 : ‖x‖=1 ‖Ax‖. Alternatively, ‖A‖ is the largest singular value of A. We

will also use the matrix norms ‖A‖F =
√

tr (ATA) and ‖A‖K = max {‖A‖1, ‖A‖∞}, with
‖A‖1 = maxi≤m1 {

∑m2

j=1|aij|}, ‖A‖∞ = ‖AT‖1, A = [aij]ij. The symbol Im denotes the identity
matrix of size m ×m and n ∈ N always refers to the sample size. Lastly, for any set S, the
symbol IS denotes its indicator function on the implied domain.

Let Wn = 〈Wn,1, . . . ,Wn,d〉T be a vector of n× n arbitrary matrices.5 The high-order SAR
model is described by the following equation

Yn = λTWnYn +Xnβ + εn, (2.1)

where λ ∈ Rd and β ∈ Rk are model parameters. Furthermore, Yn is a vector of n observations
on the dependent variable, Xn is the matrix of k explanatory variables and εn is the error term,
for which the assumptions given below hold. See also Section 2.5 for a detailed discussion.

Assumption 1 Each Xn, n ∈ N, is a non-stochastic n × k matrix. Moreover, the matrix
XT
nXn is invertible and we have

sup
n∈N

∥∥n−1 ·XT
nXn

∥∥ <∞ and sup
n∈N

∥∥n · (XT
nXn)−1

∥∥ <∞.

Assumption 2 For each n ∈ N there exists n̄ ∈ N, n̄ = n̄(n),6 for which the vector of
residuals εn = (εn,i)i≤n is of the form εn = Enε̄n, where En is an n× n̄ non-random matrix with
orthogonal rows of unit norm and ε̄n = (ε̄n,i)i≤n̄ is a random vector with quadruple independent
elements7 satisfying E ε̄n,i = 0, E ε̄2

n,i = σ2, for some σ2 > 0, and supn,i E ε̄4
n,i <∞.8

Finally, the estimated model parameter is θ =
(
βT, λT, σ2

)T
.

5Typically, in practice, the spatial weight matrices Wn,r, r ≤ d, have non-negative elements and zero
diagonals, i.e. Wn,r,ij = 0 for i = j, which facilitates interpretation of model parameters. However, for the
purpose of the argument of Section 3, we deliberately do not assume so.

6That is, n̄ is a function of n.
7Namely, for each n ∈ N, any two, three or four elements of (ε̄n,i)i≤n are independent.
8In particular, we have E εn = 0 and E εnεT

n = σ2In. Elements of εn do not need to be pairwise independent,
although, in typical applications it will be assumed that εn = ε̄n.
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2.2 The Gaussian QML estimator

Let Λ ⊂ Rd be the parameter space for the autoregressive parameter λ. In order to describe
the Gaussian QML estimation procedure we make the following assumption.

Assumption 3 For every λ ∈ Λ and n ∈ N the matrix ∆n(λ) = In − λTWn is invertible.

Under the assumption of normally distributed innovations (i.e. εn ∼ N(0, σ2In)), it can be
shown that the log-likelihood of θ is

lnLn(θ) = −n
2

ln
(
2πσ2

)
+ ln |det ∆n(λ)| − 1

2σ2
‖∆n(λ)Yn −Xnβ‖2 . (2.2)

It is generally known that, provided that certain regularity conditions are met, a consistent
estimator can be based on the maximisation of lnLn, even if the model residuals do not follow
normal distribution. In such case θ̂n = arg maxθ [lnLn(θ)] is referred to as the Gaussian QML
estimator. A standard approach in obtaining the value for θ̂n is to first concentrate out the
parameters β and σ2. That is, substituting

β̂n(λ) =
(
XT
nXn

)−1
XT
n ∆n(λ)Yn,

σ̂2
n(λ) = 1

n
‖∆n(λ)Yn −Xnβ̂n(λ)‖2,

(2.3)

which are implied by first order optimality conditions, into (2.2), we get the concentrated
log-likelihood

lnLc
n(λ) = −n

2

(
ln
(
2π · σ̂2

n(λ)
)

+ 1
)

+ ln |det ∆n(λ)|. (2.4)

Maximising lnLc
n(λ) with respect to the autoregressive parameter yields λ̂n = arg maxλ [lnLc

n(λ)].

Finally, θ̂n =
(
β̂n(λ̂n)T, λ̂T

n , σ̂
2
n(λ̂n)

)T

is the QML estimator for θ, which we will denote in short(
β̂T
n , λ̂

T
n , σ̂

2
n

)T

.

2.3 Consistency of θ̂n

Our result on consistency of θ̂n requires the following boundedness assumption.

Assumption 4 The set Λ is compact in Rd. There exists a universal constant KΛ such that
for all n ∈ N, λ ∈ Λ, r = 1, . . . , d the matrix norms ‖Wn,r‖ and ‖∆n(λ)−1‖ do not exceed KΛ.

The following Remark 2.1 is a non-trivial implication of Assumption 4. It turns out to be
crucial to our argument. We prove it in Appendix A.

Remark 2.1 If Wn and Λ satisfy Assumptions 3 and 4, then there exists a bounded open
set U ⊂ Rd, U ⊃ Λ,9 such that ∆n(λ) is invertible for each λ ∈ U and the norms ‖∆n(λ)−1‖,
‖∆n(λ)‖ do not exceed KΛ + 1.

Throughout the paper, UΛ will denote one fixed set U satisfying the statement of Re-
mark 2.1. The following identification assumption guarantees that the Gaussian QML estima-
tor is able to identify the true value of the spatial autoregressive parameter λ.

Assumption 5 For every λ1, λ2 ∈ Λ, such that λ1 6= λ2, at least one of the statements (a),
(b) below is satisfied:

(a) lim infn→∞
1√

nDn(λ)
‖∆n(λ1)∆n(λ2)−1‖F > 1,

(b) lim infn→∞
1√
n
‖MXn∆n(λ1)∆n(λ2)−1Xnβ‖ > 0, for every β ∈ Rk,

9Importantly, the set U does not depend on n.
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where Dn(λ) = |det (∆n(λ1)∆n(λ2)−1)|1/n, MXn = In −Xn

(
XT
nXn

)−1
XT
n .

Theorem 2.1. Under Assumptions 1 – 5 the Gaussian QML estimator θ̂n =
(
β̂T
n , λ̂

T
n , σ̂

2
n

)T

described in Section 2.2 is consistent.

Proof. Let θ0 =
(
βT

0 , λ
T
0 , σ

2
0

)T
be the true value of parameter θ. Let Sn(λ) = ∆n(λ)∆n(λ0)−1,

λ ∈ Λ. Moreover, let PXn denote the projection matrix Xn

(
XT
nXn

)−1
XT
n and let MXn =

In − PXn .
Let us set Rn(λ) = 1

n
lnLc

n(λ) + 1
2
(ln (2π) + 1), for λ ∈ Λ, cf. (2.4). Naturally, maximising

lnLc
n is equivalent to maximising Rn. Let us define the non-random function R̄n : UΛ → R,

n ∈ N, by the following formula

R̄n(λ) =
1

n
ln |det ∆n(λ)| − 1

2
ln (χn(λ)), (2.5)

where χn(λ) = 1
n
‖MXnSn(λ)Xnβ0‖2 +

σ2
0

n
‖Sn(λ)‖2

F.
Now, we will show that supλ∈Λ

∣∣Rn(λ)− R̄n(λ)
∣∣ converges to 0 in probability. As

Yn = ∆n(λ0)−1Xnβ0 + ∆n(λ0)−1εn, (2.6)

we have, cf. (2.3),

σ̂2
n(λ) =

1

n
‖MXn∆n(λ)Yn‖2 =

1

n
‖MXnSn(λ)Xnβ0 +MXnSn(λ)εn‖2

= χn(λ) + ξ(1)
n (λ)− ξ(2)

n (λ) + ξ(3)
n (λ),

where

ξ(1)
n (λ) = 2n−1 · (Sn(λ)Xnβ0)TMXnSn(λ)εn,

ξ(2)
n (λ) = n−1εT

nSn(λ)TPXnSn(λ)εn,

ξ(3)
n (λ) = n−1εT

nSn(λ)TSn(λ)εn − n−1σ2
0 ‖Sn(λ)‖2

F .

The fact that quantities ξ
(1)
n (λ), ξ

(2)
n (λ) and ξ

(3)
n (λ) converge to 0 in probability, uniformly in λ ∈

Λ, is a consequence of Lemma B.2 (a), (c) and (b) respectively, with the use of Assumptions 1

and 4.10 We have χn(λ) ≥ σ2
0

n
‖Sn(λ)‖2

F ≥ σ2
0‖Sn(λ)−1‖−2. Thus, by Assumption 4, χn is

uniformly separated from 0 on Λ. Lastly, we conclude that

2
(
R̄n(λ)−Rn(λ)

)
= ln

σ̂2
n(λ)

χn(λ)
= ln

(
1 +

ξ
(1)
n (λ) + ξ

(2)
n (λ) + ξ

(3)
n (λ)

χn(λ)

)

converges in probability to 0, uniformly in λ.
Since R̄n(λ0) = 1

n
ln |det ∆n(λ0)| − 1

2
lnσ2

0 (cf. (2.5)), we have

2
(
R̄n(λ0)− R̄n(λ)

)
= ln

1
nσ2

0
‖MXnSn(λ)Xnβ0‖2 + 1

n
‖Sn(λ)‖2

F

|detSn(λ)|2/n

≥ ln

(
C

nσ2
0

‖MXnSn(λ)Xnβ0‖2 +
1
n
‖Sn(λ)‖2

F

|detSn(λ)|2/n

)
≥ 0,

10Also notice that by Assumption 1 we have ‖Xn‖ = O(
√
n).
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with C = K−2
Λ (1+KΛ supλ∈Λ ‖λ‖)−2 > 0. Indeed, by elementary AM-GM inequality, 1

n
‖Sn(λ)‖2

F ≥
|detSn(λ)|2/n for λ ∈ Λ. Furthermore, Assumption 5 implies that lim infn→∞ R̄n(λ0)− R̄n(λ) >
0, for any λ ∈ Λ.

We will show that (λ0)n∈N is an identifiably unique sequence of maximisers of R̄n, see Defi-
nition 3.1 in Pötscher, M. B. and Prucha, I. R. (1997). To this end, let us assume the contrary.
Then, there is a number ε > 0 for which, for some increasing sequence {k(n)}n∈N ⊂ N and some
sequence {λ̃n}n∈N ⊂ Cε = {λ ∈ Λ: ‖λ − λ0‖ ≥ ε}, we have limn→∞ R̄k(n)(λ0)− R̄k(n)(λ̃n) ≤ 0.

Since Cε is closed in compact Λ, the sequences {λ̃n}n∈N and {k(n)}n∈N ⊂ N can be chosen in
such a way that λ̃n → λ̃, for some λ̃ 6= λ0. Let

δ = lim inf
n→∞

R̄n(λ0)− R̄n(λ̃) > 0.

According to Remark A.6 and Lemma B.1, all R̄n are Lipschitz continuous on Λ with a uniform
constant KL. We can choose n0 ∈ N such that ‖λ̃m − λ̃‖ < δ

3KL
for all m ≥ n0. Finally, the

contradiction follows from the inequality

δ ≤ lim inf
n→∞

(
R̄k(n)(λ0)− R̄k(n)(λ̃n) + |R̄k(n)(λ̃n)− R̄k(n)(λ̃)|

)
≤ δ

3
.

Lastly, the convergence ‖λ̂n − λ0‖ = oP(1), follows from Lemma 3.1 in Pötscher, M. B. and
Prucha, I. R. (1997) as, by definition, for each n ∈ N, λ̂n is a maximiser of Rn.

Notice that, by (2.3) and (2.6), we have β̂n(λ̂n) = β0 − ζ(1)
n + ζ

(2)
n − ζ(3)

n , where

ζ(1)
n =

(
XT
nXn

)−1
XT
n (λ̂n − λ0)TWn∆n(λ0)−1Xnβ0,

ζ(2)
n =

(
XT
nXn

)−1
XT
n εn,

ζ(3)
n =

(
XT
nXn

)−1
XT
n (λ̂n − λ0)TWn∆n(λ0)−1εn.

From Assumptions 1 and 4, using submultiplicativity of the norm, we have ‖ζ(1)
n ‖ = O(‖λ̂n −

λ0‖) = oP(1). The convergence ‖ζ(3)
n ‖ = oP(1) can be deduced from Chebyshev inequality, as,

for a constant C, we have (Eθ0 ‖ζ
(3)
n ‖)2 ≤ Cσ2

0 Eθ0 ‖λ̂n − λ0‖2, by Schwartz inequality. Lastly,

‖Varθ ζ
(2)
n ‖ = O(1/n) by Assumption 1. Thus, β̂n is consistent.

Using (2.3) and consistency of λ̂n and β̂n, we have

σ̂2
n(λ̂n) =

1

n

∥∥∆n

(
λ0 + od×1

P (1)
)
Yn −Xn

(
β0 + ok×1

P (1)
)∥∥2

=
1

n

∥∥∥∆n(λ0)Yn −Xnβ0 −
(
od×1
P (1)

)T
WnYn −Xnok×1

P (1)
∥∥∥2

.

Similar arguments imply that 1
n

∥∥∥(od×1
P (1)

)T
WnYn +Xnok×1

P (1)
∥∥∥2

= oP(1). As plimn→∞
1
n
‖εn‖2 =

σ2
0, by statement (b) of Lemma B.2, we also have plimn→∞ σ̂

2
n = σ2

0.

2.4 Asymptotic normality of
√
n · θ̂n

In order to establish the asymptotic distribution of the QML estimator θ̂n we need to adopt a
number of additional assumptions. First, however, let us introduce the following definition.

Definition 1. Let Ξ ⊂
∏∞

n=1 Rn be the linear space11 of all sequences (xn)n∈N, with xn =
(xn,i)i≤n ∈ Rn, n ∈ N, for which maxi≤n x

2
n,i = o(n).

11Naturally, the set
∏∞
n=1 Rn = R × R2 × . . . is a vector space when endowed with element-wise addition.

Then, Ξ is its linear subspace.
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Assumption 1’ Assumption 1 holds and each column of the matricesXn, Wn,r∆n(λ0)−1Xnβ0,
r ≤ d, is a member of the linear space Ξ.

Assumption 2’ For each n ∈ N the components εn,i, 1 ≤ i ≤ n, of the error term are
independent random variables, with E εn,i = 0, E ε2

n,i = σ2
0 > 0. Moreover, the family of

random variables ε4
n,i, n ∈ N, i ≤ n, is uniformly integrable.

Assumption 6 Let θ0 be the true value of parameter θ. For the matrices In = −Eθ0 1
n
∂2 lnLn
∂θ2

(θ0)
and ΣS,n = Eθ0 1

n
ST
n Sn, where Sn = ∂ lnLn

∂θ
(θ0), n ∈ N, the following limits exist: I = limn→∞ In

and ΣS = limn→∞ΣS,n.12 Moreover, the matrix I is non-singular.

Theorem 2.2. Let Assumptions 1’, 2’ and 3 – 6 hold and let θ̂n be the QML estimator described
in Section 2.2. If, for an orthogonal projection P, we have P∂ lnLn

∂θ
(θ̂n)T = oP(

√
n), then the

asymptotic distribution of
√
nPI(θ̂n − θ0) is multivariate normal with zero mean and variance

PΣSP.

Proof. With Sn defined in Assumption 6, straightforward calculation, c.f. Remark A.1, shows
that the consecutive entries of 1√

n
Sn are

1√
n

∂ lnLn
∂β

(θ0) =
1√
nσ2

0

εT
nXn,

1√
n

∂ lnLn
∂λ

(θ0) =
1√
nσ2

0

( [
εT
nWn,r∆n(λ0)−1Xnβ0

]T
r≤d

+
[
εT
nWn,r∆n(λ0)−1εn − σ2

0 tr
(
Wn,r∆n(λ0)−1

)]T
r≤d

)
,

1√
n

∂ lnLn
∂σ2

(θ0) =
1

2
√
nσ4

0

(
εT
nεn − nσ2

0

)
.

We will show that 1√
n
ST
n converges in distribution to N(0,ΣS).13

Let α =
(
aT, bT, c

)T ∈ Rk+d+1, where a ∈ Rk, b ∈ Rd and c ∈ R. First, assume
that αTΣSα 6= 0. Then, we can observe that 1√

n
αTST

n is a centred linear-quadratic form

of the residual εn. Namely, 1√
n
αTST

n = Qn − EQn, with Qn = xT
nεn + εT

nAnεn, where

xn = 1√
nσ2

0

(
Xna+ bTWn∆n(λ0)−1Xnβ0

)
and An = 1√

nσ2
0

(
c

2σ2
0
In + bTWn∆n(λ0)−1

)
. Note that

by Assumptions 1’ and 6 we have maxi≤n x
2
n,i = o(1), ‖An‖2 = O (1/n), ‖xn‖2 +‖An‖2

F = O(1);
and, using Assumption 6, we have limn→∞Var 1√

n
αTST

n > 0. Thus, Theorem C.1 can be used to

deduce that 1√
n
αTST

n converges in distribution to N
(
0, αTΣSα

)
. In the case when αTΣSα = 0,

the convergence holds trivially.
Let (Ω,F ,P) be the probability space on which εn, n ∈ N, are defined. Let τ be the

open set considered in Remark A.4 and let Bλ0 be an open ball centred at λ0 contained
entirely in UΛ. Set Uθ0 = τ ∩

(
Rd ×Bλ0 × (0,+∞)

)
. Also denote Ĩn = − 1

n
∂2 lnLn
∂θ2

(θ0) and

M τ
n = supθ̃∈τ

∥∥∥ 1
n
∂3 lnLn
∂θ3

(θ̃)
∥∥∥.14 By Theorem 2.1 we have ‖θ̂n − θ0‖ = oP(1), Remark A.4 yields

supn∈N Eθ0 M τ
n < ∞ and by Remark A.3 it follows that P({det Ĩn = 0}) = o(1) and ‖Ĩ−1

n ‖ =

12By Remark A.1, for each n ∈ N, the derivative can be properly defined on the universal open set UΛ ⊃ Λ.
The pseudo-score Sn is treated as a row vector.

13Naturally, it is not sufficient to establish asymptotic normality of the above formulae, c.f. Lee, L. F. (2004).
Our argument follows by considering two cases and makes use of the standard Cramér-Wald theorem (see e.g.
Billingsley, P. (1995)).

14The symbol ‖ · ‖ the natural induced operator norm. However, as the matrix is of finite dimension, all
norms are equivalent, so bounds for Mτ

n differ only by a factor. Also notice that Mτ
n is measurable, c.f. Remark

A.4.
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OP(1). Thus, we can conclude that for the sets

Ωn =
{
θ̂n ∈ Uθ0

}
∩
{

det Ĩn 6= 0 and M τ
n‖Ĩ−1

n ‖‖θ̂n − θ0‖ < 1
}

,

we have limn→∞ P(Ωn) = 1.
For any ω ∈ Ωn, by the Taylor expansion theorem, see e.g. Theorem 107 in Hájek, P. and

Johanis, M. (2014), applied for the function fω,n(θ) = 1√
n
∂ lnLn
∂θ

(θ, ω)T in θ = θ0 we have

fω,n(θ) =
1√
n
ST
n − Ĩn ·

(√
n(θ − θ0)

)
+Rn(θ), θ ∈ Uθ0 ,

where Rn is the expansion remainder satisfying

‖Rn(θ)‖ ≤ 1

2
sup
θ̃∈Uθ0

‖f ′′ω,n(θ̃)‖ · ‖θ − θ0‖2.

Substituting θ = θ̂n(ω) we obtain

Ĩn ·
(√

n(θ̂n − θ0)
)

=
1√
n
ST
n − fω,n(θ̂n) +Rn(θ̂n) (2.7)

and

‖Rn(θ̂n)‖ ≤
√
n

2
M τ

n‖θ̂n − θ0‖2. (2.8)

With an = Ĩn
√
n
(
θ̂n − θ0

)
and bn = 1√

n
ST
n − fω,n(θ̂n), the crucial observation is that ‖an‖ <

2 ‖bn‖ on the sets Ωn. Indeed, otherwise we would have

‖an‖ ≤ 2‖an‖ − 2‖bn‖ ≤ 2‖an − bn‖ ≤ 2‖Rn(θ)‖
≤M τ

n‖Ĩ−1
n ‖‖θ̂n − θ0‖ · ‖an‖ < ‖an‖. (2.9)

Finally, by (2.8) and Remark A.5, we conclude that

‖Rn(θ̂n)‖ ≤M τ
n‖Ĩ−1

n ‖
∥∥∥∥ 1√

n
ST
n − fω,n(θ̂n)

∥∥∥∥ · ‖θ̂n − θ0‖ = oP(1). (2.10)

Thus, by (2.7), PĨn
√
n
(
θ̂n − θ0

)
= 1√

n
PST

n +oP(1). Using Remark A.3, the desired convergence

in distribution follows.

Note that under the assumption that λ0 ∈ IntRd Λ we have ∂ lnLn
∂θ

(θ̂n) = oP(1). Thus, as a
special case of Theorem 2.2, we immediately obtain the following generalization of Theorem
3.2 in Lee, L. F. (2004).

Theorem 2.3. Under Assumptions 1’, 2’ and 3 – 6, for the QML estimator θ̂n described
in Section 2.2, the asymptotic distribution of

√
n · (θ̂n − θ0) is multivariate normal with zero

mean and variance I−1ΣSI
−1. Furthermore, if the error term is normally distributed, then the

limiting distribution is N(0, I−1).

Additionally, Theorem 2.2 has further useful implications. Firstly, the case of the parameter
space Λ locally having an empty interior can be considered. Secondly, we can address the
question of the asymptotic distribution15 of θ̂n when the true value of λ lies strictly on the
boundary of Λ. The following Assumptions 7a and 7b suggest how the projection P can be
chosen in two, somewhat simplified, yet illustrative cases.

15Let us note that although Theorem 2.2 does not explicitly provide asymptotic distribution of
√
n(θ̂n − θ0)

itself, inferences can be based on the distributions of coordinates of
√
n(PI)+PI(θ̂n− θ0). Here, + denotes the

Moore-Penrose pseudo-inverse.
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Assumption 7a Let λ0 be the true value of parameter λ. There exist an orthogonal projec-
tion Pa in Rd and a number ε > 0 for which

Bε ∩ (Λ− λ0) = Bε ∩ range (Pa),

with Bε =
{
λ ∈ Rd : ‖λ‖ < ε

}
.

Assumption 7b Let λ0 be the true value of parameter λ. There exist a vector ρ ∈ Rd and
a number ε > 0 for which

Bε ∩ (Λ− λ0) = Bε ∩ {λ ∈ Rd : ρTλ ≥ 0},

with Bε =
{
λ ∈ Rd : ‖λ‖ < ε

}
. We set Pb = Id − ρ(ρTρ)−1ρT.

Remark 2.2 Under Assumption 7a we have P̃a
∂ lnLn
∂θ

(θ̂n)T = oP(1), with P̃a = Ik ⊕Pa⊕ I1.16

Similarly, under Assumption 7b we have P̃b
∂ lnLn
∂θ

(θ̂n)T = oP(1), with P̃b = Ik ⊕ Pb ⊕ I1.

Proof. First, let Assumption 7b hold. Assume λ̂n ∈ Bε. It is enough to consider two cases.
If ρTλ̂n > 0, then λ̂n lies in the interior of Λ, thus ∂ lnLn

∂θ
(θ̂n)T = 0. If ρTλ̂n = 0, then θ̂n

maximises lnLn(λ, β, σ2) subject to ρTλ = 0, thus P̃b
∂ lnLn
∂θ

(θ̂n)T = 0. In any case we have

P̃b
∂ lnLn
∂θ

(θ̂n)T = oP(1).

Similarly, under Assumption 7a, θ̂n maximises lnLn(λ, β, σ2), subject to Paλ = λ, whenever
λ̂n ∈ Bε. This implies that P̃a

∂ lnLn
∂θ

(θ̂n)T = oP(1).

A natural extension of this argument allows the consideration of a continuously differentiable
function F for which the equation F (λ) = 0 defines the parameter space Λ. In such case,
Assumption 7b can be used through the Lagrange multipliers theorem. For example, assume
that F ′(λ0) 6= 0 and set ρλ = F ′(λ)T ∈ Rd, for any λ ∈ Λ. Then we can set P = Pλ0 in
Theorem 2.2, with Pλ = Ik ⊕ (Id − ‖ρλ‖−1ρλρ

T
λ ) ⊕ I1. Similarly, if Λ is a closure of some

sufficiently regular open subset of Rd and λ0 lies on the boundary of Λ, then Assumption 7b
can be used by approximating ρ with a vector orthogonal to Λ at λ0. More precisely, define
ρλ ∈ Rd to be a non-zero vector orthogonal to the hyperplane tangent to Λ at λ ∈ Λ \ Int Λ.
In either case, the crucial observation is that ‖P∂ lnLn

∂θ
(θ̂n)‖ ≤ ‖P−Pλ̂n

‖ · ‖∂ lnLn
∂θ

(θ̂n)‖+ oP(1).

Finally, Remark A.5 and continuity of λ 7→ Pλ yield the convergence P∂ lnLn
∂θ

(θ̂n) = oP(1).

2.5 Discussion of the adopted assumptions

This section discusses the assumptions adopted in Sections 2.1–2.4. They will be considered in
order of appearance, thus we first turn to Assumption 1.

In this paper it is assumed that the matrix of explanatory variables is non-stochastic.
Nonetheless, some extensions to allow Xn to be random are possible. Let (Ω,F ,P) be the
probability space on which εn, n ∈ N, are defined. One possible idea, which we briefly outline, is
to ensure that for each n ∈ N the requirements imposed on Xn are satisfied on a set An such that
P (Ω \ An) = o(1). If we further suppose that assumptions made on εn are satisfied conditionally
on Xn,17 then our theory implies that the Gaussian QML estimator θ̂n, described in Section

2.2, is consistent. Indeed, by Theorem 2.1 we have limn→∞ P
[
‖θ̂n − θ0‖ > δ | Xn

]
= 0 almost

surely, for any δ > 0. Then, by Lebesgue’s dominated convergence theorem θ̂n is consistent.

16The symbol ⊕ denotes the matrix direct sum, i.e. A ⊕ B is the block diagonal matrix with consecutive
blocks A, B.

17In particular, E [εn | Xn] = 0 and E
[
εnε

T
n | Xn

]
= σ2In. Also note that Xn does not need to be independent

of εn, cf. Assumption E2 in Shi, W. and Lee, L. F. (2017).
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However, establishing asymptotic distribution of θ̂n is, in general, possible only conditionally
on Xn.

Let us note that Assumption 1, used for the consistency argument, does not require the
sequence 1

n
XT
nXn to be convergent. Instead, our reasoning stipulates that this sequence is

merely bounded. This does not imply that elements of Xn should be bounded in absolute
value, as it is explicitly assumed in e.g. Lee, L. F. (2004) or Lee, L. F. and Yu, J. (2010a).
The necessity of non-singularity of

(
XT
nXn

)
is straightforward, as regressors should not be

correlated. Furthermore, it is also natural to require that the regressor values are “not too
small” asymptotically, so that they can provide a sufficient amount of information about the
slope parameter in the model. Note that our assumption that

∥∥(XT
nXn)−1

∥∥ = O( 1
n
) is not

far from the well-known condition necessary for consistency of OLS estimator for non-spatial
regression, i.e. ‖(XT

nXn)−1‖ = o(1).
For the sake of simplicity of presentation, Assumption 2 stipulates for a homoskedastic

error term. However, in the case of heteroskedastic innovations, similar results can be obtained
by applying a variance normalising transformation. See also Liu S. F. and Yang Z. (2015),
where an idea for handling some types of unknown heteroskedasticity in QML estimation is
presented. Note that elements of the error term do not need to be identically distributed nor
fully independent. However, the error term is required to be a projected unitary transformation
of a vector of quadruple independent variables, thus, in general, its components are merely
uncorrelated. The distinction between independence and absence of correlation is all the more
relevant as the innovations are not assumed to be Gaussian.

Interpretation of Assumption 3 is straightforward. The invertibility of the spatial difference
operator ∆n(λ) allows one to find the closed form of the spatial lag model (2.1) with respect to
the dependant variable. This, among other things, facilitates interpretation of model parame-
ters, in particular, by the use of direct and indirect effects, as defined in Le Sage, J. and Pace,
R. K. (2009), page 74.

Assumption 4 spells out two important boundedness requirements. Firstly, it stipulates for
the parameter space Λ to be a compact subset of Rd. Note that the space does not have to be
connected nor have a dense interior. This implies that our analysis provides better grounds for
specifications of Λ in which singularity points of ∆(λ) are geometrically avoided. Moreover, let
us consider a situation in which the model specification includes a restriction, possibly non-
linear, on regressive parameters λ1, . . . , λd, given by an equation of the form F (λ1, . . . , λd) = 0,
for some function F : Λ→ R. Such restriction is naturally equivalent to limiting the parameter
space to the set of roots of F , which typically is a (d− 1)-dimensional hypersurface embedded
in Λ. The arguments of the standard asymptotic analysis are null in this setting, as they
require the true value λ0 = (λ0

1, . . . , λ
0
d) to be an internal point of Λ. That is, λ0 ∈ IntRd Λ,

however IntRd Λ = ∅, c.f. Lee, L. F. (2004) or Li, K. (2017). Our theorems, on the other hand,
immediately imply that the Gaussian QML estimator for those models is consistent. With
some additional provisions, it is also asymptotically normal.

Secondly, Assumption 4 gives the crucial condition imposed on the spatial weight matrix
Wn = 〈Wn,1, . . . ,Wn,d〉T in order to make it eligible for our asymptotic analysis. This paper
stipulates that the following set of matrices Wn,r, r ≤ d, ∆n(λ)−1, λ ∈ Λ, is bounded in the
spectral norm, rather than Kelejian’s norm18 ‖ · ‖K = max {‖ · ‖1, ‖ · ‖∞}. Let us note that
any set of square matrices which is bounded in ‖ · ‖K-norm is also bounded in the spectral
norm, as follows from Theorem C.2. That is to say, the asymptotic theory presented in this
paper is indeed a generalization of the theory initiated in Lee, L. F. (2004). Moreover, it
is also a proper generalization. To justify this statement it is enough to construct a spatial
weight matrix Wn, n ∈ N, for which supn∈N ‖Wn‖ < ∞ and supn∈N ‖Wn‖K = ∞. It is quite

18We use this name to indicate the norm’s central role in the CLT by Kelejian, H. H. and Prucha, I. R.
(2001).

11



Improved asymptotic analysis Working Paper

straightforward to give an example of such a matrix, by ensuring non-summability of one of
its columns. A construction of a non-summable spatial weight matrix which cannot be easily
fixed by eliminating a finite number of spatial units, is presented in Section 2.6.

Assumption 5 spells out the conditions imposed on spatial weight matrix Wn used to obtain
consistency of the Gaussian QML estimator θ̂n. It should be noted that this assumption is
generally stronger than mere identification of λ. In fact, it implies that the Gaussian log-
likelihood (2.2), (2.4) is asymptotically able to discriminate between different values of λ. In
other words, Assumption 5 ensures that there is enough information in the observed process
to decrease the estimate uncertainty for θ̂n, with increasing n. The distinction between the
statements (a) and (b) reflects the fact that this information can come from either the spatial
autocorrelation of Yn or via the accumulated spatial lag of regressors.

Assumption 1’ extends Assumption 1 with requirements necessary for obtaining limiting

distribution of the deviation dn =
√
n
(
θ̂n − θ0

)
. Intuitively, the limiting distribution can

be normal, regardless of the original distribution of εn only when none of the observations
within matrices Xn and Wn,r∆n(λ0)−1Xnβ0, r ≤ d, makes an overwhelming contribution to
the estimate of the corresponding slope coefficient. Let us note that this assumption is also
necessary in the simple case of non-spatial least squares regression. Although implicitly, this
assumption is also present in Lee, L. F. (2004) and Lee, L. F. and Yu, J. (2010a), as it is a
consequence of other assumptions adopted therein (in particular, boundedness of elements of
Xn).

It is known that for derivation of asymptotic distribution of dn the conditions expressed
in Assumption 2 are not sufficient, see for example Pruss, A. R. (1998). Therefore, in our
Assumption 2’ we adopt the standard econometric postulate that the innovations are stochas-
tically independent within samples. Note that we still do not assume that the elements of
the error term follow the same distribution. Instead, we impose the requirement of uniform
integrability of the fourth powers of all components of the error terms.

Assumption 6 spells out the necessary conditions for existence of the limiting distribution
variance. Note that for consistency of θ̂n the sequences (In)n∈N, (ΣS,n)n∈N do not need to
converge, let alone their limits be invertible. The requirement of invertibility of the matrix I
could be relaxed. However, with the present argument, it is possible to obtain only partial
results on asymptotic distribution of dn. An approach to the problem of singularity of I which
considers various convergence rates has been described in Lee, L. F. (2004).

2.6 Novel spatial interaction patterns – an example

In this section we formally show that the class of spatial weight matrices covered by our asymp-
totic analysis is a proper superset of the class of matrices absolutely summable in rows and
columns. Indeed, in view of Theorem C.2, boundedness in ‖ · ‖K norm implies boundedness in
the spectral norm. Below, we construct an example of a row-standardized spatial weight matrix
Wn which is bounded in the spectral norm and in which no column is absolutely summable.
Since a row-standardized matrix is naturally bounded in row sums, our construction relies on
its column sums being unbounded. As a result, the spatial interaction pattern described by
our matrix allows spatial units to influence a possibly unbounded number of neighbours.19 To
maintain simplicity of the argument we allow each spatial unit to be itself affected by a limited
number of units.

Let us define setsB1 = {2}, B2 = {3, 4}, B3 = {5, 6, 7} and furtherBk = {maxBk−1 + l}1≤l≤k,
for k ≥ 4. Clearly, sets Bk, k ≥ 1, are mutually disjoint and

⋃∞
k=1 Bk = N \ {1}. Thus,

19We should note that a modification to our construction is possible to make each spatial unit influence only
a finite number of neighbours.
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each number i ≥ 2 uniquely determines a pair (k(i), l(i)) defined by i ∈ Bk(i) and l(i) =
i−minBk(i) + 1. In other words, l(i) is the ordinal number of i in the increasing sequence of

elements of Bk(i). Note that i > l(i), for any i ≥ 2. Let us define an infinite matrix W̃ with all

elements equal to zero except for W̃1,2 = 1 and W̃i,l(i) = 1
k(i)

, W̃i,i+1 = 1− 1
k(i)

, for all i ≥ 2.

Firstly, no column of W̃ is absolutely summable. To justify this fact observe that if j ≥ 1 is
a column number and k ≥ j, then there exists an i ∈ Bk such that j = l(i) and W̃ij = 1

k
. Thus∑∞

i=1 W̃ij ≥
∑∞

k=j
1
k

=∞. Secondly, ‖W̃‖ ≤ 1 + π√
6
.20 Indeed, with W̃U =

[
W̃ijI{i<j}

]
i,j≤n

and

W̃ L =
[
W̃ijI{i>j}

]
i,j≤n

we can write W̃ = W̃U + W̃ L. Then, we have ‖W̃U‖ ≤ ‖W̃U‖K = 1, as

an indirect consequence Theorem C.2. Next, let us denote the columns of W̃ L with cj, j ≥ 1.
The vectors cj ∈ l2 are orthogonal, as for each cj, the set of indices of its non-zero elements

is l−1({j}), and those sets are mutually disjoint for j ≥ 0. Moreover, ‖cj‖2 =
∑∞

k=j
1
k2
≤ π2

6
.

For any x ∈ l2, by Bessel’s inequality, we have ‖(W̃ L)Tx‖2 =
∑∞

j=1|cT
j x|2 ≤ π2

6
‖x‖2. Since

‖W̃ L‖ = ‖(W̃ L)T‖, this yields ‖W̃ L‖ ≤ π√
6
.

Finally, we will define the matrix Wn = [Wn;ij]i,j≤n, n ∈ N. Namely, let us set Wn;ij = W̃ij,
for i, j ≤ n, with the exception of Wn;n,n−1 = 1− 1

k(n)
. Notice that ‖Wn‖ ≤ ‖W̃‖+1. Moreover,

for n ≥ 4 the matrix Wn is row-standardized. Indeed, we have
∑n

j=1 Wn,1j = W1,2 = 1 and for

any 2 ≤ i ≤ n we have
∑n

j=1Wn,ij = 1
k(i)

+ 1− 1
k(i)

= 1. This implies that the non-singularity

set for all ∆n(λ) = In−λWn, n ∈ N, is non-trivial, as it contains, at least, the interval (−1, 1).
We anticipate that spatial interaction patterns which are not necessarily absolutely summable

will be particularly useful in the case of the infill asymptotics, where spatial interaction with
asymptotically increasing number of neighbours is more natural. However, an application to
the case of increasing domain asymptotics is also possible. In particular, the argument of this
section may be related to a class of inverted distance spatial weight matrices, as it relies on the
divergence of the harmonic series

∑∞
k=1

1
k
. Assume that the strength of the potential interaction

of units i and j is proportional to dist (i, j)−γ, for some γ > 0. Let N(j, δ) denote the number
of neighbours i influenced by unit j such that dist (i, j) ≈ δ. When N(j, δ) ≥ const · δγ−1,
the columns sum for region j in the implied spatial weight matrix is asymptotically at least
limδ→∞

∫ δ
0
N(j, δ̃)δ̃−γ dδ̃ =∞. Thus, the standard asymptotic analysis of Lee, L. F. (2004) can-

not be applied. However, if, at the same time N(j, δ) = O(δ2γ−1−ε), for some ε > 0, then this
interaction pattern may still lead to a spatial weight matrix which is bounded in the spectral
norm, as limδ→∞

∫ δ
0
N(j, δ̃)(δ̃−γ)2 dδ̃ <∞.

3 Application to higher-order general fixed effects model

3.1 The elimination technique

This section provides a theoretical illustration of the utility of our improved asymptotic anal-
ysis. First, we describe a new fixed effect elimination scheme for the high-order SAR model.
Then, from the theorems of Section 2, we derive statements on the large sample behaviour of
the resulting QML estimator. We should note that in simple cases of constant number of fixed
effect dummies that distinguish non-overlapping groups of observations, a consistent, asymp-
totically normal QML estimator can be obtained by concentrating out the nuisance parameters.
However, in general case a careful approach is necessary. The argument presented below gener-

20Spectral (induced) norm is also defined for infinite matrices, which are understood as operators on l2 – the
Hilbert space of all square summable infinite sequences, equipped with the natural inner product, i.e. the sum
of products of corresponding coordinates.
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alises that developed in Olejnik, A. and Olejnik, J. (2017) and also extends the ideas for fixed
effect elimination described in Lee, L. F. and Yu, J. (2010a,b) and Lee, L. F. et. al. (2010). In
those papers the asymptotic analysis of QML estimators relies on the fact that the demeaning
operator matrix is row and column absolutely summable. By using the virtues of our improved
analysis we are able to account for a wider class of demeaning operators. Namely, we consider
model transformations which are bounded in the spectral norm, rather than in the ‖ ·‖K-norm;
and any non-zero projection matrix has unit spectral norm. We also make use of the fact that
the requirements expressed in our Assumption 4, unlike in the standard analysis of Lee, L. F.
(2004), are invariant under unitary transformations of the spatial weight matrix.

Let us consider a modified version of the SAR model specification (2.1) in which an addi-
tional term of fixed effects is introduced. Namely, we now turn to the following specification

Yn = λTWnYn +Xnβ + Φnµ+ εn, (3.1)

where εn satisfies Assumption 2’, the term Φn is a matrix of κ fixed effects and µ ∈ Rκ

is the corresponding vector parameter. The number of columns in Φn is allowed to change
with sample size i.e. κ = κ(n). Although in typical applications the columns of Φn are
dummy variables distinguishing non-overlapping groups of observations, here, no such formal
requirement is imposed.21 In applied spatial econometrics it is common to eliminate fixed
effects by means of the demeaning procedure, see e.g. Elhorst, J. P. (2014). This approach can
be understood as a simple projection on the space spanned by the columns of Φn, thus, it is
closely related to the famous Frisch-Waugh theorem, see Baltagi, B. H. (2005). Our technique
extends this idea in two crucial aspects. Firstly, the fixed effect term is eliminated together
with its higher-order spatial lags. Secondly, the transformed model is further projected onto a
lower dimensional space,22 in order to avoid the concerns regarding singularity of the resulting
variance, as expressed in Anselin, L. et. al. (2006), page 641.

Let Kn = Kn(Φn) ⊂ Rn be the Krylov subspace generated by iterating Wn on the columns
of the matrix Φn. That is, Kn is the smallest subspace H ⊂ Rn satisfying Φnα ∈ H, for any
α ∈ Rκ, and Wn,rh ∈ H, for any h ∈ H, r ≤ d. In still other words, Kn is the smallest Wn-
invariant subspace containing columns of Φn. Our idea is to filter out those vector components
of both Yn and Xn which lie in Kn. Under the assumption that the Krylov space Kn is
sufficiently small or, equivalently, its orthogonal complement K⊥n is sufficiently rich, we can

obtain a consistent QML estimator of θ =
(
βT, λT, σ2

)T
.

Let n∗ = n−dimKn and fix an n∗×n matrix F = Fn whose rows form an orthonormal basis
of K⊥n . It is easy to observe that FTF is the projection onto K⊥n and FFT = In∗ . Moreover, we
have ‖F‖ = 1, whenever n∗ > 0.

Note that, by definition, FKn = {0} and, in particular, FΦn = 0. Moreover, as In − FTF
projects onto Kn, we have

FλTWn

(
In − FTF

)
= 0, for any λ ∈ Rd. (3.2)

Denote Y ∗n = FYn, X∗n = FXn and ε∗n = Fεn. Transforming the specification (3.1), by using
(3.2), we obtain

Y ∗n = FYn = FλTWnY + FXnβ + FΦnµ+ Fεn

= FλTWnF
TFY + FXnβ + Fεn

= λTW∗
nY
∗
n +X∗nβ + ε∗n, (3.3)

21Columns of Φn are allowed to be arbitrary vectors, as long as the relevant assumptions of this section hold.
In particular, the groups of observations implied by the fixed effects design are allowed to overlap.

22This is very similar to the approach of Lee, L. F. and Yu, J. (2010a), therein referred to as the Helmert
transformation.
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where W∗
n =

〈
W ∗
n,r

〉
r≤d with W ∗

n,r = FWn,rF
T, r ≤ d.

It is easy to observe that ε∗n satisfies Assumption 2 with ε∗n substituted for εn and ε̄n
replaced with present εn. The crucial observation, however, is that Assumptions 3 and 4 are
satisfied when W∗

n is substituted for Wn. Indeed, note that with ∆∗n(λ) = In∗ − λTW∗
n we

have ∆∗n(λ)F
(
In − λTWn

)−1
FT = In∗ , by (3.2). Thus, ∆∗n(λ) is invertible and ∆∗n(λ)−1 =

F
(
In − λTWn

)−1
FT. Lastly, observe that ‖W ∗

n,r‖ ≤ ‖Wn,r‖, for each r ≤ d, and ‖∆∗n(λ)−1‖ ≤
‖∆n(λ)−1‖, for every λ ∈ Λ.

In order to ensure proper identification of parameters in the transformed specification (3.3)
we adopt the following assumptions.

Assumption 1Φ The matrix (X∗n)TX∗n is invertible and we have

sup
n∈N

∥∥n−1
∗ · (X∗n)TX∗n

∥∥ <∞ and sup
n∈N

∥∥n∗ · ((X∗n)TX∗n)−1
∥∥ <∞.

Assumption 5Φ For every λ1, λ2 ∈ Λ, such that λ1 6= λ2, at least one of the statements (a),
(b) below is satisfied:

(a) lim infn→∞
1√

n∗D∗n(λ)
‖∆∗n(λ1)∆∗n(λ2)−1‖F > 1,

(b) lim infn→∞
1√
n∗
‖MX∗n∆∗n(λ1)∆∗n(λ2)−1X∗nβ‖ > 0, for every β ∈ Rk,

where D∗n(λ) = |det (∆∗n(λ1)∆∗n(λ2)−1)|1/n∗ .
Assumption 7Φ We have limn→∞ n∗ =∞.

Finally, we can apply the construction of the Gaussian QML estimator from Section 2.2 to
the model specification 3.3. Namely, let us set β̂∗n = β̂∗n(λ̂∗n) and σ̂2∗

n = σ2∗
n (λ̂∗n), where

β̂∗n(λ) =
(
(X∗n)TX∗n

)−1
(X∗n)T∆∗n(λ)Y ∗n ,

σ̂2∗
n (λ) =

1

n∗
‖∆∗n(λ)Y ∗n −X∗nβ̂∗n(λ)‖2, λ ∈ Λ,

and λ̂∗n is a maximiser of ln |det ∆∗n(λ)|− n∗
2

ln (σ̂2∗
n (λ)) over λ ∈ Λ. Note, that under normality

of the original εn the estimators λ̂∗n, β̂∗n and σ̂2∗
n are exact ML estimators. That is to say, they

maximize the Gaussian log-likelihood function for θ given Y ∗n and X∗n, i.e.

logL∗n(θ) = −n∗
2

ln
(
2πσ2

)
+ ln |det ∆∗n(λ)| − 1

2σ2
‖∆∗n(λ)Y ∗n −X∗nβ‖

2 . (3.4)

3.2 Results on the asymptotic behaviour

The following result is an immediate consequence of Theorem 2.1 applied to the transformed
specification (3.3).

Theorem 3.1. Under Assumptions 2’, 3, 4, 1Φ, 5Φ and 7Φ the QML estimators λ̂∗n, β̂∗n and
σ̂2∗
n are consistent estimators of λ, β and σ2 respectively.

Establishing asymptotic normality of the quantity
√
n∗

(
θ̂∗n − θ0

)
requires a slightly more

delicate argument than the mere application of Theorem 2.3. The main difficulty is that the
components of Fεn do not have to be independent, even if the original εn is, unless normality
of the error term is assumed, c.f. the proof of Theorem 2 in Lee, L. F. and Yu, J. (2010a).
However, using the virtues of the improved asymptotic analysis, this goal can also be achieved
by a straightforward argument.
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Assumption 1’Φ Assumption 1Φ holds and each column of the matrices FTX∗n, FTW ∗
n,r∆

∗
n(λ0)−1X∗nβ0,

r ≤ d, is a member of the linear space Ξ∗ ⊂
∏∞

n=1 Rn, with Ξ∗ =
{

(xn)n∈N : xn = (xn,i)i≤n and maxn,i x
2
n,i = o(n∗)

}
.

Assumption 6Φ Let θ0 be the true value of parameter θ =
(
βT, λT, σ2

)T
in specification

(3.1). For the matrices I∗n = −Eθ0
∂2 lnL∗n
∂θ2

(θ0) and ΣS∗,n = Eθ0 (S∗n)TS∗n, where S∗n = ∂ lnL∗n
∂θ

(θ0),
n ∈ N, the following limits exist: I∗ = limn→∞

1
n∗
I∗n and ΣS∗ = limn→∞

1
n∗

ΣS∗,n. Moreover, the
matrix I∗ is non-singular.

Theorem 3.2. Under Assumptions 1’Φ, 2’, 3, 4, 5Φ, 6Φ and 7Φ for the QML estimator

θ̂∗n =
(
λ̂∗Tn , β̂

∗T
n , σ̂2∗

n

)T

described in Section 3.1, the asymptotic distribution of
√
n∗ · (θ̂n− θ0) is

the multivariate normal distribution with zero mean and variance (I∗)−1ΣS∗(I
∗)−1.

Proof. The proof relies on the very same argument (with Ln substituted for L∗n) as the proof
of Theorem 2.2, up to the point where our CLT is used to deduce asymptotic normality
of the linear-quadratic form 1√

n∗
S∗α = Qn − EQn, with α as previously, Qn = xT

nε
∗
n +

(ε∗n)TAnε
∗
n = xT

nFεn + (εn)TFTAnFεn, where xn = 1√
n∗σ2

0

(
X∗na+ bTW∗

n∆∗n(λ0)−1X∗nβ0

)
and

An = 1√
n∗σ2

0

(
c

2σ2
0
In∗ + bTW∗

n∆∗n(λ0)−1
)

. Note that by Assumptions 1’Φ and 4 we have (
√
n∗ ·

FTxn)n∈N ∈ Ξ∗, ‖FTAnF‖2 = O (1/n∗), ‖FTxn‖2 = O(1), ‖FTAnF‖2
F = O(1) and by Assump-

tion 6Φ we have limn→∞Var 1√
n∗
S∗α = αTΣS∗α. If αTΣS∗α > 0 then Theorem C.1 can be used

to deduce that 1√
n∗
S∗α converges in distribution to N

(
0, αTΣS∗α

)
.

The rest of the proof proceeds by exactly the same argument as Theorem 2.2 with P =
Ik+d+1.

3.3 Relation to the ordinary demeaning procedure

The fixed effect elimination approach described in Section 3.1 can be reformulated to use the
classical demeaning operator MK = FTF rather than the F matrix itself. Firstly, let us denote
Y †n = FTY ∗n , X†n = FTX∗n and W†

n =
〈
FTW ∗

n,rF
〉
r≤d. Transforming the log-likelihood function

in (3.4) we obtain

logL†n(θ) = −n∗
2

ln
(
2πσ2

)
+ ln

∣∣pdet
(
MK − λTW†

n

)∣∣
− 1

2σ2

∥∥Y †n − λTW†
n −X†nβ

∥∥2
, (3.5)

where pdet(A) denotes pseudo-determinant, i.e. the product of all non-zero singular values of
matrix A. The function in (3.5) is a proper Gaussian log-likelihood of θ, given Y †n = MKYn and
X†n = MKXn, with respect to n∗-dimensional Lebesgue measure on K⊥. Furthermore, notice
that MK = PK⊥ is an identity on the space K⊥, thus ∆†n(λ) = MK − λTW†

n is a proper spatial
difference operator on K⊥. Numerically, values of L†n in (3.5) and L∗n in (3.4) are the same,
however, an advantage of using L†n is that not only Y †n and X†n but also the matrix W†

n does
not depend on a particular choice of F.

By the determinant formula for block matrices we have

det ∆n(λ) = det

([
F
E

]
·∆n(λ) ·

[
FT,ET

])
= det

(
F∆n(λ)FT

)
· det

(
E∆n(λ)ET

)
= pdet

(
∆†n(λ)

)
· det

(
E∆n(λ)ET

)
,

where E is a matrix of orthonormal columns spanning K. Thus, given the value of det ∆n(λ),
computation of the value of pdet

(
∆†n(λ)

)
in (3.5) amounts to evaluation of the numerical value
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of the determinant of dimK×dimK matrix E∆nE
T. Lastly, Theorems 3.1 and 3.2 imply that

maximising L†n with respect to θ gives consistent, asymptotically normal estimates.
For some specifications the value of det

(
E∆n(λ)ET

)
can be found analytically. This is

true, for example, in two special cases: spatial fixed effects and time fixed effects, as considered
in Lee, L. F. and Yu, J. (2010a). In paricular, in a balanced panel setting, with n = N · T ,
a time invariant vector of matrices Wn = W̄N ⊗ IT and a usual matrix Φn of spatial unit
dummy variables, the space span(Φn) is already Wn-invariant. Thus we have K = span(Φn).
Finally, it can be also observed that det

(
E∆n(λ)ET

)
= det

(
IN − λTW̄N

)
. Similarly, if the

matrices in Wn are additionally row-normalized and the matrix Φn incorporates both time
and spatial fixed effects, we have det

(
E∆n(λ)ET

)
= (1−

∑
r≤d λr)

T−1 det
(
IN − λTW̄N

)
, with

λ = (λr)r≤d. Moreover, we note that in the case of time fixed effects specification, it can be
shown that det

(
E∆n(λ)ET

)
= (1−

∑
r≤d λr)

T .
We’ll briefly take a closer look at the individual fixed effect case. A standard approach to

ML estimation is to maximise the ordinary log-likelihood with Yn and Xn replaced with Y †n
and X†n, i.e. to maximise the expression

− n

2
ln
(
2πσ2

)
+ ln |det ∆n(λ)| − 1

2σ2

∥∥Y †n − λTW†
n −X†nβ

∥∥2
, (3.6)

as described in e.g. Elhorst, J. P. (2014), Section 3.1.1. Note that for the spatial fixed effects

specification we have n∗ = NT −N and pdet
(
∆†n(λ)

)
= det ∆n(λ)

T−1
T . By concentrating out

both β and σ2 from (3.5) and (3.6), we can observe that both expressions give the same value
for maximisers in variables λ and β. However, the QML estimate of σ2 from (3.5) is T

T−1
times

larger than that maximising (3.6). This readily implies a multiplicative bias correction for the
standard approach estimate of σ2. Furthermore, Theorem 3.2 implies that, up to the factor, the
estimates are also asymptotically normal. This bias correction has been originally suggested
in Lee, L. F. and Yu, J. (2010a). However, their proof of the asymptotic normality relies on
a false statement concerning the Taylor expansion of the gradient of the log-likelihood. Our
Theorem 3.1 may be the first to formally prove validity of their result, by yielding it as its
special case.23

4 Conclusions

In this paper we have introduced an improved analysis of the asymptotic behaviour of the
well known Gaussian QML estimator for higher-order SAR models. Among other things, our
approach allows one to consider a wider range of distributions for the vector of innovations. In
particular, weaker conditions on the existence of moments are imposed and, as a result, heavier
tailed distributions may be considered. Moreover, elements of the error term do not need to be
identically distributed as long as their excess kurtosis is uniformly bounded, see Assumptions 2
and 2’ for precise formulation. Furthermore, we have addressed the problem of the estimator’s
consistency and asymptotic distribution under the general form of the parameter space for the
autoregressive parameter.

We have argued that our asymptotic analysis covers a fundamentally larger class spatial
weight matrices in model specification. Importantly, this makes it possible to account for
spatial interaction patterns with larger amount of spatial dependence. Additionally, as has
been demonstrated by the sample application in Section 3, our approach also amplifies the
theoretical usability of the asymptotic analysis. In particular, it extends the set of possible

23We should note that an adaptation of our reasoning to the case of a SAR model with a spatially autocor-
related error term should not pose excessive difficulty. However, to retain simplicity of the argument, we focus
on the specification (2.1).
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model transformations that can be applied to the original model specification, without violating
the crucial boundedness requirement expressed in Assumption 4. As an example, we have
developed statements on large sample behaviour of QML estimates under higher-order SAR
general fixed effect specifications. Those results would not be possible without the virtues of
our improved asymptotic analysis.

We believe that the large sample analyses of Gaussian QML estimators based on the original
ideas in Lee, L. F. (2004), could benefit from applying our improved theorems, either directly
or with minor modifications. Furthermore, similar ideas, in particular our Theorem C.1, can be
used to reconsider large sample statements on estimators other than QML, for example GMM
or 2SLS, see Lee, L. F. (2007), Lee, L. F. and Liu, X. (2010) and Lee, L. F. and Yu, J. (2014).
We should also mention that we have made every effort to keep our reasoning mathematically
rigorous. As a result, we have avoided some of the oversights present in the argument of the
standard analysis. For example, we properly derive the asymptotic distribution based on the
Cramér-Wald theorem. Moreover, our proof does not rely on the existence of the Lagrange
remainder in the Taylor expansion theorem.24 Because of this deficiency, the original reasoning
in Lee, L. F. (2004) might be considered unsatisfactory and our proof may constitute the first
formally complete one.

A Remarks

Proof of Remark 2.1. For any sequence of n×nmatrices (An)n∈N define ‖(An)n∈N‖A = supn∈N ‖An‖.
The set A = {(An)n∈N : ‖(An)n∈N‖A <∞}, equipped with element-wise addition and multipli-
cation, as well as the norm ‖ · ‖A, is a unital Banach algebra.25 By Proposition 1.7 in Takesaki,
M. (1979), the set G(A) of all invertible elements in A is open in A. The map ∆: Rd → A,
given by ∆(λ) = (In − λTWn)n∈N, is continuous, thus the pre-image V = ∆−1(G(A)) is open
in Rd. The norm ‖ · ‖A is a continuous function on A and the map G(A) 3 A 7→ A−1

is also continuous, see (Takesaki, M., 1979, Corrolary 1.8). Thus, the map D : V → R,
D(λ) = ‖(In − λTWn)−1

n∈N‖A, is continuous and the pre-image U = D−1((−1, KΛ + 1)) is
open in V , thus open in Rd. By Assumptions 3 and 4 we have Λ ⊂ U .

Remark A.1 Let UΛ ⊃ Λ be the set given in Remark 2.1. The function logLn, given in (2.2),
is thrice differentiable in each λ ∈ UΛ. To simplify notation let us denote W̃ λ

n,r = Wn,r∆
−1
n (λ)

and εn(λ, β) = Yn − λTWnY −Xnβ. First order partial derivatives of logLn are

∂ lnLn(θ)

∂λ
=

[
− tr W̃ λ

n,r +
1

σ2
εn(λ, β)TWn,rYn

]
r≤d

,

∂ lnLn(θ)

∂β
=

1

σ2
εn(λ, β)TXn,

∂ lnLn(θ)

∂σ2
= − n

2σ2
+

1

2σ4
‖εn(λ, β)‖2 .

The second and third order partial derivatives are

∂2 lnLn(θ)

∂λ2
=

[
− tr

(
W̃ λ
n,r1

W̃ λ
n,r2

)
− 1

σ2
(Wn,r1Yn)T Wn,r2Yn

]
r1,r2≤d

,

∂2 lnLn(θ)

∂λ∂β
=

[
− 1

σ2
XT
nWn,rYn

]
r≤d

,

24Recall that the Lagrange reminder in Taylor series expansion of a vector valued function is not available.
The function f : [0, 1]→ C, f(t) = eit, t ∈ [0, 1], can serve as a counterexample. See also Feng, C. et. al. (2014).
Instead, our technique makes use of an original bound (inequalities (2.9), (2.10)).

25It is a complete normed space with a submultiplicative norm and (In)n∈N as identity.
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∂2 lnLn(θ)

∂λ∂(σ2)
=

[
− 1

σ4
εn(λ, β)TWn,rYn

]
r≤d

,

∂2 lnLn(θ)

∂β2
= − 1

σ2
XT
nXn,

∂2 lnLn(θ)

∂β∂(σ2)
= − 1

σ4
εn(λ, β)TXn,

∂2 lnLn(θ)

∂(σ2)2
=

n

2σ4
− 1

σ6
‖εn(λ, β)‖2 ,

∂3 lnLn(θ)

∂λ3
=
[
− tr

(
W̃ λ
n,r1

W̃ λ
n,r3

W̃ λ
n,r2

+ W̃ λ
n,r1

W̃ λ
n,r2

W̃ λ
n,r3

)]
r1,r2,r3≤d

,

∂3 lnLn(θ)

(∂λ)2∂(σ2)
=

[
1

σ4
(Wn,r1Yn)T Wn,r2Yn

]
r1,r2≤d

,

∂3 lnLn(θ)

∂λ∂β∂(σ2)
=

[
1

σ4
XT
nWn,rYn

]
r≤d

,

∂3 lnLn(θ)

(∂β)2∂(σ2)
=

1

σ4
XT
nXn,

∂3 lnLn(θ)

∂β∂(σ2)2
=

2

σ6
XT
n εn(λ, β),

∂3 lnLn(θ)

∂(σ2)3
= − n

σ6
+

3

σ8
‖εn(λ, β)‖2 .

Moreover, the following derivatives vanish

∂3 lnLn(θ)

∂λ∂β2
,

∂3 lnLn(θ)

∂β∂λ2
,

∂3 lnLn(θ)

∂β3
.

Partial derivatives which are not mentioned are given by symmetry.

Remark A.2 Let en = en(θ), θ =
(
βT, λT, σ2

)T
, be an element of any of the matrices

representing first, second or third order derivatives of the function logLn, c.f. Remark A.1.
Then, under Assumptions 1 and 4, en is of the form

en = εT
nAnεn + xT

nεn + zn,

where An, xn, zn are non-random continuous functions of θ, for which there exist a uni-
versal continuous function K(β, σ2), independent of n, satisfying ‖An‖2 ≤ K(β, σ2) and
‖xn‖2, ‖zn‖2 ≤ n ·K(β, σ2).

Proof. We will say that a random vector En = En(θ) ∈ Rn is an amenable vector if En = Anεn+
zn, where An and zn are some non-random continuous functions of θ as in the statement of the
theorem. Note that εn, Xn, ε(λ, β), Wn,rYn are amenable vectors. Then, by examining formulas
in Remark A.1, it can be observed that all entries en are of the form en = zT

n zn + f(σ2)ET
nFn,

where En, Fn are amenable vectors and zn is a non-random vector as in the statement of the
theorem and f is a continuous function of σ2. Changing the choice of K if necessary, we
complete the proof.

Remark A.3 Let θ0 be fixed. Under Assumptions 1 – 4 and 6 we have
∥∥∥I + 1

n
∂2 lnLn
∂θ2

(θ0)
∥∥∥ =

oP(1).
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Proof. In view of Assumption 6, it suffices to show that each element en = en(θ) of the matrix
representing 1

n
∂2 lnLn
∂θ2

(θ) satisfies Varθ0 en(θ0) = oP(1). Using Remark A.2, we have

Varθ0(en) ≤ 2 Varθ0

(
1

n
εT
nAnεn

)
+ 2 Varθ0

(
1

n
xT
nεn

)
.

Then, it is enough to use Lemma B.2 to establish the bounds for Varθ0 en(θ0).

Remark A.4 Let θ0 be fixed and let τ = {β ∈ Rk : ‖β‖ < ‖β0‖+ 1} × UΛ × (1
2
σ2

0, 2σ
2
0) with

UΛ given in Remark 2.1. Moreover, let en = en(θ) be an element of the matrix representing
third order derivative of the function 1

n
logLn. Then, under Assumptions 1 – 4, the quantity

Eθ0 supθ∈τ |en(θ)| is bounded in n ∈ N.26

Proof. By Remark A.2 we have

Eθ0 sup
θ∈τ
|en(θ)| ≤ 1

n
Eθ0 sup

θ∈τ

(
‖An‖‖εn‖2 + ‖xn‖‖εn‖+ ‖zn‖

)
≤ 3(1 + σ2

0) max
θ∈closure (τ)

√
K(β, σ2) <∞.

Remark A.5 Let θ0 be fixed and let τ = {β ∈ Rk : ‖β‖ < ‖β0‖+ 1} × UΛ × (1
2
σ2

0, 2σ
2
0) with

UΛ given in Remark 2.1. Under Assumptions 1 – 4 we have supθ∈τ

∥∥∥ 1√
n
∂ lnLn
∂θ

∥∥∥ = OP(1).

Proof. As Eθ0 ∂ lnLn
∂θ

= 0, it is sufficient to observe that, by Remark A.2 and Lemma B.2, for
any element en of the vector 1√

n
∂ lnLn
∂θ

we have

Varθ0(en) ≤ 2

n
Varθ0

(
εT
nAnεn

)
+

2

n
Varθ0

(
xT
nεn
)
≤ CK(β, σ2)(1 + sup

n,i
E ε̄4

n,i),

for some constant C. Then, supθ∈τ Varθ0(en(θ)) <∞.

Remark A.6 The functions R̄n : UΛ → R given by formula (2.5) are differentiable. Moreover,
under Assumptions 1 and 4, both ‖R̄n‖ and ‖(R̄n)′‖ are uniformly bounded by a constant
depending only on β0 and σ2

0.

Proof. Boundedness of R̄n follows from Assumptions 1, 4 and Remark 2.1. By Jacobi’s formula,
for any λ ∈ UΛ, we have

1

n

∂

∂λ
ln |det ∆n(λ)| =

(
−1

n
tr
(
∆n(λ)−1Wn,r

))
r≤d

.

As | 1
n

tr (A)| ≤ ‖A‖, for any n × n matrix A, by Remark 2.1 we have the boundedness of∥∥ 1
n
∂
∂λ

ln |det ∆n(λ)|
∥∥ in λ ∈ UΛ, n ∈ N.

Let us note that for any 1 ≤ r ≤ d and λ = (λj)j≤d ∈ UΛ we have∣∣∣∣ ∂∂λr σ
2
0

n
‖Sn(λ)‖2

F

∣∣∣∣ ≤ σ2
0

∥∥∥∥ ∂

∂λr

(
Sn(λ)TSn(λ)

)∥∥∥∥
= σ2

0

∥∥∥(Wn,r∆n(λ0))T Sn(λ) + Sn(λ)TWn,r∆n(λ0)
∥∥∥ .

26Note that the integrand is measurable as en is continuous in θ.
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Thus, by Remark 2.1,
σ2
0

n
∂
∂λ
‖Sn(λ)‖2

F is bounded in λ ∈ UΛ and n ∈ N. Similarly, for any
1 ≤ r ≤ d and λ ∈ UΛ we have

1

n

∂

∂λr
‖MXnSn(λ)Xnβ0‖2 =

− 2

n
βT

0 X
T
n Sn(λ)TMXnWn,r∆n(λ0)−1Xnβ0.

Again, by Remark 2.1, 1
n
∂
∂λ
‖MXnSn(λ)Xnβ0‖2 is bounded in λ ∈ UΛ, n ∈ N.

Finally, as 1
n
‖Sn(λ)‖2

F ≥ ‖Sn(λ)−1‖−2, for λ ∈ UΛ, Remark 2.1 implies that 1
n
‖Sn(λ)‖2

F >

δ > 0, λ ∈ UΛ, for some constant δ. Thus the derivative of ln
(

1
n
‖MXnSn(λ)Xnβ0‖2 +

σ2
0

n
‖Sn(λ)‖2

F

)
and, as a result, the derivative of R̄n itself is bounded on UΛ.

B Lemmata

Lemma B.1. Let U ⊂ Rd be an open set and A ⊂ U its compact subset. If F : U → Rm is
differentiable and ‖F‖, ‖F ′‖ ≤ M < ∞ for a constant M , then F is Lipschitz continuous on
A with a constant KL = KL(M,A).27

Proof. Set δ = inf {‖x− ξ‖ : x ∈ A and ξ ∈ Rd \ U}. As A is compact we have δ > 0. Let
x, y ∈ A. If ‖x − y‖ ≤ δ, then the line segment x, y is a subset of U and ‖F (x) − F (y)‖ ≤
‖
∫ 1

0
∂
∂t
F (x+ t(y − x)) dt‖ ≤ M · ‖x − y‖. If ‖x − y‖ > δ, then we have ‖F (x) − F (y)‖ ≤

2M
δ
‖x− y‖.

Lemma B.2. Let εn = (εn,i)
T
i≤n be an n × 1 random vector satisfying Assumption 2. Let

(An)n∈N, (Pn)n∈N be sequences of n × n matrices satisfying supn∈N ‖Pn‖ ≤ 1 and Pn = PT
n Pn.

Moreover, let xn ∈ Rn, for n ∈ N, be non-random vectors satisfying ‖xn‖2 = O(n). Then

(a) for Za
n = 1

n
xT
nAnεn, we have VarZa

n ≤ σ2

n
‖An‖2 · 1

n
‖xn‖2,

(b) for Zb
n = 1

n
εT
nAnεn, we have VarZb

n ≤ 3
n
‖An‖2 supn,i E ε̄4

n,i,

(c) for Zc
n = 1

n
εT
nA

T
nPnAnεn, we have VarZc

n ≤ 3
n
‖An‖4 supn,i E ε̄4

n,i and |EZc
n| ≤ σ2

n
‖An‖2‖Pn‖2

F.

Proof. To prove part (a), it is enough to observe that

Var
(
xT
nAnεn

)
= E εnAT

nxnx
T
nAnεn = σ2‖AT

nxn‖2
F ≤ σ2‖AT

n‖2‖xn‖2.

In proving part (b), we may assume Ãn = ET
nAnEn = (ãij)i,j≤n to be symmetric, as

∥∥∥ ÃT
n+Ãn

2

∥∥∥ ≤
‖Ãn‖, c.f. Assumption 2. Then,

E
(
(εT
nAnεn)2

)
= E

(
(ε̄T
n Ãnε̄n)2

)
=

∑
i,j,k,l≤n

ãij ãkl E ε̄n,iε̄n,j ε̄n,kε̄n,l

= σ4 ·

(∑
i 6=j

(ãiiãjj + ãij ãij + ãij ãji)

)
+
∑
i≤n

ã2
ii E ε̄4

n,i,

(
E εT

nAnεn
)2

=

(∑
i,j≤n

ãij E ε̄n,iε̄n,j

)2

= σ4
∑
i,j≤n

ãiiãjj.

27In fact, it is not necessary to assume that F is bounded, yet it considerably simplifies the proof.
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Thus, with ‖En‖ = 1 by Bessels’s inequality, we have

Var εT
nAnεn = E

(
(εT
nAnεn)2

)
−
(
E εT

nAnεn
)2

=
∑
i≤n

ã2
ii(E ε̄4

n,i − 3σ4) + 2σ4‖Ãn‖2
F ≤ 3n‖An‖2 sup

n,i
E ε̄4

n,i.

Finally, the part (c) follows from (b) and the observation that |EZa
n| = σ2

n
trAT

nPnAn =
σ2

n
‖PnAn‖2

F ≤ σ2

n
‖An‖2‖Pn‖2

F

C Theorems

Theorem C.1. Let (εn)n∈N satisfy Assumption 2’ and let xn = (xn,i)i≤n, n ∈ N, be column
vectors. Denote Qn = εT

n (xn + Anεn) and assume that VarQn > 0 for sufficiently large n ∈ N.
If ‖xn‖2 + ‖An‖2

F = O(VarQn), ‖An‖2 = o(VarQn) and maxi≤n x
2
n,i = o(VarQn), then Qn−EQn√

VarQn

converges in distribution to standardised normal N(0, 1).

Proof. Without loss of generality we may assume that σ2
0 = 1 and the matrices An, n ∈ N, are

symmetric. Let us denote ς2
n,i = Var ε2

n,i, η
3
n,i = E ε3

n,i and Vn = VarQn, for n ∈ N, i ≤ n. With
An = [an,ij]i,j≤n, setting

Un,i = an,ii
(
ε2
n,i − 1

)
+ xn,iεn,i + 2εn,i

∑
1≤j<i

an,ijεn,j,

for n ∈ N and 1 ≤ i < n,we can write
∑

i≤n Un,i = Qn−EQn. Observe that E [Un,i | Fn,i−1] = 0,
with σ-fields Fn,i = σ {εn,j : j ≤ i}, 1 ≤ i ≤ n. The proof relies on the martingale difference
array CLT which can be found in Hall, P. and Hyde, C. C. (1980), Corollary 3.1. According
to the theorem, it is enough to show that

∀δ>0 qn(δ)→ 0 and Vn → 1,

in probability, as n→∞, where

qn(δ) =
1

Vn

∑
i≤n

E
[
U2
n,iI{U2

n,i≥δ2·VarQn} | Fn,i−1

]
, δ > 0,

Vn =
1

Vn

∑
i≤n

E
[
U2
n,i | Fn,i−1

]
.

Denote Tn,i = 2
∑

j<i ai,jεn,j. Direct computation reveals that

U2
n,i = 2an,iixn,iεn,i(ε

2
n,i − 1) + 2an,iiεn,i(ε

2
n,i − 1)Tn,i

+ 2xn,iε
2
n,iTn,i + ε2

n,iT
2
n,i + a2

n,ii(ε
2
n,i − 1)2 + x2

n,iε
2
n,i

and

Vn =
1

Vn

∑
i≤n

(
2η3

n,ian,iixn,i + 2η3
n,ian,iiTn,i + 2xn,iTn,i

+ T 2
n,i + ς2

n,ia
2
n,ii + x2

n,i

)
.

Since Vn =
∑

i≤n EU2
n,i, n ∈ N, we have

Vn = 2
∑
i≤n

η3
n,ixn,ian,ii + ET 2

n,i +
∑
i≤n

ς2
n,ia

2
n,ii +

∑
i≤n

x2
n,i.
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Further, it follows that

(Vn − 1)2 = V−2
n ·

(∑
i≤n

(
2η3

n,ian,iiTn,i + 2xn,iTn,i +
(
T 2
n,i − ET 2

n,i

)))2

,

thus E (Vn − 1)2 = 1
V2
n
O
(
ξ

(1)
n + ξ

(2)
n + ξ

(3)
n

)
, where ξ

(1)
n = E

(∑
i≤n an,iiTn,i

)2
, ξ

(2)
n = E

(∑
i≤n xn,iTn,i

)2

and ξ
(3)
n = E

(∑
i≤n
(
T 2
n,i − ET 2

n,i

))2
.

For any numbers i and j denote i ∧ j = min {i, j}. Let us note that for some constant
C > 0 we have

1

16
ξ(3)
n = E

(∑
i≤n

∑
k1,k2<i

an,ik1an,ik2εn,k1εn,k2 −
∑
i≤n

∑
k<i

a2
n,ik

)2

≤ 2E

∑
i≤n

∑
k1,k2<i
k1 6=k2

an,ik1an,ik2εn,k1εn,k2


2

+ 2E

(∑
i≤n

∑
k<i

a2
n,ik

(
ε2
n,k − 1

))2

≤ C
∑
i,j≤n

∑
k1,k2≤i∧j

an,ik1an,ik2an,jk1an,jk2 = C
∑
i,j≤n

(∑
k≤i∧j

an,ikan,jk

)2

.

Let C ·Bn be the right-hand side of the above inequality. Further, we have

Bn =
∑
i<j≤n

(∑
k≤i∧j

an,ikan,jk

)2

+
∑
j≤i≤n

(∑
k≤i∧j

an,ikan,jk

)2

≤ 2
∑
i,j≤n

(∑
k≤i

an,ikan,kj

)2

= 2
∥∥∥An · [an,ijI{i<j}]i,j≤n∥∥∥2

F

≤ 2‖An‖2‖An‖2
F. (C.1)

Moreover, by Schwartz inequality and (C.1) we have

1

4
ξ(2)
n = E

(∑
i≤n

xn,i
∑
k<i

an,ikεn,k

)2

=

(∑
i,j≤n

xn,ixn,j
∑
k<i∧j

an,ikan,jk

)

≤
√∑

i,j≤n

x2
n,ix

2
n,j

√√√√∑
i,j≤n

(∑
k≤i∧j

an,ikan,jk

)2

≤
∑
i≤n

x2
n,i ·B1/2

n

≤
√

2 · ‖An‖‖xn‖2‖An‖F. (C.2)

Using (C.2) with (an,ii)
T
i≤n substituted for xn, we obtain ξ

(1)
n ≤ 4

√
2 · ‖An‖‖An‖3

F. Finally,

E (Vn − 1)2 = V−2
n · o (V2

n) and Vn → 1 in probability.
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To complete the proof we will show that qn(δ)→ 0, δ > 0, in probability. Since qn(δ) > 0,
by Markov inequality, it is enough to obtain the convergence E qn(δ)→ 0, for any δ > 0.

Let K > 0. For n ∈ N, i ≤ n, set Zn,i = εn,iI{εn,i<K} − E εn,iI{εn,i<K}, Hn,i = εn,i − Zn,i and
un,i = 2Zn,i

∑
j<i aijZn,j + an,ii

(
Z2
n,i − EZ2

n,i

)
+ xn,iZn,i, hn,i = Un,i− un,i. It is easy to observe

that both (Zn,i)n,i and (Hn,i)n,i are sequences of independent zero mean variables.
As either |un,i| ≥ 1

2
|Un,i| or |un,i| < 1

2
|Un,i| < |hn,i|, we have

E qn(δ) ≤ 2V−1
n

(∑
i≤n

E
[
u2
n,iI{U2

n,i≥δ2Vn}

]
+
∑
i≤n

Eh2
n,i

)

≤ 2V−1
n

(∑
i≤n

E
[
u2
n,iI{(2un,i)2≥δ2Vn}

]
+ 2

∑
i≤n

Eh2
n,i

)
≤ 2 (δVn)−2

∑
i≤n

E
[
(2un,i)

2 · u2
n,i

]
+ 4V−1

n

∑
i≤n

Eh2
n,i. (C.3)

Since 1
27
u4
n,i ≤ 24Z4

n,i

(∑
j<i an,ijZn,j

)4

+a4
n,ii(Z

2
n,i−EZ2

n,i)
4+x4

n,iZ
4
n,i, it follows that

∑
i≤n Eu4

n,i =

O
(
κ

(1)
n + κ

(2)
n + κ

(3)
n

)
, where

κ(1)
n = E

∑
i≤n

(∑
j<i

an,ijZn,j

)4

, κ(2)
n =

∑
i≤n

a4
n,ii, κ(3)

n =
∑
i≤n

x4
n,i.

For some constant C ≥ 0 we have κ
(1)
n = C · E

∑
i≤n
∑

j,k<i a
2
n,ija

2
n,ik and

κ
(1)
n

C
+ κ(2)

n ≤ 2
∑
i≤n

(∑
j≤i

a2
n,ij

)2

≤ 2
∥∥AT

n · [an,ij]j≤i
∥∥2

F
= o

(
V2
n

)
.

Additionally, κ
(3)
n ≤

(
maxi≤n x

2
n,i

)
‖xn‖2 = o (V2

n). Thus, the first summand in the right-hand
side of inequality (C.3) converges to 0 as n→∞, independently of K. Lastly, it is left to show
that supn∈N V−1

n

∑
i≤n Eh2

n,i converges to 0 as K →∞. To this end, observe that

Eh2
n,i ≤ 6E

(∑
j<i

an,ij (εn,iεn,j − Zn,iZn,j)

)2

+ 3E a2
n,ii

(
ε2
n,i − Z2

n,i −
(
1− EZ2

n,i

))2
+ 3Ex2

n,i (εn,i − Zn,i)
2

and, as εn = Zn +Hn, for j < i ≤ n we have

εn,iεn,j − Zn,iZn,j = Hn,iHn,j + Zn,iHn,j +Hn,iZn,j,

ε2
n,i − Z2

n,i = 2Zn,iHn,i +H2
n,i.

Thus, for a constant C > 0, we have

1

C
· V−1

n

∑
i≤n

Eh2
n,i ≤ V−1

n ‖An‖2
F · sup

i≤n
EH2

n,i · sup
i≤n

EZ2
n,i

+ V−1
n ‖An‖2

F · sup
i≤n

EH4
n,i

+ V−1
n ‖An‖2

F · (sup
i≤n

EH4
n,i · sup

i≤n
EZ4

n,i)
1
2 + V−1

n ‖xn‖2 · sup
i≤n

EH2
n,i.

Note that supi≤n EZ2
n,i, supi≤n EZ4

n,i, V−1
n ‖An‖2

F, V−1
n ‖xn‖2 are bounded in n ∈ N. Moreover,

since the fourth powers of εn,i are uniformly integrable, both supn; i≤n EH2
n,i and supn; i≤n EH4

n,i

converge to 0, as K →∞. Finally, we conclude that E qn(δ)→ 0, as n→∞.
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Theorem C.2. For any square matrix A we have ‖A‖ ≤ ‖A‖K.

Proof. Suppose that ‖A‖ > ‖A‖K. With B = 1
‖A‖2A

TA we have

‖B‖1 ≤
∥∥ATA

∥∥
1

‖A‖2
≤ 1

‖A‖2

∥∥AT
∥∥

1
‖A‖1 =

‖A‖∞ ‖A‖1

‖A‖2
<
‖A‖2

K

‖A‖2
K

= 1.

This implies that the series In+B+B2 + . . . converges to (In −B)−1. In particular, the matrix
In − B is invertible. Thus, ATA − ‖A‖2 = ‖A‖2 (B − In) is also non-singular. Since ‖A‖ is a
singular value of A, ‖A‖2 is an eigenvalue of ATA, which is a contradiction.

References

Anselin, L. (1988). Spatial Econometrics: Methods and Models, Kluwer Academic, Dor-
drecht, doi:10.1007/978-94-015-7799-1.

Anselin, L., Le Gallo, J. and Jayet, H. (2006). Spatial Panel Econometrics, in Matyas,
L. and Sevestre, P. (eds.) The Econometrics of Panel Data, Fundamentals and Recent
Developments in Theory and Practice, 3rd edition, Kluwer, Dodrecht, doi:10.1007/978-3-
540-75892-1.

Badinger, H. and Egger, P. (2013). Estimation and testing of higher-order spatial au-
toregressive panel data error component models. Journal of Geographical Systems 15 (4)
453–489, doi:10.1007/s10109-012-0174-z.

Baltagi, B. H. (2005). Econometric Analysis of Panel Data, Chichester West Sussex, Eng-
land.

Bhansali, R. J., Giraitis, L. and Kokoszka, P. S. (2007). Convergence of
quadratic forms with non-vanishing diagonal. Statistics and Probability Letters 77 726–734,
doi:10.1016/j.spl.2006.11.007.

Billingsley, P. (1995). Probability and Measure, 3nd ed. John Wiley & Sons, New York.

Billingsley, P. (1999). Convergence of Probability Measures, 2nd ed. John Wiley & Sons,
New York, doi:10.1002/9780470316962.

Cliff, A. D. and Ord, J. K. (1973). Spatial Autocorrelation, Pion, London.

Cressie, N. (1993). Statistics for Spatial Data, Wiley, New York.

Elhorst, J. P. (2014). Spatial Econometrics: From Cross-Sectional Data to Spatial Panels,
Springer, Heidelberg, doi:10.1007/978-3-642-40340-8.

Elhorst, J. P., Lacombe, D. J. and Piras, G. (2014). On model specification and pa-
rameter space definitions in higher order spatial econometric models. Regional Science and
Urban Economics 42 211–220, doi:10.1016/j.regsciurbeco.2011.09.003.

Feng, C., Wang, H., Han, Y., Xia, Y. and Tu, X. M. (2014). The Mean Value
Theorem and Taylors Expansion in Statistics. The American Statistician 67 245–248,
doi:10.1080/00031305.2013.844203.

Gupta, A. and Robinson, P. (2015). Inference on higher-order spatial autoregres-
sive models with increasingly many parameters. Journal of Econometrics 186 19–31,
doi:10.1016/j.jeconom.2014.12.008.

25



Improved asymptotic analysis Working Paper
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